

1935-2

Spring School on Superstring Theory and Related Topics

27 March - 4 April, 2008

Black Holes in Higher Dimensions

Roberto Emparan ICREA & U. Barcelona

Black Holes in Higher Dimensions

Roberto Emparan ICREA & U. Barcelona

ICTP lectures, 31 Mar-2 Apr 2008

References:

- RE+Reall: BH's in Hi-D, 0801.3471 [hep-th]

- Other reviews:
 - Obers: 0802.0519 [hep-th] (includes KK phases)
 - Kunz et al: 0710.2291 [hep-th] (w/ charges)
 - Frolov: 0712.4157 [gr-qc] (symmetries)
 - RE+Reall: hep-th/0608012 (black rings)

Why higher-dimensional gravity?

Motivations

As applications:

- String / M theory
- Large Extra Dimensions & TeV gravity
- AdS/CFT
- Mathematics: Lorentzian geometry

But, not least, also of intrinsic interest:

- D as a tunable parameter for gravity and black holes
 What properties of black holes are
 - 'intrinsic' ? → Laws of bh mechanics...
 - *D*-dependent? → *Uniqueness, topology, shape, stability...*

What can a black hole (i.e. spacetime) do?

- It's only recently (~7 yrs ago) that we've fully realized how little we know about black holes (even classical ones) and their dynamics in D>4
- A better knowledge of them is likely to have a strong impact on all the subjects mentioned
- Activity launched initially by two main results:
 - GL-instability, its endpoint, and inhomogeneous phases
 - Black rings, non-uniqueness, non-spherical topologies
- I'll mostly focus on simplest set up: vacuum, $R_{\mu\nu}=0$, asymptotically flat solutions

FAQ's

Why is D>4 richer?

- More degrees of freedom
- Rotation:

- more rotation planes
- gravitational attraction ⇔ centrifugal repulsion

- \exists extended black objects: black p-branes $-\frac{GM}{r^{D-3}} + \frac{J^2}{M^2r^2}$

Why is D>4 harder?

- More degrees of freedom
- Axial symmetries: U(1)'s at asymptotic infinity appear only every 2 more dimensions -- not enough to reduce to 2D σ -model if D>5

Phases of black holes

• Asymptotic conserved charges: M, J_i

$$\Rightarrow \mathcal{A}_{H}(M, J_{i}), T_{H}(M, J_{i}), \dots$$

- To compare solutions we need to fix a common scale
- Classical GR doesn't have any intrinsic scale
 - \rightarrow We'll fix the mass M

equivalently factor it out to get dimensionless quantities

$$j_i \propto rac{J_i}{GM^{rac{d-2}{d-3}}}$$

black hole solutions will cover a region of this space

$$a_H \propto rac{\mathcal{A}_H}{(GM)^{rac{d-2}{d-3}}} \Rightarrow a_H(j_i)$$

 a_{H} gives a surface in this space

Phases of 4D black holes

Static: Schwarzschild

$$ds^{2} = -\left(1 - \frac{\mu}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{\mu}{r}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

$$\mu = 2GM$$

Stationary: Kerr

$$ds^{2} = -dt^{2} + \frac{\mu r}{\Sigma} \left(dt + a \sin^{2}\theta d\phi \right)^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2} + (r^{2} + a^{2}) \sin^{2}\theta d\phi^{2}$$

$$\Sigma = r^2 + a^2 \cos^2 \theta$$
, $\Delta = r^2 - \mu r + a^2$, $a = \frac{J}{M}$

Horizon: $\Delta = 0 \Rightarrow M \ge a$: Upper bound on J for given M

$$J \leq GM^2$$

Phases of 4D black holes

Uniqueness theorem: End of the story

Multi-bhs not rigorously ruled out, but physically unlikely to be stationary (eg multi-Kerr can't be balanced)

Black holes in *D*>4

• Schwarzschild is easy: Tangherlini 1963

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right)dt^{2} + \frac{dr^{2}}{1 - \mu/r^{D-3}} + r^{2}d\Omega_{(D-2)}$$

$$\mu \propto M$$

Black strings & branes

Not asymp flat bhs, but necessary to understand them...

