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1. Introduction

Inflation provides a compelling explanation for the homogeneity and isotropy of the

universe and for the observed spectrum of density perturbations [1,2]. For this reason, we

would hope for inflation to emerge naturally from any fundamental theory of microphysics.

String theory is a promising candidate for a fundamental theory, but there are significant

obstacles to deriving convincing models of inflation from string theory.

One problem is that string compactifications come with moduli fields which control

the shape and size of the compactification manifold as well as the string coupling. Inflation

is possible only if these fields are either stable or else have relatively flat potentials which do

not cause fast, non-inflationary rolling in field space. Controlling the moduli in this way is

a difficult problem. In particular, the potential for the dilaton and for the compactification

volume tends to be a rather steep function [3].

A second problem is that the inflaton potential itself must be exceptionally flat to

ensure prolonged slow-roll inflation. A successful microphysical theory would naturally

produce such a flat potential. Since the flatness condition for the potential involves the

Planck scale one should ensure that quantum gravity corrections do not spoil it. Hence,

the problem should be analyzed in a theory of quantum gravity, such as string theory.

The hope of brane-antibrane inflation scenarios is that the brane-antibrane interaction

potential can play the role of the inflaton potential (see [4] for a nice review), but it is

well known that this potential is not naturally flat. Since in string theory one cannot fine-

tune by hand, but only by varying background data (like the compactification manifold

or the choice of flux), one concludes that in generic compactifications, brane inflation

will not work. However, the many choices of flux and compactification make possible a

considerable degree of discrete fine-tuning, so for very special choices of the background

one would expect to find potentials which are sufficiently flat for inflation.

In this note we discuss these problems in the concrete context of the warped type IIB

compactifications described in e.g. [5,6]. One reason for working in this setting is that

one can sometimes stabilize all the moduli in a geometry of this type, avoiding the first

problem mentioned above. In addition, the constructions of [5] naturally admit D3-branes

and anti-D3-branes transverse to the six compact dimensions. Furthermore, one could wish

for a model which accommodates both inflation and the present-day cosmic acceleration.

This might be possible if one could construct inflationary models which asymptote at late



times to the de Sitter vacua of [7] (or variants on that construction, as described in e.g.

[8,9]; earlier constructions in non-critical string theory appeared in [10]). As these vacua

included one or more anti-D3-branes in a warped type IIB background, it is quite natural

to consider brane-antibrane inflation in this context.

Our idea, then, is to begin with the de Sitter vacua constructed in [7], add a mobile

D3-brane, and determine whether the resulting potential is suitable for inflation. For

the impatient reader, we summarize our findings here. We find that modest warping

of the compactification geometry produces an extremely flat brane-antibrane interaction

potential, provided that we neglect moduli stabilization. This solves the second problem

listed above. However, a new problem appears when we incorporate those terms in the

potential which led, in the construction of [7], to the stabilization of the volume modulus.

We show that generic volume-stabilizing superpotentials also impart an unacceptably large

mass to the inflaton, halting inflation.

While these conclusions are “generic,” it is very important to emphasize that the

problem of the inflaton mass might be circumvented in at least two different ways. First,

the stabilization mechanism for the moduli might be different from that in [7]. For example,

the volume modulus could be stabilized by corrections to the Kähler potential, which, as

we will see, can naturally circumvent this problem. Second, the mobile brane might be

located not at a generic point in the compact manifold but close to some preferred point.

If the location of the D3-brane is appropriately chosen then there could be significant

corrections to the superpotential. In general models, the superpotential may be a rather

complicated function of both the brane positions and the volume modulus. Little is known

about the form of these nonperturbative superpotentials in string compactifications. Our

arguments show that if the functional form of the superpotential is generic then inflation

does not occur. Nevertheless, it seems quite likely, given the range of available fluxes

and background geometries, that cases exist which are sufficiently non-generic to permit

inflation, although with predictions which are altered from those of naive brane inflation.1

Our conclusions should be viewed as a first pass through the class of brane inflation

models, in the context of the moduli stabilization mechanism which has recently been

1 This point is made more quantitative in Appendix F, where we explain that the degree of

non-genericity required corresponds roughly to a fine-tune of one part in 100.
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developed in [5,7]. Once the non-perturbative superpotentials involved in such construc-

tions are better understood, and/or as soon as other mechanisms for moduli stabilization

become available, one could re-examine brane inflation in light of this further concrete

knowledge. This may well lead to a precise determination of the non-generic cases where

working models of brane inflation in string theory can be realized.

Our analysis clearly indicates that any viable inflation scenario in string theory has to

address the moduli stabilization problem. Since essentially all papers on the subject, to the

best of our knowledge, have ignored the problem of moduli stabilization, their conclusions

are questionable in view of our results. In particular, should a more detailed analysis

reveal the possibility of inflation in various non-generic situations, as suggested above,

we expect that the resulting inflationary parameters will typically be quite different from

those calculated in the existing literature by neglecting moduli stabilization.

This paper is organized as follows. In §2 we review basic facts about brane-antibrane

inflation [11,12], with special attention to the case of D3-branes, and discuss some generic

problems for such models. In §3 we show that warping of the geometry can help with

some of these problems. In §4 we explain one method of embedding the warped inflation

scenario into string theory, using the warped compactifications of [5]. In §5 we describe

further problems that arise in the string theory constructions when one tries to stabilize

the overall volume modulus. Generic methods of stabilization (e.g. via a nonperturbative

superpotential) modify the inflaton potential and make inflation difficult to achieve. We

discuss several ways to overcome this problem. We conclude with some general remarks in

§6.

Appendix A contains a general discussion of the gravitational interaction of an (un-

warped) brane-antibrane pair, and demonstrates that the potentials which arise are typ-

ically not flat enough to lead to prolonged inflation. In Appendix B we specialize to a

warped background and derive the interaction potential. In Appendix C we explore the

detailed properties of inflation in warped brane-antibrane models, assuming that a solution

to the challenges of §5 has been found. In Appendix D we explain that eternal inflation

may be possible in this scenario. In Appendix E we discuss the exit from inflation and

point out that the production of undesirable metric perturbations due to cosmic strings,

which are typically created during brane-antibrane annihilation, is highly suppressed in

warped models. Finally, in Appendix F we discuss the possibility of fine-tuning of the

inflaton potential in order to achieve an inflationary regime.

3



After completing this work, we became aware of the papers [13], in which related

issues are addressed.

