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Introduction

Introduction

All (?) fermion QMC methods suffer from sign problems.
� DMC requires an exponentially difficult cancellation of separately

evolving positive and negative walker densities.
� AFMC requires an exponentially difficult cancellation of

contributions from positive and negative Slater determinants.
� PIMC requires an exponentially difficult cancellation of contributions

from positive and negative paths.

These sign problems look different but have a similar “flavour”.
Arise when you try to treat something that is not positive as a
probability density.
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Fermion DMC without Importance Sampling The DMC Sign Problem

The DMC Sign Problem

How can we use DMC to study the imaginary-time evolution of a
fermionic wavefunction with positive and negative regions?

Simple 1D example

Ψ(x , τ = 0) can be written as the
difference of two positive
contributions:

Ψ = Ψ+ − Ψ−

where

Ψ+ =
1
2

(|Ψ| + Ψ)

Ψ− =
1
2

(|Ψ| − Ψ)

+ −

Ψ

Ψ τ=0 Ψ

τ=0

τ=0

(x,      )

(x,      ) (x,      )
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Fermion DMC without Importance Sampling The DMC Sign Problem

The imaginary-time Schrödinger equation

∂Ψ

∂τ
= −ĤΨ

is linear, so solving it with the initial condition

Ψ(x , τ = 0) = Ψ+(x , τ = 0) − Ψ−(x , τ = 0)

is equivalent to solving

∂Ψ+

∂τ
= −ĤΨ+ and

∂Ψ−
∂τ

= −ĤΨ−

separately and subtracting one solution from the other.
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Fermion DMC without Importance Sampling The DMC Sign Problem

Expanding Ψ+(x , τ = 0) and Ψ−(x , τ = 0) in eigenfunctions gives

Ψ±(τ = 0) = cs
0Ψs

0 ± ca
0Ψa

0 + . . .

Hence, as t → ∞,

Ψ± → cs
0e−Es

0 τΨs
0 ± ca

0e−Ea
0 τΨa

0 + . . .

Since Es
0 < Ea

0 , both Ψ+ and Ψ− evolve to Ψs
0:

The antisymmetric component obtained by subtracting one solution from
the other becomes exponentially harder to extract

|Ψ+ − Ψ−|
|Ψ+ + Ψ−| ∝ e−Ea

0 τ

e−Es
0 τ

as τ → ∞
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Fermion DMC without Importance Sampling The Fixed-Node Approximation

The Fixed-Node Approximation

Problem: The small antisymmetric component is swamped by the
random errors

Solution: Fix the nodes! (If you don’t know them, guess them.)

impenetrable
barrier
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Fermion DMC without Importance Sampling The Fixed-Node Approximation

Fixed-Node Algorithm

Distribute walkers according to any positive initial wavefunction.
Evolve according to imaginary-time Schrödinger equation.
Walkers that bump into barrier are annihilated (as are walkers that
bump in to walls), enforcing Ψ = 0 boundary conditions.
Solution in each nodal pocket evolves independently to ground
state in that pocket.

Algorithm is numerically stable (no exponentially growing noise).

The calculated energy of the antisymmetric ground-state is exact if the
nodes are exact and variational if the nodes are approximate.
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Nodes and Pockets What are Nodes?

What are Nodes?
Definition
The node of an N-electron wave function Ψ(r1, r2, . . . , rN) = Ψ(R) is
the surface on which Ψ = 0 and across which Ψ changes sign.

A 2D slice through the 321-dimensional nodal surface
of a gas of 161 spin-up electrons.
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Nodes and Pockets What are Nodes?

If the physical space has d (=1,2,3) dimensions, the node is best
viewed as a (dN − 1)-dimensional surface in the dN-dimensional
configuration space.

One constraint (Ψ = 0) in a dN-dimensional space
implies a (dN − 1)-dimensional node

Equations such as ri = rj define (dN − d)-dimensional
coincidence surfaces. These provide a framework through which
the node must pass but do not define it completely when d > 1.
If d = 1, the coincidence points xi = xj do define the ground-state
node completely. One-dimensional problems are easy to simulate
and can often be solved exactly (e.g., using the Bethe ansatz).
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Nodes and Pockets Nodal Classes

Nodal Classes

The nodal pockets of a many-electron wavefunction can always be
divided up into classes.
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Nodes and Pockets The Tiling Theorem

The Tiling Theorem

If the wavefunction is the ground state of a Hamiltonian with a local
potential, all pockets must be in the same class.
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Nodes and Pockets The Fixed-Node Variational Principle

The Fixed-Node Variational Principle

FN DMC solves the imaginary-time Schrödinger equation
separately in each nodal pocket.
Random fluctuations cause some pockets to contain more walkers
than others, but all ground-state pockets are equivalent.
(In excited-state DMC simulations, all the walkers end up in pockets of
the lowest energy class.)