$$ds_{d+p}^2 = ds_d^2(\text{black hole}) + \sum_{i=1}^p dx^i dx^i$$

- Solves $R_{\mu
 u} = 0$
- Can boost along x^i to give it momentum

Black strings and branes exhibit

- GL zero-frequency mode = static perturbation
- → branching into static strings w/ non-uniform horizons

branch of static *lumpy*black strings

Rotation

 Myers+Perry (1986): rotating black hole solutions with angular momentum in an arbitrary number of planes

e.g.
$$D=5,6$$
: J_1 , J_2
 $D=7,8$: J_1 , J_2 , J_3 etc

• They all have spherical topology S^{D-2}

Consider a single spin:

$$ds^{2} = -dt^{2} + \frac{\mu}{r^{D-5}\Sigma} \left(dt + a \sin^{2}\theta \, d\phi \right)^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2} + (r^{2} + a^{2}) \sin^{2}\theta \, d\phi^{2} + r^{2} \cos^{2}\theta \, d\Omega_{(D-4)}^{2}$$

$$\Sigma = r^2 + a^2 \cos^2 \theta$$
, $\Delta = r^2 + a^2 - \frac{\mu}{r^{D-5}}$, $\mu \propto M$ $a \propto \frac{J}{M}$

$$\frac{\Delta}{r^2} - 1 = -\frac{\mu}{r^{D-3}} + \frac{a^2}{r^2}$$
 gravitational centrifugal

Consider a single spin:

Horizon:
$$\Delta=0$$

$$\Delta=r^2+a^2-\frac{\mu}{r^{D-5}}$$

D=5:
$$r_h^2 + a^2 - \mu = 0 \implies r_h = \sqrt{\mu - a^2}$$

- $\Rightarrow a^2 \leq \mu \Rightarrow \text{upper bound on } J \text{ for given } M$
- similar to 4D
- but extremal limit $a^2 = \mu \implies r_h = 0$ this is singular, zero-area

D≥6:

Horizon: $\Delta = 0$

$$\Delta = r^2 + a^2 - \frac{\mu}{r^{D-5}}$$

For fixed μ there is an outer event horizon for *any* value of a

 \Longrightarrow No upper bound on J for given M

⇒∃ ultra-spinning black holes

Single spin MP black holes:

Several spins turned on:

The 5D dome:

$D \ge 6$

- If all $j_1 \sim j_2 \sim \dots \sim j_{\lfloor (D-1)/2 \rfloor} \Longrightarrow \sim \operatorname{Kerr}$
- \exists ultra-spinning regimes if one (two) j_i are much smaller than the rest

Is this all there is in D>4? Not at all

Combine black branes & rotation:

- \Rightarrow Black Rings + other blackfolds in $D \geqslant 5$
 - \Rightarrow Pinched black holes in $D \ge 6$

D=5

End may be in sight

The forging of the ring (in D=5)

Horizon topology $S^1 \times S^2$

Exact solution available -- and fairly simple

Metric

 ψ -rotation

$$ds^{2} = -\frac{F(y)}{F(x)} \left(dt - C R \frac{1+y}{F(y)} d\psi \right)^{2}$$

$$+ \frac{R^{2}}{(x-y)^{2}} F(x) \left[-\frac{G(y)}{F(y)} d\psi^{2} - \frac{dy^{2}}{G(y)} + \frac{dx^{2}}{G(x)} + \frac{G(x)}{F(x)} d\phi^{2} \right]$$

$$F(\xi) = 1 + \lambda \xi$$
$$G(\xi) = (1 - \xi^2)(1 + \nu \xi)$$

 $\nu \sim R_2/R_1 \to {\rm shape}, \ \lambda/\nu \to {\rm velocity}$

Parameters λ, ν, R equilibrium $\rightarrow \lambda(\nu)$

"Ring coordinates" x, y

5D: one-black hole phases

3 different black holes with the same value of M,J

Other properties

Are they dynamically stable?