2. Brief Review of D3/D3 Inflation

In brane-antibrane inflation one studies the relative motion of a brane and an antibrane

which are initially separated by a distance r on the compactification manifold M . One

should assume r ≫ ls, so that the force is well approximated by the Coulomb attraction

due to gravity and RR fields. Then the potential takes the form

V (r) = 2T3

(

1 − 1

2π3

T3

M8
10,P lr

4

)

. (2.1)

where M10,P l is the ten-dimensional Planck scale, defined by 8πG10,N = M−8
10,P l, and T3

is the tension of a D3-brane. In terms of a canonically normalized scalar field φ, one can

rewrite this as

V (φ) = 2T3

(

1 − 1

2π3

T 3
3

M8
10,P lφ

4

)

. (2.2)

It was suggested in [11] that for large fields (large r), one may obtain inflation from this

potential.

A basic (and well known [4]) problem with this scenario is the following. The standard

inflationary slow-roll parameters ǫ and η are defined via

ǫ ≡ M2
Pl

2
(
V ′

V
)2 (2.3)

η ≡M2
Pl

V ′′

V
. (2.4)

One generally wants ǫ, η ≪ 1 to get slow-roll inflation with sufficient e-foldings. Is this

possible in the model (2.2)? The four-dimensional Planck mass appearing in (2.4) is

M2
Pl = M8

10,P lL
6 where L6 is the volume of M. This implies that η is

η = −10

π3
(L/r)6 ∼ −0.3(L/r)6 (2.5)

Hence, η ≪ 1 is possible only for r > L – but two branes cannot be separated by a distance

greater than L in a manifold M of size L!
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One can try to evade this constraint by considering anisotropic extra dimensions

or non-generic initial conditions which yield flatter potentials than (2.2). We argue in

Appendix A that this is not possible. There are always some tachyonic directions in

the potential with η ≤ −2/3. This implies that the slow-roll approximation cannot be

maintained for a large number of e-foldings.

In §3 we will explore another possibility that successfully evades this problem – we

will modify the potential (2.2) by considering branes and antibranes in a warped geometry.

We should mention that there are other proposals which might evade the above problem,

such as branes at angles or branes with fluxes, see [14,15,16,17,18].

However, all of these models have an unsolved problem: moduli stabilization. For an

internal manifold of size L, the correct four-dimensional Einstein-frame potential is not

quite (2.2). If one assumes that the main contribution to the inflationary energy comes

from the D3-brane tension then one finds, for r ≫ ls, that

V (φ, L) ∼ 2T3

L12
(2.6)

The energy in the brane tensions sources a steep potential for the radial modulus L of the

internal manifold. Therefore, in the absence of a stabilization mechanism which fixes L

with sufficient mass so that the variation of L in (2.6) is negligible, one will find fast-roll in

the direction of large L rather than slow-roll in the direction of decreasing r. This means

that it is important to study concrete scenarios where the volume modulus has already

been stabilized. However, we will show that not every means of volume stabilization is

compatible with inflation, even when the naive inter-brane potential is flat enough to

inflate. We will return to the issue of volume stabilization in §5 , where we will discuss a

new and generic problem which appears when one considers the issue in detail.

3. Inflation in a Warped Background: Essential Features

Our modified brane-antibrane proposal is that inflation might arise from the inter-

action potential between a D3-brane and an anti-D3-brane which are parallel and widely

separated in five-dimensional anti de Sitter space (AdS5).
2

2 This is a slight simplification; in §4 we will construct compact models which deviate from

AdS5 both in the infrared and in the ultraviolet. It is nevertheless convenient to work out the

essential features of the model in this simpler geometry.
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The anti-D3-brane is held fixed at one location in the infrared end of the geometry

(this is naturally enforced by the dynamics, as we shall explain). The D3-brane is mobile;

it experiences a small attractive force towards the anti-D3-brane. The distance between

the branes plays the role of the inflaton field.

The forces on the brane and antibrane arise as follows. A single D3-brane experiences

no force in an AdS background: electrostatic repulsion from the five-form background

exactly cancels gravitational attraction. The addition of a distant anti-D3-brane results

in a relatively weak interaction potential arising from the attraction between the brane

and the antibrane. We interpret this as a slowly varying potential for the inflaton. We

will demonstrate in §3.2 and in Appendix B that this potential is much flatter than the

interaction potential for a brane-antibrane pair in flat space.

In the remainder of this section we explain this key idea in more detail. §3.1 is a

review of gravity in a warped background. §3.2 deals with the motion of a brane probe in

such a background.

It is important to point out that throughout this discussion, we will ignore the pos-

sibility that other moduli (or the effects which stabilize them) interfere with inflation. In

the context of the string constructions of §4, the relevant other modulus is the compacti-

fication volume, and the generic problems associated with its stabilization are the subject

of §5. In fact we will see that this modulus problem will generically stop inflation.

3.1. Gravity in an AdS Background

We first consider a compactification of string theory on AdS5 × X5 where X5 is a

five-dimensional Einstein manifold.3 This arises in string theory as a solution of ten-

dimensional supergravity coupled to the five-form field strength F5. The AdS5 solution is

given in Poincaré coordinates by the metric

ds2 =
r2

R2

(

−dt2 + d~x2
)

+
R2

r2
dr2 (3.1)

There is, in addition, a five-form flux: if the geometry (3.1) arises as the near-horizon limit

of a stack of N D3-branes, then the five-form charge (in units of the charge of a single

3 The detailed form of X5 will not matter for the moment. For concreteness the reader may

imagine that X5 = S5.
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D3-brane) is N . R, the characteristic length scale of the AdS5 geometry, is related to the

five-form charge by

R4 = 4πagsNα
′2, (3.2)

where the constant a depends on X5. It will be useful to recall that AdS is a maximally

symmetric, constant curvature spacetime. Its curvature scales like 1
R2 and is independent

of the radial location r. As long as N ≫ 1 this curvature is small and supergravity analysis

is reliable. We will choose to truncate AdS5 to the region r0 < r < rmax.

The reader will notice that, apart from the additional manifold X5, this background is

identical to that considered by Randall and Sundrum in [19]. Two physical insights from

[19] will be crucial for our model. First, one can see from the warped metric (3.1) that the

region of small r is the bottom of a gravitational well. Energies along the t, xi coordinates

therefore get increasingly redshifted as r decreases. (The region of significant redshift

is consequently referred to as the infrared end of the geometry.) Second, as a result of

truncating the AdS region, the four-dimensional effective theory which governs low-energy

dynamics will have a finite gravitational constant, and will include four-dimensional gravity

described by the Einstein-Hilbert action: 4

Sgrav =
1

16πGN

∫

d4x
√−gR. (3.3)

Recall also that in [19], the truncation of AdS space was achieved in a brute force

manner by placing two branes, conventionally called the Planck brane and the Standard

Model brane, at rmax and r0, respectively. In the string theory constructions of [5], the

truncation arises because the compactification geometry departs significantly from that

of AdS5 × X5 away from the region r0 < r < rmax. In the ultraviolet, in the vicinity of

r ≥ rmax, the AdS geometry smoothly glues into a warped Calabi-Yau compactification.