The τ → ∞ walker distribution in each pocket samples the
corresponding pocket ground state.
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Nodes and Pockets The Fixed-Node Variational Principle

Consider the pocket ground state φi
0 in pocket pi . Within pi , φi

0
satisfies (

−1
2
∇2 + V

)
φi

0 = Ep
0 φi

0

The fixed-node variational principle states that

Ep
0 ≥ E0

with the equality holding if the imposed nodal surface is exact.
If the imposed nodal surface is wrong, the error in the energy is
proportional to the error in the nodal surface squared.
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Nodes and Pockets The Fixed-Node Variational Principle

Sketch of Proof

φi
0 satisfies the Schrödinger equation inside and outside pi but not on

the enclosing nodal surface:(−1
2∇2 + V

)
φi

0 = Ep
0 φi

0
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Nodes and Pockets The Fixed-Node Variational Principle

Sketch of Proof

φi
0 satisfies the Schrödinger equation inside and outside pi but not on

the enclosing nodal surface:(−1
2∇2 + V

)
φi

0 = Ep
0 φi

0 + δi

Note, however, that the δ-functions do not affect the expected energy∫
φi

0Ĥφi
0 =

∫
φi

0(E
p
0 φi

0 + δi) =

∫
φi

0Ep
0 φi

0 = Ep
0
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Nodes and Pockets The Fixed-Node Variational Principle

Now consider the normalised antisymmetrised pocket eigenstate

Ψi
0 = Âφi

0

This is a valid fermionic trial wave function and satisfies∫
Ψi

0ĤΨi
0 = Ep

0

for the same reasons φi
0 does.

Hence, by the ordinary variational principle of QM,

Ep
0 ≥ E0
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Fermion DMC with Importance Sampling Reminder

Reminder

The practical utility of DMC relies on importance sampling.

Rewrite the imaginary-time Schrödinger equation

1
2
∇2Ψ − VΨ =

∂Ψ

∂τ

as an equation for f (R, τ) = Ψ(R, τ)ΨT (R):

1
2
∇2f − ∇ · (vf ) − ELf =

∂f
∂τ

where

v(R) =
∇ΨT (R)

ΨT (R)
and EL(R) =

(−1
2∇2 + V (R))ΨT (R)

ΨT (R)
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Fermion DMC with Importance Sampling A Happy Surprise

A Happy Surprise

As τ → ∞, expect

f (R, τ) ∝ e−E0τΨ0(R)ΨT (R)

where Ψ0(R) is the overall (bosonic) ground state.
Could impose FN approximation by deleting walkers that cross
nodes of ΨT . (This is easy to check: evaluate ΨT (R) and look for sign
changes.)

In practice, we find that walkers never cross nodes (if the time step
is small enough). The fixed-node boundary conditions are
imposed automatically.

f (R, τ) ∝ e−EFN
0 τΨFN

0 (R)ΨT (R) as τ → ∞
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Fermion DMC with Importance Sampling What Happened to the Bosonic solution?

What Happened to the Bosonic Solution?

Question: How can this be? Isn’t the importance-sampled
Schrödinger equation mathematically equivalent to the
original version?

Answer: The many-boson ground state is still a mathematical
solution, but its description in terms of walkers is peculiar
at the nodes (where the importance-sampled equation is
singular).

The finite walker current across the nodal surface is sustained by the creation
of pairs of positive and negative walkers on either side. The positive walkers
are swept off into the positive pocket and the negative walkers into the negative
pocket.
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Fermion DMC with Importance Sampling What Happened to the Bosonic solution?

Since our FN-DMC algorithm does not create walker-antiwalker
pairs (i.e. since it doesn’t take proper account of the singularities in the
transformation) we cannot access the many-boson solution.
Only solutions for which Ψ = 0 on the nodes of ΨT are within
reach.
This is a good thing.