- Gravitational perturbation theory in $D{>}4$ is largely to be developed yet
 - Many more degrees of freedom
 - No Newman-Penrose formalism developed
 - Black rings don't possess Killing tensors (no separation of variables) -- MP bh's do
- Proceed heuristically
 - Hope to guide future analytical / numerical studies

Recall Gregory-Laflamme instability

Expect instability for thin enough rings $j \ge O(1)$

Turning-point instability (Poincaré)

Arcioni+Lozano-Tellechea

• Suppose stable solutions correspond to minima of some potential W(x;j)

Turning-point of black rings

But, what kind of instability is this?

Potential for radial deformations

Elvang+RE+Virmani

equilibrium at V' = 0

Stability: putting results together

Black Holes in Higher Dimensions (II)

Roberto Emparan

ICREA & U. Barcelona

ICTP lectures, 31 Mar-2 Apr 2008

Constructing solutions

- Kerr found his solution using the Newman-Penrose formalism: Einstein eqs+Bianchi ids written out explicitly in a form suited to algebraically special solutions
- Unwieldy in $D{>}4$: too many eqs and variables
- Impose symmetry: besides stationarity (timelike Killing), require axial symmetry
- In D=4, this allows reduction to an integrable 2D sigmamodel

But, what axial symmetry in D>4?

- 1. O(D-2) symmetry of S^{D-3} spheres rotated around a line axis $dz^2 + dr^2 + r^2 d\Omega_{(D-3)}^2$
 - But the curvature of the S^{D-3} spheres in D> 4 prevents integrability of 2D theory
- 2. $U(1)^{D-3}$ symmetry of rotations around (spatial)

codimension-2 hypersurfaces
$$dz^2 + dr^2 + \sum_{i=1}^{D-3} r^{\alpha_i} d\phi_i^2$$

- It works! 2D sigma-model is integrable
- But: only in D=4,5 can have global asymp flatness
- AFness requires spatial S^{D-2} at infty, ie O(D-1)

Cartan
$$[O(D-1)] = U(1)^{\lfloor (D-1)/2 \rfloor}$$

not enough:
$$|(D-1)/2| < D-3$$
 if $D>5$

Weyl class: bubbling GR

• Assume D-2 commuting, non-null, orthogonal Killing vectors $\partial/\partial x^a$ (compatible w/ AFness only in D=4,5)

$$ds^2 = -e^{2U_0(r,z)}dt^2 + \sum_{a=1}^{D-3} e^{2U_a(r,z)}(dx^a)^2 + e^{2\nu(r,z)}(dr^2 + dz^2)$$

$$\sum_{a=0}^{D-3} U_a = \log r$$
 RE+Reall

• Einstein eqs \rightarrow $\left(\partial_r^2 + \frac{1}{r}\partial_r + \partial_z^2\right)U_a = 0$

ie *linear* Laplace eq in $ds^2 = dz^2 + dr^2 + r^2 d\phi^2$

Given U_a , non-linear piece $\nu(r,z)$ is determined by line integral

- Problem is linear!
- Just specify axisymmetric sources for $\,U_a^{}$: "rods"

eg
$$= \underbrace{z_{<0}}_{z>0} \underbrace{density \ \rho}_{z>0} \quad x^a \quad \text{for each Killing, one set of sources}$$
 $\Rightarrow U_a = \rho \log(\sqrt{r^2 + z^2} - z)$

$$\left\|\frac{\partial}{\partial x^a}\right\|^2=e^{2U_a}\to 0 \ \ \text{ at rod } r=0,\ z>0$$
 : require smooth circle action

• for density $\rho=1/2$ then orbits close off smoothly on rod

$$x^a \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right)$$

$$\partial_t$$
 is null on rod \rightarrow HORIZON

t timelike

Bubbling Schwarzschild

5D Schwarzschild

5D Black ring (static)

Integrability of D=4,5 GR (vacuum)

• Assume D-2 commuting, non-null, *not* necessarily orthogonal, Killing vectors $\partial/\partial x^a$

$$ds^{2} = g_{ab}(r, z) dx^{a} dx^{b} + e^{2\nu(r, z)} (dr^{2} + dz^{2})$$
$$\det g_{ab} = -r^{2}$$

Einstein eqs

$$\rightarrow \partial_r U + \partial_z V = 0, \qquad U = r(\partial_r g)g^{-1}, V = r(\partial_z g)g^{-1}$$