In the infrared, near r = r0, the AdS region often terminates smoothly (as in the example

of [20]). The infrared smoothing prevents the redshift factor r/R from decreasing beyond

a certain minimum whose value will be very important for our model.

4 The graviton zero modes have polarizations parallel to t, xi, are constant on X5, and have a

profile identical to the warped background.
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3.2. Brane Dynamics

We mentioned above that the warped nature of the geometry gives rise to a redshift

dependent on the radial location. It will be important in the discussion below that the

redshift results in a very significant suppression of energies at the location of the antibrane;

that is, the ratio r0/R is very small. Also note that within the truncated AdS geometry,

r0 < r < rmax, we have chosen to place the anti-D3-brane at the infrared cutoff r = r0,

where it has minimum energy due to the redshift effect.

The five-form background is given by

(F5)rtx1x2x3 =
4r3

R4
. (3.4)

In a suitable gauge the corresponding four-form gauge potential C4 takes the form

(C4)tx1x2x3 =
r4

R4
. (3.5)

The D3-brane stretches along the directions t, x1, x2, x3. Its location in the radial

direction of AdS space will be denoted by r1. In the discussion below we will assume

(self-consistently) that the D3-brane has a fixed location along the angular coordinates

of the X5 space. The motion of the D3-brane is then described by the Born-Infeld plus

Chern-Simons action

S = −T3

∫ √−gd4x

(

r41
R4

)

√

1 − R4

r41
gµν∂µr1∂νr1 + T3

∫

(C4)tx1x2x3dtdx1dx2dx3. (3.6)

The indices µ, ν denote directions parallel to the D3-brane along the t, x1, x2, x3 coordi-

nates, and gµν is the metric along these directions. The D3-brane tension, T3, is

T3 =
1

(2π)3gsα′2
. (3.7)

For future purposes we note here that since an anti-D3-brane has the same tension as a

D3-brane but opposite five-form charge, it is described by a similar action where the sign

of the second term is reversed.

Now consider a D3-brane slowly moving in the background given by (3.1) and (3.4),

with no antibranes present. It is easy to see that because of a cancellation between the
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Born-Infeld and Chern-Simons terms, the D3-brane action at low energies is just that of a

free field,

S = T3

∫

d4x
√−g 1

2
gµν∂µr1∂νr1. (3.8)

This in accord with our comment above that the net force for a D3-brane in the background

(3.1),(3.4) vanishes due to gravitational and five-form cancellations.

We are now ready to consider the effect of an antibrane on the D3-brane. Physically

this arises as follows. The anti-D3-brane has a tension and a five-form charge and perturbs

both the metric and the five-form field. This in turn results in a potential energy dependent

on the location of the D3-brane.

The potential between a brane located at r1 and an antibrane located at r0, in the

limit when r1 ≫ r0, is given by:

V = 2T3
r40
R4

(

1 − 1

N

r40
r41

)

. (3.9)

For a derivation see Appendix B.

The first term in the potential is independent of the location of the D3-brane and

can be thought of as a constant potential energy associated with the anti-D3-brane. It is

proportional to the tension T3. For the antibrane the force exerted by gravity and the five-

form field are of the same sign and add, so we have a factor of 2. In addition, the warped

geometry gives rise to a redshift, which reduces the effective tension of the antibrane by a

factor r40/R
4.

The second term in (3.9) depends on the location of the D3-brane; its negative sign

indicates mutual attraction between the pair. Two features of this term will be important

in the subsequent discussion. First, the term varies slowly, as the inverse fourth power of

the radial location of the D3-brane. Second, due to the warping of the background, the

coefficient of this second term is highly suppressed, by a redshift factor r80/R
4.

Two more comments are in order at this stage. We have assumed that the antibrane

is fixed at r0. From (3.9), we see that this is in fact a good approximation to make.

In the r1 ≫ r0 limit the first term in (3.9) is much bigger than the second, and most

of the energy of the anti-D3-brane arises due to interaction with the background. This

is minimized when the anti-D3-brane is located at r0 in the truncated AdS spacetime.

Second, in our analysis above, we are working in the approximation r1 ≫ r0. We will

9



see below that the D3-brane is far away from the anti-D3-brane while the approximately

sixty e-foldings of inflation occur, so this condition is met during the inflationary epoch.

Eventually the D3-brane approaches the antibrane, r1 ∼ r0, and this approximation breaks

down. The potential then becomes quite complicated and more model dependent (e.g. it

depends on the separation between the brane and antibrane along X5 ). The resulting

dynamics is important for reheating.

A summary of the discussion so far is as follows. We have considered a D3-brane

moving in an AdS5 × X5 background with five-form flux, in the presence of a fixed anti-

D3-brane. This system is described by an action:

S =

∫

d4x

(

1

2
T3g

µν∂µr1∂νr1 − 2T3
r40
R4

(

1 − 1

N

r40
r41

))

(3.10)

The reader will notice in particular that r1, the location of the D3-brane, is a scalar field

in the effective four-dimensional theory.

Once we cut off the AdS5 space as in the Randall-Sundrum models we will find that

we can add to (3.10) the four-dimensional Einstein action. However, we should also add an

extra coupling of the form T3

12 r
2
1R coming from the fact that the scalar field r1 describing

the position of the D3-brane is a conformally coupled scalar [21]. This unfortunately leads

to a large contribution to η. We will discuss this phenomenon in more generality (from

the perspective of the effective low-energy four-dimensional supergravity) in §5.

The model described above has several appealing features in addition to the flatness

of the potential. We study these properties in Appendices C,D, and E, with the assump-

tion that one can somehow overcome the problems of §5 (which must be tantamount to

cancelling the conformal coupling). In Appendix C we compute the inflationary param-

eters and show that observational constraints are easily met. In Appendix D we argue

that eternal inflation can be embedded into this model, and in Appendix E we point out

that the warped geometry suppresses the production of metric perturbations due to cosmic

strings (which naturally form during the brane/anti-brane annihilation).

4. A Concrete Example in String Theory

We now show how to realize our proposal in a specific class of string compactifications.

