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Why going beyond VMC?

Dependence of VMC from wave function W
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Why going beyond VMC?

> Dependence on wave function: What goes in, comes out!

> No automatic way of constructing wave function W

Choices must be made about functional form (human time)

> Hard to ensure good error cancelation on energy differences

e.g. easier to construct good W for closed than open shells

Can we remove wave function bias?



Projector Monte Carlo methods

> Construct an operator which inverts spectrum of 'H

> Use it to stochastically project the ground state of 'H

Diffusion Monte Carlo

Green’s function Monte Carlo

Power Monte Carlo

exp[—7(H — Et)]
1/(H — Er)
Er —H



Diffusion Monte Carlo

Consider initial guess W(%) and repeatedly apply projection operator

w(n) _ g (H—Er)y(n—1)

Expand W(® on the eigenstates W; with energies E; of H
Y(n) — oa=nm(H—Er)y(0) _ Z Up <\|j(o)|\|ji>e_”7'(Ei_ET)

and obtain in the limit of n — o0

lim W — \|}O<\|j(0)|\|jo>e—nT(Eo—ET)

n—aoo

If we choose Et =~ Ey, we obtain | lim Ww(" =y,




How do we perform the projection?

Rewrite projection equation in integral form

V(R t+7) = /dR G(R,R,7)V(R,t)

where G(R',R,7) = (R'|e "t-Er)|R)

> Can we sample the wave function?

For the moment, assume we are dealing with | bosons |, so W > 0

> Can we interpret G(R’,R, 1) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

W(R)I?

VMC | Distribution function is given p(R) =

J dRV(R)[?
Construct P which satisfies stationarity condition Pp = p
— p is eigenvector of P with eigenvalue 1

— p is the dominant eigenvector = nIi_)mOO P" pinitial = P

DMC | Opposite procedure!

The matrix P is given — P = (R'|e”7(H~ET)|R)

We want to find the dominant eigenvector p = ¥y



What can we say about the Green's function?

G(R,R,7) = (R|e TH-ED)|R)

G(R’, R, 7) satisfies the imaginary-time Schrodinger equation

(’9G(R, Ro, t)
ot

(H — ET)G(R, Ro, t) = —

with G(R',R,0) = 6(R' — R)



Can we interpret G(R’, R, 7) as a transition probability?

H=T

Imaginary-time Schrodinger equation is a diffusion equation

_@G(R, Ro, t)
ot

1
—EVQG(R, Ro, t) =

The Green's function is given by a Gaussian

G(R',R,7) = (277)*N/% exp [_ - 2_7'R)2]

Positive and can be sampled




Can we interpret G(R’, R, 7) as a transition probability?

H=YV

0G(R, Ro, t)
Ot ’

(V(R) — ET)G(R, R, t) = —
The Green's function is given by

G(R',R,7) =exp[-7 (V(R) — ET)] (R — R,

Positive | but does not preserve the normalization

It is a factor by which we multiply the distribution W(R, t)



H =7 + V and a combination of diffusion and branching

Trotter's theorem — | eATB)T — AT BT O(Tz)

<R,‘G_HT‘R0> ~ <R’\e_TTe_VT\Ro>
_ / dR”(R'|e~T"|R"}(R"|e V7 |Ry)

_ <R/‘e_TT‘RO>e_V(RO)T

The Green's function in the | short-time approximation | to O(72) is

(R — R)2
2T

G(R,R,7) = (27‘(’7‘)_3,\//2 exp [— ] exp[-7 (V(R) — E7)]

DMC results must be extrapolated at short time-steps (7 — 0)



Time-step extrapolation

Example: Energy of Lip versus time-step 7
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Diffusion Monte Carlo as a branching random walk (1)

The basic DMC algorithm is rather simple:

1. Sample W(9(R) with the Metropolis algorithm

Generate My walkers Ry, ..., Ry, (zeroth generation)

2. Diffuse each walker as|R" = R + ¢

where ¢ is sampled from g(&) = (277)73N/2exp (—¢2/27)

3. For each walker, compute the factor

p =exp[-T(V(R) — ET)]

Branch the walker with p the probability to survive

Continue —



Diffusion Monte Carlo as a branching random walk (2)

4. Branch the walker with p the probability to survive

> If p <1, the walker survives with probablity p

> If p > 1, the walker continues and new walkers with the

same coordinates are created with probability p — 1

= Number of copies of the current walker equal to int(p + 7)

where 7 is a random number between (0,1)

5. Adjust ET so that population fluctuates around target M

— After many iterations, walkers distributed as Wy(R)