System reduced to 2D non-linear $GL(D-2,\mathbb{R})$ sigma-model

Rods acquire orientation vector v

Harmark

$$g(0,z)v = 0 \text{ on rod } z \in [a,b]$$

5D Myers-Perry

Generating solutions: the method of Belinsky+Zakharov

- Equations are completely integrable: admit Lax pair → inverse scattering, soliton techniques
- Given a 'seed', we can construct new solutions with more rods by 'adding solitons' (~Bäcklund transf)
- Method can be reduced to algebraic procedure
 - Calculationally involved, but straightforward --- can easily implement it in computer
 - There are 'thumb rules' for how to obtain a given solution --though subtleties often arise

• Co- & counter-rotating, rotational dragging...

Filling the phase diagram

Black Saturns cover a semi-infinite strip

Multi-rings are also possible

Di-rings explicitly constructed

Iguchi+Mishima Evslin+Krishnan

 Systematic, increasingly messy construction, with arbitrary number of rings

Thermodynamical equilibrium

is not in thermo-equil

$$T_r\gg T_h\;,\quad \Omega_r
eq\Omega_h$$

- Beware: bh thermodynamics makes sense only with Hawking radiation
- Radiation is in equilibrium only if

$$T_i = T_j$$
, $\Omega_i = \Omega_j$

⇒ continuous degeneracies removed

Multi-rings unlikely (should check di-rings!)

5D phases in thermal equilibrium

is there anything else?

Black rings w/ two spins

5D phase space w/ two spins

Bicycling black rings

Izumi Elvang+Rodríguez

Towards a complete classification of 5D black holes

• Topology: S^3 , S^1 x S^2

Galloway+Schoen

- If $\mathbb{R}_t \times U(1)_\phi \times U(1)_\psi$ then
 - complete integrability
 - "uniqueness" (M, J + rod structure)

Pomeransky

Hollands+Yazadjiev

• Rigidity: stationarity \Rightarrow one axial U(1), but not (yet?) necessarily two

Hollands et al

THIS IS THE MAIN OPEN PROBLEM!

Essentially all bh solutions may have been found:

MP, black rings, multi-bhs (saturns & multi-rings)

(including also with two spins)

Charges and dipoles

- Conserved gauge charge for asymp flat solns can only be electric charge w.r.t. a 2-form field strength $F_{\mu\nu}$ (or, dually, magnetic charge w.r.t. D-2-form) $Q = \int_{S^{D-2}} *F_{(2)}$
- But higher p-forms can also be excited although they have no net charge associated
- Simplest: black rings as dipoles of $H_{\mu\nu\rho}$

Now q is **not** conserved: can shrink ring to zero

Simplest set up: minimal 5D sugra

Einstein+Maxwell+Chern-Simons

$$I = \frac{1}{16\pi G} \int \left(R * 1 - 2F \wedge *F - \frac{8}{3\sqrt{3}} F \wedge F \wedge A \right)$$

• Ring couples electrically to F (charge Q) and magnetically to its magnetic dual 3-form *F (dipole q)

$$Q = \int_{S^3} *F_{(2)} \qquad q = \int_{S^2} F_{(2)}$$

- Exact solutions available
 - non-susy, with dipole, and with or without charge (charge+rotation ⇒ dipole)
 - supersymmetric (w/ charge and dipole)

Stability of rings w/ charges and dipoles

- Charge increases stability
- Supersymmetric black rings expected to be linearly stable
- Near-susy are expected stable too
- Dipole rings (w/out conserved charges):
 - fat rings radially unstable / thin rings radially stable
 - GL instability expected to switch-off close to extremality (even if not close to susy)
 - → larger stability window than for neutral rings

Black Holes in Higher Dimensions (III)

Roberto Emparan ICREA & U. Barcelona

ICTP lectures, 31 Mar-2 Apr 2008

The plot thickens...