In §4.1 we present the compactifications and explain why they contain warped throat
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regions. As the warped throat is well-described by the Klebanov-Strassler (KS) solution

[20], we dedicate §4.2 to a very brief review of the KS geometry. In §4.3 we show that

a brane moving in the KS background might give rise to inflation, realizing the general

idea presented in §3. Throughout this discussion, we ignore the problem of stabilizing

the overall volume modulus, which is unfixed in the constructions of [5]. We consider the

problem of volume stabilization in §5, where we will find that generic methods of volume

stabilization can perturb the inflaton enough to stop inflation.

4.1. The Compactification

Our starting point is type IIB string theory compactified on a six-dimensional Calabi-

Yau orientifold. More generally one could use F-theory on an elliptically-fibered Calabi-Yau

fourfold. We choose to turn on background fluxes: the three-form fluxes F3, H3 present in

the theory are placed along cycles in the internal space (and F5 is fixed as in [5]). These

fluxes induce warping of the background. One can show that the resulting space is a

warped product of Minkowski space and the Calabi-Yau:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn (4.1)

where yi are coordinates on the compactification manifold and gmn is the Calabi-Yau

metric. As was discussed in [5], one expects that with a generic choice of flux, all the

complex structure moduli of the Calabi-Yau, as well as the dilaton-axion, will be fixed.

We will assume that the compactification has only one Kähler modulus, the overall volume

of the internal space.

As described in [5], one can use the above construction to compactify the warped

deformed conifold solution of Klebanov and Strassler (KS). We spend the next section

reviewing a few facts about this geometry, as certain details will be important for inflation.

4.2. The Klebanov-Strassler Geometry

The Klebanov-Strassler geometry [20] is a noncompact ten-dimensional solution to

type IIB supergravity in the presence of background fluxes. The spacetime naturally

decomposes into a warped product of a Minkowski factor and a six-dimensional internal

space. The six-dimensional space has a tip which is smoothed into an S3 of finite size. Far
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from this tip the geometry can be approximated by a cone over the Einstein manifold T 1,1,

which is topologically S2 × S3. Our coordinates will be five angles on T 1,1, which we can

consistently neglect in the following, and a radial coordinate r which measures distance

from the tip. The background fluxes are given by

1

(2π)2α′

∫

A

F = M,
1

(2π)2α′

∫

B

H = −K (4.2)

where A is the S3 at the tip and B is its Poincaré-dual three-cycle. We will require that

M ≫ 1 and K ≫ 1; these conditions are important in deriving the solution. The exact

metric is known, but for our purposes a simpler form, valid far from the tip, will be more

useful. For large r we may express the complete ten-dimensional solution as

ds2 = h−1/2ηµνdx
µdxν + h1/2

(

dr2 + r2ds2T 1,1

)

(4.3)

where now

h(r) =
27π

4r4
α′2gsM

(

K + gsM

(

3

8π
+

3

2π
ln(

r

rmax
)

))

. (4.4)

Neglecting the logarithmic corrections and the second term on the right, this takes the

form 5

R4 =
27

4
πgsNα

′2 (4.5)

N ≡MK (4.6)

When the KS geometry is embedded in a compactification then at some location r = rmax

the warped throat geometry is smoothly joined to the remainder of the warped Calabi-

Yau orientifold. Near this gluing region, departures from the AdS5 × T1,1 geometry are

noticeable; eventually the AdS must end. In terms of redshift this location corresponds

to the deep ultraviolet, and so the gluing region plays the role of the ultraviolet cutoff

(Planck brane) in the AdS of §3.

The exact solution likewise shows departures from (4.3) in the far infrared, near the

tip, although the geometry remains smooth.6 The details of the deviation from (4.3),

although known, are unimportant here; it will suffice to know the redshift at the tip. This

can be modeled by cutting off the radial coordinate at some minimum value r0, which is

the location of the tip. It was shown in [5] that the minimal redshift satisfies

r0
R

= e−
2πK
3gsM (4.7)

This can be extremely small given a suitable choice of fluxes.

5 The second term on the r.h.s. of (4.4) can easily be included. For the numerical values

discussed in Appendix C, this gives a three percent correction.
6 The radius of curvature is

√
gsMα′, so the tip is smooth provided gsM ≫ 1.
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4.3. Inflation from Motion in the KS Region

In [7] additional anti-D3-branes were introduced in the KS region. These anti-D3-

branes minimize their energy by sitting at the location where the redshift suppression is

maximum, i.e. at the very tip of the deformed conifold, where r ∼ r0 (the dynamics of

anti-D3-branes in the KS geometry was studied in [22]).

Thus we see that the string construction outlined above has all the features of the

general model of §3: a truncated AdS5 geometry, an associated five-form flux of the correct

strength, and anti-D3-branes fixed at the location of maximum redshift. In addition most

of the moduli associated with the compactification, including the dilaton, are stabilized.

The one exception is the volume modulus; we will discuss the complications its stabilization

introduces separately, in §5.

No mobile D3-branes were included in the construction of [7], but it is easy to incor-

porate them. One needs to turn on somewhat different values of three-form flux, which

allow the four-form tadpole to cancel in the presence of the additional D3-branes. This is

straightforward to do and does not change any of the features discussed above.

We will take one such D3-brane to be present in the KS region of the compactification.

The general discussion of §3 applies to this brane. Since the D3-brane is described by the

action (3.6), with R now given by (4.5), the calculation of the brane-antibrane potential

follows the discussion in Appendix C, which we outline here.

In the KS model the warp factor (4.1) is given in terms of a function h ≡ e−4A which

obeys a Laplace equation, with the fluxes and branes acting as sources. In particular, a

single D3-brane located at r = r1 will correct the background according to

hnew(r) = h(r) + ∆h(r, r1). (4.8)

Here h(r) is the background given in (4.4) and ∆h(r, r1) is the correction due to the D3-

brane. In a region where the original warp factor is very small we see that h(r0) ≫ 1, so

that the total warp factor can be expanded as

e4A ∼ h(r0)
−1

(

1 − ∆h(r, r1)

h(r0)

)

. (4.9)

This warp factor yields the contribution to the energy due to the presence of an antibrane.

If h(r0) ≫ 1 this typically gives a very flat potential.
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The small warp factor and the consequent exponential flatness are the heart of our

proposal, so an alternative explanation of the origin of these small numbers may be helpful.