(In practice, because ∆t �= 0, some walkers do occasionally try to cross
nodes. Rejecting these moves gives smaller time-step errors than killing the
walkers involved.)
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Fermion DMC with Importance Sampling Accuracy of the Fixed-Node Approximation

Accuracy of the Fixed Node Approximation

How long is a piece of string?
Atomization energies of G1 set of 55 molecules (Grossman):

〈∆E〉 ≈ 0.13 eV/molecule.
Cohesive energies of solids to < 0.1 eV per atom.
Surface energies (Wood et al.):

∆Esurface − ∆Ebulk ≈ 0.03 eV/electron when rs = 2.07a0.
Electron gas release-node calculations (Ceperley and Alder):

∆E ≈ 0.007 eV/electron when rs = 10a0.
Electron gas backflow corrections (Kwon et al.):

rs (a0) ∆E (eV/electron)
1 0.0250
5 0.0087

10 0.0045
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Beyond the Fixed Node Approximation Backflow

Backflow

Replace ri in Slater determinant(s) by

xi = ri +
∑
j ( �=i)

η(rij)(ri − rj) (Kwon et al.)

or inhomogeneous generalisation (Lopez-Rios et al.)

Substantially improves VMC trial functions in electron-gas like
systems.
Fraction of fixed-node error recovered is hard to estimate in solids.
Not very large in atoms and molecules (20% for all-electron C).
Backflow VMC energies are surprisingly close to DMC energies
when the nodes are good.
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Beyond the Fixed Node Approximation Optimizing the Nodes

Optimizing the Nodes

Optimization of weights in linear combinations of Slater
determinants is standard in molecular calculations.
Direct optimization of the orbitals within each Slater determinant
was considered impractical until recently. Fahy, Umrigar, Filippi
and others have begun to show that this was an overly pessimistic
assessment.
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Beyond the Fixed Node Approximation Releasing the Nodes

Releasing the Nodes
First do a fixed-node DMC simulation:
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Beyond the Fixed Node Approximation Releasing the Nodes

Releasing the Nodes
Then release the nodes:

Red and blue solutions collapse to boson ground state, but their
difference approaches the fermion ground state.
Back to the sign problem: exponentially growing noise.

W.M.C. Foulkes (Imperial College London) DMC for Fermions Tuesday 22nd January 2008 29 / 34



Beyond the Fixed Node Approximation The Fixed Phase Approximation

The Fixed Phase Approximation

The fixed node approximation only works when the Hamiltonian is
real (has time-reversal symmetry); the ground state can then also
be chosen to be real.
A generalisation called the fixed-phase approximation (Ortiz et al.)
exists for cases with broken time-reversal symmetry.
Particularly useful for studying systems with applied magnetic
fields.
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Beyond the Fixed Node Approximation Excited States

Excited States

There is no general fixed-node variational principle for excited states.

τ = 0:
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Beyond the Fixed Node Approximation Excited States

Excited States

There is no general fixed-node variational principle for excited states.

τ > 0:

In τ → ∞ limit, only pockets of the lowest energy class are
occupied.

EFN
0 < E0

Error in energy is linear in nodal error.
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Beyond the Fixed Node Approximation Excited States

The Fixed-Node Variational Principle for Excited States
The fixed-node variational principle and tiling theorem generalise to the
lowest state of a given symmetry only if that state is non-degenerate.

The state in question must transform according to a 1D irreducible
representation of the symmetry group of Ĥ
. . . or according to a 1D irreducible representation of any
subgroup of the symmetry group of Ĥ.
In practice, FN DMC calculations for excited states often work well
even when this condition is not satisfied.

W.M.C. Foulkes (Imperial College London) DMC for Fermions Tuesday 22nd January 2008 32 / 34



Conclusions

Outline

1 Introduction

2 Fermion DMC without Importance Sampling

3 Nodes and Pockets

4 Fermion DMC with Importance Sampling

5 Beyond the Fixed Node Approximation

6 Conclusions

W.M.C. Foulkes (Imperial College London) DMC for Fermions Tuesday 22nd January 2008 33 / 34



Conclusions

Conclusions

The fixed-node DMC method is:

Easy to do.
Stable.
Accurate enough for quantum chemistry, especially in large
systems.
Not accurate enough for subtle correlation physics
(superconductivity, Kondo, FQHE, . . .) with full Hamiltonian.
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