D=5

End may be in sight

Road blocks in $D \ge 6$

No known solution-construction techniques

- Newman-Penrose formalism: unwieldy in $D{>}4$
- Integrability of Weyl class w/ \mathbb{R} x $U(1)^{D-3}$ symm: for AF black holes, this only helps in $D=4,\ 5$
- Kerr-Schild class: $g_{\mu\nu}=\eta_{\mu\nu}+2H(x)k_{\mu}k_{\nu}$ MP black holes are K-S, but black rings are not

So, *very limited* success in extending 4D approaches

- > Need new ideas
 - more qualitative & approximate methods (physics-guided)
 - may guide later numerical attacks

Thin black rings in D>5

• Heuristic: seems plausible

- Thin black rings ≃ circular boosted black strings
- Equilibrium can be analyzed w/in linearized gravity:
 - balance between tension and centrifugal repulsion;
 gravitational self-attraction is subdominant

Matched asymptotic expansion

1- linearized soln around flat space

$$\frac{r_0}{r} \ll 1$$

equivalent delta-source

2- perturbations of a boosted black string

$$\frac{r}{R} \ll 1$$

need bdry conditions to fix integration constants

Match in overlap zone

$$r_0 \ll r \ll R$$

Thin black rings from black strings

Boosted black string:

stress tensor (ADM):

$$T_{tt} \propto r_0^{D-4} \left[(D-4) \cosh^2 \sigma + 1 \right]$$
 $T_{tz} \propto r_0^{D-4} (D-4) \cosh \sigma \sinh \sigma$
 $T_{zz} \propto r_0^{D-4} \left[(D-4) \sinh^2 \sigma - 1 \right]$

Equivalent delta-source for thin rings, $r_0 \ll r$ $T_{\mu\nu}^{(\delta)} = T_{\mu\nu}^{ADM} \delta(r)$

$$T_{\mu\nu}^{(\delta)} = T_{\mu\nu}^{ADM} \delta(r)$$

$$M = L \int_{S^{D-3}} T_{tt}^{(\delta)}$$

$$P = L \int_{S^{D-3}} T_{tz}^{(\delta)}$$

$$\mathcal{A} = L \int_{S^{D-3}} \sqrt{g}_{hor}$$

Thin black rings from black strings

→ Thin boosted black string along a circle

delta-source
$$T_{\mu\nu}^{(\delta)}=T_{\mu\nu}^{ADM}\delta(r)$$

$$M = 2\pi R \int_{S^{D-3}} T_{tt}^{(\delta)}$$

$$J = 2\pi R^2 \int_{S^{D-3}} T_{tz}^{(\delta)} \implies \mathcal{A}(M, J, R)$$

$$\mathcal{A} = 2\pi R \int_{S^{D-3}} \sqrt{g_{hor}}$$

But: what fixes boost σ ?

Le.: how is R fixed in terms of M,J?

Curving a black string: equilibrium condition

$$\nabla_{\mu} T^{\mu\nu} = 0 \quad \Rightarrow \quad \frac{T_{zz}}{R} = 0$$

$$T_{zz} \propto r_0^{D-4} \left[(D-4) \sinh^2 \sigma - 1 \right]$$

$$\Rightarrow \sinh^2 \sigma = \frac{1}{D-4}$$

$$\Rightarrow R = \frac{D-2}{\sqrt{D-3}} \frac{J}{M} \qquad \mbox{\longleftarrow equilibrium condition}$$

$D \geqslant 6$ phase diagram

 \rightarrow Black rings dominate the entropy at large J

$D \geqslant 6$ phase diagram

Pinched (lumpy) black holes in $D \ge 6$

Ultraspinning regime in $D \ge 6$

⇒ *black membrane* along rotation plane

Recall black branes exhibit

Gregory-Laflamme instability

GL zero-mode → branching into non-uniform horizons

Pinched (*lumpy*) black holes in $D \ge 6$

Ultra-spinning = membrane-like

RE+Myers

Replicas: multiple pinches

Multiply pinched black holes from axisymmetric zero-modes:

- Not yet found --- presumably numerically or approximately
- Pinched plasma balls found by Lahiri+Minwalla:
 dual to (large) pinched black holes in AdS

Black membrane ⇔ Rot Black Hole

Black membrane in ${f T}^2$

(fixed mass)

$D \geqslant 6$ phase diagram: a proposal

$D \geqslant 6$ phase diagram: a proposal

Solid: arguments for this phase structure can be made in detail **Grayshade**: less tight arguments, but still plausible