Recall that there is a holographic dual gauge theory which describes the geometry of the

KS model. This gauge theory is approximately scale invariant in the deep ultraviolet, with

slowly running gauge couplings. It undergoes K duality cascades before leading in the

infrared to a confining gauge theory with a mass gap. Then the smallness of the redshift

factor,
(r0
R

)4

= e−
8πK
3gsM (4.10)

can be ascribed to the exponential smallness of the confinement scale in such a gauge

theory.

In summary, we have seen that one can construct concrete examples of string com-

pactifications which lead to the general behavior described in §3. One of their virtues is

that they automatically lead to very flat inflaton potentials, without the need for large

brane separation or excessive fine-tuning of initial conditions. The primary source of this

flatness is the redshift suppression (4.7) which is exponentially sensitive to the (integer)

choice of fluxes K and M . However, all of these virtues must be re-examined in the light

of concrete ideas about how to stabilize the closed string moduli. In this general class of

flux compactifications, the fluxes stabilize many moduli but not e.g. the overall volume.

We now turn to the discussion of volume stabilization.

5. Volume Stabilization: New Difficulties for D-brane Inflation

The results of §3,4 indicate that warped geometries provide a promising setting for

making models of inflation with naturally small ǫ and η. However, as emphasized in §2,

one must ensure that the compactification volume is stabilized in order to avoid rapid

decompactification instead of inflation. We will now demonstrate that in the concrete

models of [5] this is far from a trivial constraint.

In these models the four-dimensional N = 1 supergravity at low energies is of the

no-scale type. The Kähler potential for the volume modulus ρ and the D-brane fields φ

takes the form [6]7

K(ρ, ρ̄, φ, φ̄) = −3 log
(

ρ+ ρ̄− k(φ, φ̄)
)

(5.1)

7 The variable ρ is called −iρ in [7].
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Let us pause for a moment to explain how this is obtained. In the tree level compactification

the massless fields are the volume, the axion and the position φ of the branes. The axion

comes from a four-form potential proportional to a harmonic four-form in the internal

manifold [5]. At first sight one would think that the moduli space is simply a product

of the moduli space for φ, which is just the internal Calabi-Yau manifold, and the space

spanned by the volume and the axion. This is not correct; the axion describes a circle which

is non-trivially fibered over the φ moduli space. This structure arises from the coupling

of the four-form potential to the worldvolume of the moving D3-brane. The moduli space

has a metric of the form

ds2 =
3

2r2

(

dr2 + (dχ+
1

2
ik,jdφ

j − 1

2
ik,j̄dφ̄

j)2
)

+
3

r
k,ij̄dφ

idφj̄ (5.2)

where r is proportional to the volume of the Calabi Yau (in the notation of [5], r ∼ e4u). If

we tried to work with a complex variable r+ iχ then (5.2) would not follow from a Kähler

potential. It turns out that the good complex variable is ρ, which is defined as follows.

The imaginary part of ρ is the axion, while the real part of ρ is defined by

2r = ρ+ ρ̄− k(φ, φ̄) . (5.3)

It is then possible to see that (5.1) gives rise to (5.2). This type of definition of ρ arises

when we Kaluza-Klein compactify supergravity theories; see for example [23].

The superpotential is of the form

W = W0 (5.4)

where W0 is a constant (we assume the D-branes are on their moduli space, so we do

not write down the standard commutator term). This arises from the (0,3) part of the

three-form flux in the full theory including the complex structure moduli and the dilaton.

We have not yet included the anti-D3-branes used in §3,4; these will be incorporated at

the end of the discussion.

It is important that with the Kähler potential (5.1), one obtains the no-scale cancel-

lation in the potential

V = eK(gab̄K,aK,b̄|W |2 − 3|W |2) = 0 . (5.5)
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since

gab̄∂aK∂b̄K = 3 (5.6)

where a, b run over ρ and φ. 8

Using (5.5), it is clear that a generic W (φ) will yield a potential for the D-brane fields

φ, but that the potential for the ρ modulus will vanish if the solution for the φ fields has

∂φW = 0. It is also clear that a constant superpotential, as in (5.4), gives no potential to

the φ fields. This is consistent with the analysis in [5], where the pseudo-BPS nature of

the flux background leaves the D3-brane moduli unfixed.

We are interested in finding a situation where the D-branes can move freely in the

Calabi-Yau (so the φ fields are unfixed), but the volume is stabilized. Before we discuss

various scenarios for such a stabilization, it is important to distinguish carefully between

the ρ chiral superfield, and the actual volume modulus, r, which controls the α′ expansion.

The Kähler potential (5.1) has the following peculiar feature. Let us imagine that

there is one D-brane, and hence a triplet of fields φ describing its position on the Calabi-

Yau space. Then k(φ, φ̄) should be the Kähler potential for the Calabi-Yau metric itself,

at least at large volume. However, under Kähler transformations of k, the expression (5.1)

is not well behaved. This can be fixed by assigning the transformation laws

k(φ, φ̄) → k + f(φ) + f(φ), ρ→ ρ+ f, ρ̄→ ρ̄+ f̄ . (5.7)

This is a manifestation of the fact that the circle described by the axion is non-trivially

fibered over the φ moduli space. Note that the physical volume of the internal dimensions,

which is given by r, (5.3), is invariant under (5.7).

Armed with this knowledge, and given (5.1) and (5.4) as our starting point, we can

now explore various scenarios for volume stabilization.

8 The easiest way to check (5.6) is to note that in expression (5.6) we can switch back to the

variables r, a, φ in (5.2). In these variables K is only a function of r.
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5.1. Scenario I: Superpotential Stabilization

Perhaps the most straightforward method of stabilizing the volume involves a nonper-

turbative contribution to the superpotential. Various sources of nonperturbative superpo-

tentials for the ρ modulus are known; one instructive example described in [7] involves a

superpotential

W (ρ) = W0 + Ae−aρ (5.8)

where A and a are constants and W0 is the contribution (5.4) of the three-form flux. For

the remainder of this section we will consider W = W (ρ) to be a general holomorphic

function of ρ.

In the presence of D3-branes the superpotential must in addition develop some de-

pendence on φ, as it should be invariant under (5.7). For instance, as argued in [24], the

superpotential due to Euclidean brane instantons or gauge dynamics on D7-branes has

to vanish when a D3-brane hits the relevant cycle. This can be understood directly by

examining and integrating out the massive D3-D7 strings in the latter case. This subtlety

must be accounted for to get a globally well-defined W , and we will see in a moment that

this actually changes the inflaton mass term. Nevertheless, we will first study the simpler

case W = W (ρ), both because it reflects the essential features of the problem and because

the full dependence of W on φ is not known.