Diffusion and branching in a harmonic potential

V() \/

L

P(x) T

Walkers proliferate/die in regions of lower/higher potential than Et




Some comments on the simple DMC algorithm

> Et is adjusted to keep population stable

IF M(t) is the current and My the desired population

T(_SE 1 M
[) = (—0ET) _ — 0
M(t+T)= M(t)e My = O0Er = —=In [M(t)]

If Ecst(t) is current best estimate of the ground state

Er(t+7) = Eaa(t) + g—lT In [Mo/M(2)]

= Feedback on Et introduces population control bias

> Symmetric branching exp[—7(V(R) + V(R’))/2] starting from

e(A—i—B)T _ eAT/ZeBTeAT/2 4+ 0(7_3)



Problems with simple algorithm

The simple algorithm is | inefficient and unstable

> Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction — Exploding population

> Branching factor grows with system size



Importance sampling

Start from integral equation

V(R t+7) = /dR G(R,R,7)V (R, t)

Multiply each side by trial W and define | f(R, t) = V(R)V(R, t)

FRt 4 7) = /dR G(R, R, 7)F(R, 1)

where the importance sampled Green's function is

G(R',R.7) = V(R')(R'|e """ F1)|R) /V(R)

We obtain | lim f(R) = V(R)W((R)

n—aoo




Importance sampled Green's function

The importance sampled CNJ(R, Ro, 7) satisfies

1 - . - oG
—§V2G + V- [GV(R)] + [EL(R) — Er] G = ———
. . ~ VVY(R)
with the quantum velocity V(R) = U(R)

We now have | drift | in addition to diffusion and branching terms

Trotter's theorem = Consider them separately for small enough 7



The drift-branching components: Reminder

Diffusion term

~ 0G(R,Ry, 1)
ot

1 ~
—§V2G(R, Ro, t) =

/I 2
~ G(R.R,7) = (217) 3/ exp [_(R - ]
-

Branching term

0G(R, Ry, t)
ot

(EL(R) — ET)G(R,Rq, t) = —

= G(R,R,7) = exp[—7 (EL(R) — E1)] (R —R’)



The drift-diffusion-branching Green's function

1 - . o oG
—§V2G +V-[GV(R)] +[EL(R) — Er] G = o

Drift term

VV(R)
V(R)

Assume V(R) = constant over the move (true as 7 — 0)

The drift operator becomes |V-V+V . -VxV. V| sothat

~ 0G(R,Ry, 1)
ot

V-VG(R,Ry, t) =

~

with solution | G(R,Rg, t) = §(R — Ry — Vt)




The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

(R" — R — 7V(R))? y
2T
x exp {—7 [(EL(R) + EL(R))/2 — Et]} + O(7?)

@(R’, R, 7)= (27‘(’7’)_3,\//2 exp | —

What is new in the drift-diffusion-branching expression?
> V(R) pushes walkers where W is large
> Er,(R) is better behaved than the potential V(R)
Cusp conditions = No divergences when particles approach

As UV — W, E;, — Ep and branching factor is smaller



DMC algorithm with importance sampling

1. Sample initial walkers from |\I!(R)]2

2. Drift and diffuse the walkers as R" = R+ 7V(R) + ¢
where ¢ is sampled from g(&) = (2r7) 3N/2 exp (—¢€2/27)

3. Branching step as in the simple algorithm but with the factor

p =exp{—7[(EL(R) + Er(R"))/2 — Er]}

4. Adjust the trial energy to keep the population stable

— After many iterations, walkers distributed as V(R)W((R)



An important and simple improvement

If W =Wy, E,(R) = Ey — No branching term — Sample W2

Due to time-step approximation, we only sample W2 as 7 — 0 !

Solution | Introduce accept/reject step like in Metropolis algorithm

(R"— R — V(R)T)2
B 2T

T(R",R,T)

T

2

G(R',R,7) ~ N exp [

\ .

e [-(EL(R) + EL(R))

Walker drifts, diffuses and the move is accepted with probability

(R T(R.R,7)
p=min {1’ W(R)Z T(R,R,7) }

— Improved algorithm with smaller time-step error



Evolution equation of the probability

distribution

> V(R t+7)= /dR G(R,R,7)V(R, 1)

where G(R',R,7) = (R'|e "H-ET)|R)

(H— Er)G(R,Rq, t) = _9G(R, Ry, 1)
ot
> \U(R, t) = /dRO G(R’ RO; t)w(O)(RO)

satisfies the imaginary-time Schrodinger equation

(H— ET)V(R,t) = —

OV(R, t)

ot




Electrons are fermions!

We assumed that Wy > 0 and that we are dealing with bosons

Fermions — W is antisymmetric and changes sign!

How can we impose antisymmetry in DMC method?

Stay tuned for second part of the lecture by Matthew Foulkes