General results & Open problems

Stability (dynamical, linear)

- Gravitational perturbations:
 - 1. Decouple eqns: find master eqn (if possible, 2nd order)
 - 2. Separate variables
- Stability of Schwarzschild proved Ishibashi+Kodama
- Myers-Perry:
 - Odd dimensions, equal spins → only r-dependence no sign of instability (not unexpected ~ Kerr) Kunduri et al Murata+Soda
 - Expect GL-like instability in ultraspinning regimes
- Poorly understood in general
 - identify ultraspinning (GL-like) & turning-point instabilities

Horizon topology

Hawking's 4D theorem relies on Gauss-Bonnet thm:

$$\int_H R^{(2)} > 0 \Rightarrow H = S^2$$

- D=5: Galloway+Schoen: +ve Yamabe $R^{(D-2)}>0 \rightarrow S^3, S^1$ x S^2
- D=6: Helfgott et al: S^4 , S^2 x S^2 , S^1 x S^3 , $\Sigma_{\rm g}$ x S^2

so far: S^4 exactly (MP, but possibly others too)

 S^1 x S^3 , T^2 x S^2 approximately

• D>6: essentially unknown

so far: S^{D-2} exactly (MP, but possibly others too)

 S^1 x S^{D-3} , \mathbf{T}^p x S^q $(p \leq q+1)$ approximately

Uniqueness & Classification

• Schwarschild_D is unique among *static* AF black holes

Gibbons+Ida+Shiromizu

(proof extends to charged bhs)

(Note that ∃ *non-static* solutions with *zero* angular momentum, eg black saturns)

STATIC classification solved

Uniqueness & Classification

- STATIONARY bh's must admit one spacelike
 Killing that generates rotations
- But there may be as many as $\lfloor (D-1)/2 \rfloor$ such Killings
- Are there solutions with less than this symmetry?
 Where? How?
- Also: Tools to classify pinched bh's still to be developed

- 1. What is the simplest and most convenient set of parameters that fully specify a bh?
 - In 5D: M, J, + "rod structure": more physical parametrization? Higher D??
- 2. How many bh's with given charges are relevant to a given physical situation?
 - Conserved charges + additional conditions:
 - Horizon topology alone is not enough
 - Dynamic linear stability (not an issue in 4D classification) may be (just may be) enough
 - But stability does not per se rule out a solution must compare timescales
 - Dipoles introduce more non-uniqueness and enhance stability

Laws of black hole mechanics

- Generally valid indep of dimension
- Dipoles introduce additional terms:

$$dM = \frac{\kappa}{8\pi} d\mathcal{A}_H + \Omega dJ + \Phi dQ + \phi dq$$
_{RE}

RE Copsey+Horowitz

even if dipoles are *not* conserved charges can't define globally the dipole potential ϕ

→ extra surface term

Multi-black hole mechanics

• Each connected component of the horizon ${\cal H}_i$ is generated by a different Killing vector

$$k_{(i)} = \partial_t + \Omega_i \partial_{\psi}$$

$$ightharpoonup \delta M = \sum_i \left(rac{\kappa_i}{8\pi G} \ \delta \mathcal{A}_i + \Omega_i \ \delta J_i
ight) \qquad ext{First Law}$$

Hawking radiation

- Technical analysis complicated, but physics should remain the same: bh's emit radiation at temperature $T=\kappa/2\pi$ and "chemical potentials" Ω , Φ ...
- Multi-bhs will emit multiple components thermal only of all T_i , Ω_i etc are equal
- Euclidean thermodynamics: much like in 4D
 - real Euclidean sections may not exist
 - convenient to work with complex sections that have real actions

Conclusion: More is different

Vacuum gravity $R_{\mu\nu}=0$ in

- D=3 has no black holes
 - GM is dimensionless → can't construct a length scale (Λ , or h, provide length scale)
- D=4 has one black hole
 - but no 3D bh → no 4D black strings → no 4D black rings
- D=5 has three black holes (two topologies); black strings \rightarrow black rings, infinitely many multi-bhs...
- D>6 seem to have infinitely many black holes (many topologies, lumpy horizons...); black branes → rings, toroids..., infinitely many multi-bhs...

Conclusion: More is different