Let us start by presenting a general argument which highlights a problem faced by

any inflationary model involving a moving D3-brane in the models of [7]. The main point

is that one will choose some configuration with a positive energy V . When the compact

manifold is large then this energy will go to zero rather quickly, as a power of the volume

modulus r:

V (r, φ) =
X(ρ)

rα
=

X(ρ)

(ρ− φφ̄/2)α
(5.9)

where α is a number of order one and the form of X(ρ) depends on the source of energy.

This follows because in existing proposals the inflationary energy arises either from brane

tensions or from fluxes, and all known brane and flux energies vanish as some power of r.

On the other hand the stabilization mechanism would fix ρ (or else some combination of

ρ and φ) rather than r. This implies that as the brane moves and φ changes there will be

a change in the potential,

V = V0

(

1 + α
φφ̄

2r
+ ...

)

. (5.10)
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This will lead to a contribution to η of order one, unless there is a compensating contri-

bution to the mass term from some other source.

One possible source of such a cancellation is a dependence of the superpotential on φ,

not just ρ. If V (r, φ) = X(ρ, φ)r−α then we would get an additional contribution to the

mass term,

V (ρ, φ) =
X(ρ, φ)

(ρ− φφ̄/2)α
=
X(ρ)

ρα

(

1 + α
φφ̄

2r
+ ...

)

+
∆(ρ)

rα
φφ̄

where

X(ρ, 0) ≡ X(ρ) ∆(ρ) ≡ ∂φ∂φ̄X(ρ, φ)|φ=0

so that at the minimum ρ = ρc we find

V (ρc, φ) = V0(ρc) +

(

αV0(ρc)

2ρc
+

∆(ρc)

ρα
c

)

φφ̄+ ...

In principle the second contribution to the mass term might substantially cancel the first,

alleviating the problem of the inflaton mass. This would certainly require fine-tuning at the

level of one percent (in order to make η sufficiently small to allow sixty e-foldings). More

importantly, the dependence of W on φ is not known, so the question of which models

admit such fine-tuning cannot be answered at present. We should emphasize that the

problem we are discussing is quite general, but one might well be able to find non-generic

configurations in which the problem is absent.

Let us discuss these issues more concretely for the case of a brane-antibrane pair

transverse to a stabilized Calabi-Yau. In principle one should be able to compute the in-

flaton potential directly, by substituting the complete superpotential into the supergravity

F-term potential

V F = eK(gij̄DiWDjW − 3|W |2) (5.11)

and possibly including the effects of D-term contributions. This turns out to be a

rather subtle problem, essentially because of the breaking of supersymmetry in the brane-

antibrane system.

We will begin instead by understanding the (supersymmetric) system of a single D3-

brane transverse to a Calabi-Yau. We will find that superpotential stabilization of the

volume necessarily generates mass terms for the scalars φ which describe the motion of the

D3-brane. An implicit assumption in brane-antibrane inflation scenarios is that the brane
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and antibrane are free, in the absence of interactions, to move around the Calabi-Yau; the

gentle force from their Coulomb interaction is then expected to lead to a relatively flat

inflaton potential. Significant mass terms for the D3-brane (or any external forces on the

D3-brane) invalidate this assumption and make inflation impossible.

Let us therefore consider the effective potential governing a D3-brane transverse to

a Calabi-Yau manifold. We substitute the superpotential W (ρ) and the Kähler potential

(5.1) into (5.11), where the physical volume modulus r is given by (5.3). The resulting

four-dimensional effective potential is

V F =
1

6r

(

∂ρW∂ρW (1 +
1

2r

k,φ k,φ̄
k,φφ̄

) − 3

2r
(W∂ρW +W∂ρW )

)

. (5.12)

In the vicinity of a point in moduli space where k(φ, φ̄) = φφ̄, this can be simplified to

V F =
1

6r

(

|∂ρW |2 − 3

2r
(W∂ρW +W∂ρW )

)

+

( |∂ρW |2
12r2

)

φφ̄ . (5.13)

We must now incorporate the effects of an anti-D3-brane. In the scenario of [7]

the superpotential (5.8) stabilized the compactification volume and generated a negative

cosmological term V0. The positive, warped tension of an anti-D3-brane was added to

this to produce a small positive cosmological constant. In our notation, the anti-D3-brane

induces an additional term in the effective potential (5.12),

V =
1

6r

(

∂ρW∂ρW (1 +
1

2r

k,φk,,φ̄
k,φφ̄

) − 3

2r
(W∂ρW +W∂ρW )

)

+
D

(2r)2
(5.14)

where D is a positive constant. Notice that this induced term differs from the one in [7]

by a factor of r. This arises because the anti-D3 tension in the warped compactifications

of [5] scales like 1
r3 e

4A, and in the highly warped regime, e4A ∼ r exp(− 8πK
3gsM ). This does

not alter the conclusions of [7], though it changes the numerology.

Suppose that the potential (5.14) has a de Sitter minimum VdS at ρ = ρc, φ, φ̄ = 0. We

will now compute the mass of the D3-brane moduli in an expansion about this minimum.

To simplify the analysis we assume that at the minimum ρ is real, and also that for real ρ,

W (ρ) is real. The canonically normalized scalar which governs the motion of the D3-brane

is not φ but is instead a rescaled field ϕ = φ
√

3/(ρ+ ρ̄); it is the mass of ϕ which we will

compute.
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First, we rewrite (5.14) as

V =

(

W ′(ρ)2ρ− 3W (ρ)W ′(ρ) +
D

4

)

(ρ− φφ̄/2)−2 (5.15)

where primes denote derivatives with respect to ρ, and define V0 by

V0(ρc) =
1

ρ2
c

(

W ′(ρc)
2ρc − 3W (ρc)W

′(ρc) +
D

4

)

. (5.16)

Then

V =
V0(ρc)

(1 − ϕϕ̄/3)2
≈ V0(ρc)

(

1 +
2

3
ϕϕ̄

)

. (5.17)

This means that the field ϕ acquires the mass

m2
ϕ =

2

3
VdS = 2H2 (5.18)

This is in fact precisely the result one would obtain for a conformally coupled scalar in a

spacetime with cosmological constant VdS . This is most easily understood by setting D = 0

and studying the resulting AdS4. The four-dimensional AdS curvature is RAdS = 4V0, so

that (5.18) corresponds to a coupling

δV =

(

1

6
RAdS

)

ϕϕ̄. (5.19)

If the D3-brane is in a highly warped region this result could have been anticipated, since

this highly warped region is dual to an almost conformal four-dimensional field theory [25]

and the scalar field describing the motion of the brane is conformally coupled (see [21])9.

The derivation of (5.19) is also valid even when the D3-brane is far from the near horizon

region.

We now see that the D3-brane moduli masses are necessarily of the same scale as the

inflationary energy density V0, since during inflation, the extra antibrane(s) simply sit at

the end of the throat and provide an energy density well-modeled by (5.14). It is straight-

forward to verify that such masses lead to a slow-roll parameter η = 2/3, incompatible

with sustained slow-roll inflation.

It is instructive to compare this result with the well-known η-problem, which bedevils

most models of F-term inflation in N = 1 supergravity. One begins by asking whether

9 Note that the kinetic term for ϕ is of the form
∫

d4x∇ϕ∇ϕ̄.
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slow-roll inflation is possible in a model of a single field φ with any type of Kähler potential

and any superpotential W (φ). For a minimal Kähler potential and a generic superpotential

W (φ) one typically has a inflaton mass m2
φ = O(H2), and hence no inflation, just as in

the generic case considered in the present paper. But this does not mean that inflation in

N = 1 supergravity is impossible. Various superpotentials with non-generic dependence

on φ have been found, some of which permit inflation. For example, in supergravity with

the canonical Kähler potential and a linear superpotential for the inflaton, the mass term

contribution to the potential cancels:

K = φ̄φ , W = φ ⇒ V = eφ̄φ
(

(1 + φ̄φ)2 − 3φ̄φ
)

= 1 +
1

2
(φ̄φ)2 + · · · (5.20)

A similar effect occurs for the superpotential W = φ(σ1σ2 −M2), which leads to a simple

realization of F-term hybrid inflation [26]. Moreover, the dangerous mass terms for the

inflaton do not appear at all in D-term inflation [27].

It is quite possible, therefore, that one could find a consistent inflation scenario in

string theory by studying superpotentials which depend on the inflaton field. As men-

tioned above, this would undoubtedly require a fine-tuned configuration in which two

contributions to the mass cancel to high precision. We treat this question in detail in

Appendix F, where we show that the introduction of a superpotential depending on the

inflaton field φ leads to a modification of the mass-squared m2
φ of the inflaton field which

could make it much smaller (or much greater) than 2H2. This issue merits further inves-

tigation, which should become possible as we learn more about the detailed dependence of

W (ρ, φ) on the background geometry and on the fluxes in string compactifications.

5.2. Scenario II: Kähler Stabilization

One model of stabilization that would be compatible with the inflationary scenario

of §3,4 is the following. We have seen that the true Kähler-invariant expansion param-

eter which controls the α′ expansion in these models, is r. Furthermore, r and φ have

independent kinetic terms.

A method of directly stabilizing r could freeze the volume directly, without stopping

inflation. Since r is not a chiral superfield itself, stabilization via effects in the superpoten-

tial cannot accomplish this. However, given that W0 6= 0, one can imagine that corrections

to the Kähler potential could directly stabilize r.
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In fact, Kähler stabilization has been proposed earlier for rather different reasons (see

e.g. [28], which discusses Kähler stabilization of the heterotic string dilaton). Here we

would need the α′ corrections to (5.1) to break the no-scale structure and fix r. Some of

these corrections have been calculated (see e.g. [29]). The subset of terms presented in

[29] does not lead to this kind of stabilization, though there are likely to be other terms at

the same orders which could change this conclusion. However, Kähler stabilization would

be very difficult to find in a controlled calculation, so one might simply have to state it as

a model-building assumption.

If one does assume that r is stabilized by corrections to the Kähler potential, then

the models of §3,4 could be realized in the framework of [5]. In Appendix C we show

that in these models one can easily satisfy observational constraints such as the number of

e-foldings and the size of the density perturbations.

6. Conclusion

One of the most promising ideas for obtaining inflation in string theory is based on

brane cosmology. However, brane-antibrane inflation [11] suffers from various difficulties

when one tries to embed it in full string compactifications with moduli stabilization, such

as the (metastable) de Sitter vacua of [7].

We have argued here that some of these difficulties can be resolved by introducing

highly warped compactifications. The warped brane-antibrane models introduced in gen-

eral form in §3 and in a compact string theory example in §4 give rise to slow-roll inflation

with an exponentially flat potential. In the compact example, the slow-roll parameters

and the density perturbations can be fixed at suitable values by an appropriate choice of

discrete fluxes in the warped region.

The above discussion assumes a suitable stabilization mechanism for the volume mod-

ulus of the compactification manifold. As described in §5, this is a highly nontrivial issue.

Indeed, we have found that if one stabilizes the moduli as in [7] then this field acquires

an effective mass-squared m2
φ = O(H2), making inflation impossible. As discussed in §5.1,

fine-tuned dependence of the superpotential on φ could reduce this mass. With generic

dependence on φ the problem persists.
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The arguments leading to our conclusion that generic methods of stabilization stop

inflation are rather general, and should apply to any system where the energy density

depends on the volume modulus as r−α with α > 0. There are general arguments that this

should always be the case, for the sources of energy we know about in string theory [30].

Thus, it appears very difficult to achieve slow-roll brane inflation in a manner compatible

with stabilization of the compactified space in string theory. At the very least, it is chal-

lenging to find a model which works for generic forms of the stabilizing superpotential,

which itself varies in a way that depends on all of the microscopic details of the compacti-

fication. In those non-generic cases where inflation is possible, the inflationary predictions

will depend on the details of the moduli stabilization.

One should note that the degree of fine-tuning required for slow-roll inflation in these

models is not extraordinary (see Appendix F), and may well be attainable within the large

class of known models. Moreover, even though fine-tuning is certainly undesirable, it may

not be a grave problem. Indeed, if there exist many realizations of string theory, then one

might argue that all realizations not leading to inflation can be discarded, because they do

not describe a universe in which we could live. Meanwhile, those non-generic realizations

which lead to eternal inflation (see Appendix D) describe inflationary universes with an

indefinitely large and ever-growing volume of inflationary domains. This makes the issue

of fine-tuning less problematic. It will not escape the reader’s notice that this argument

is anthropic in nature [31,32,33]. It is worth pointing out that it is an independent,

presumably well-defined mathematical question, whether or not string theory has solutions

which are consistent with present experiments (e.g. which contain the standard model of

particle physics, have sufficiently small cosmological term, and allow early inflation). This

question can of course be studied directly (see e.g. [34] for recent work in this direction),

and is an important one for string theorists to answer. Only if string theory does admit

such solutions, does anthropic reasoning in this context become tenable. The large diversity

of string vacua makes it reasonable to be optimistic on this score.

We have primarily focused on the implications of superpotential stabilization of the

moduli for D3-brane/anti-D3-brane inflation. Our analysis has implications for other mod-

els of brane inflation as well. These include Dp − Dp systems and Dp-branes at angles

with p = 5, 7. In these cases, Chern-Simons couplings will generically induce a D3-brane

charge on the branes due to the presence of a non-trivial BNS field. Such a charge will

also be generated due to the curvature couplings for generic topologies of the cycles the
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branes wrap. If the induced charge is of order unity or more, the discussion of the previous

section will apply. The volume modulus and the inflaton field will mix non-trivially in

the Kähler potential and as a result a superpotential of the kind considered in §5.1, or in

fact any source of energy which scales like 1/rα, will generically impart an unacceptably

big mass to the inflaton. It would be interesting to explore the special cases where such a

charge is not induced, to see if one can make simple working models of brane inflation.

Other existing proposals for brane inflation depend on Fayet-Iliopoulos terms in the

low-energy field theory [27]. The status of these FI terms in the effective N = 1 supergrav-

ity arising from compactified string theory therefore merits careful investigation. String

theory models with D-terms were realized in brane constructions [14,17] without consid-

eration of volume stabilization. A consistent embedding of this model into compactified

string theory is under investigation [35].
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Appendix A. General Discussion of Brane-Antibrane Potentials

Here we compute the gravitational force between a D3-brane and an anti-D3-brane

which are transverse to a general compact six-dimensional space. We assume that there

is no warping before we add the D-branes. Our objective is to compute the expression

for the slow-roll parameter η (2.4) in this setup. For this purpose we note that the brane

tension as well as the ten-dimensional Planck mass drop out from the expression for η if
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we express it in terms of the physical distance. We can therefore set MPl,10 = 1, TD3 = 1,

to avoid clutter in the equations.

The action for the system has the form

S =

∫

d6x
1

2
(∇ϕ)2 +

∑

i

(1 + γϕ(xi)) (A.1)

where γ is a constant we will determine below. Here ϕ is the gravitational potential on

the internal space. The equation of motion from (A.1) is

−∇2ϕ+ γ
∑

i

δ(x− xi) = 0 (A.2)

Treating one brane as the source and the other as a probe and comparing with (2.1) we

see that γ2 = 2.10 The expression for the energy of N branes is thus

V ∼ N +
1

2

∑

i

γϕothers(xi) (A.3)

where the subscript in ϕ indicates that we compute the potential due to the other branes,

with j 6= i, and evaluate it at xi. There is also a self-energy correction. We assume that

the latter is independent of position. This is true in homogeneous spaces, such as tori.

The equation of motion (A.2) is not consistent since all the charges on the left hand side

of (A.2) have the same sign. A minimal modification that makes the equation consistent

is to write it as

−∇2ϕ+ γ
∑

i

(

δ(x− xi) −
2

v6

)

= 0 (A.4)

where v6 is the volume of the compact manifold. This term comes naturally from the

curvature of the four-dimensional spacetime, which, in the approximation that we neglect

the potential, is de Sitter space. This positive curvature gives rise to a negative contribution

to the effective potential in the six internal dimensions. It is reasonable to assume that

the negative term is smeared over the compact space as in this minimal modification, as

long as the transverse space is approximately homogeneous.11

10 Note that (2.1) contains a contribution both from gravity and from the Ramond fields, so

the gravity contribution is half of that in (2.1).
11 In compactifications with orientifold planes, there would also be localized negative terms.

However, these would be cancelled by the tensions of the branes which are present even after

brane/antibrane annihilation. The extra energy of the inflationary brane/antibrane pair can be ex-

pected to induce a smeared negative contribution over and above the orientifold plane contribution.
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Note that this term does not arise for the Ramond fields since the total charge is zero.

Let us now consider, for simplicity, the case of a single brane and a single antibrane.

In order to compute η we compute the Laplacian of the potential V with respect to x1.

We get

∇2
x1
ϕx2

(x1) = − 2

v6
γ (A.5)

The subscript in ϕ indicates that this is the potential due to the brane at x2. For a pair

of branes the potential is V = 2 + γϕx2
(x1). The Laplacian has a constant negative value

(A.5). We see that this implies that there exists at least one direction in which the second

derivative has a value V ′′ ∼ γϕ′′ ≤ −γ2

3
1
v6

, since there are six transverse dimensions.

When we compute the contribution to η the factor v6 cancels out.

When there are many fields, one should consider η as a matrix. In order to have slow

roll inflation we need to demand that the matrix has no negative eigenvalue that is too

large. If we have a large negative eigenvalue, then even if the scalar field is not initially

rolling in that direction, it will typically start moving in this direction after a few e-foldings.

The discussion above implies that η, viewed as a matrix, has an eigenvalue more negative

than

η|eigenvalue ≤ −2

3
. (A.6)

This implies that at least one of the moduli acquires a tachyonic mass m2 ≤ −2H2, which

typically prevents a prolonged stage of inflation.

A similar analysis can be carried out for the general case of a Dp-brane/anti-Dp-brane

system. It is easy to see that the only change is that the coefficient 2
3 in (A.6) is replaced by

4
(9−p) . More interestingly, the above analysis can also be applied to the case of Dp-branes

at angles. By this we mean a system of slightly misaligned branes and orientifold planes,

[15]. The supersymmetry breaking scale in such a system is controlled parametrically

by an angle which measures the relative orientation of the branes. For small values of

this angle, the vacuum energy, V ∼∑i Ti, obtained by summing over all the branes and

planes, can be much smaller than the tension of any individual brane or plane. The force

on a brane in such a system arises due to graviton-dilaton and RR exchange. In these

systems there can be a cancellation between the graviton-dilaton and the RR force in

such a way that the resulting force, computed with non-compact “internal” dimensions,

is parametrically smaller than the value of the cosmological constant. Once the internal

dimensions are compact, we have to make some modification of the gravitational equation
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in order to make it consistent. The simplest modification is to add a constant term on the

right hand side of the corresponding Laplace equation. In this case the constant term will

be proportional to the effective four dimensional cosmological constant. Then, repeating

the analysis above, one finds that the resulting potential satisfies the inequality

V
′′ ≤ − γ2

(9 − p)

1

v6
Tp

∑

i

Ti.

As a result, once again one obtains a value of η, (A.6), with the coefficient 2
3

replaced by
4

(9−p)
. In other words, both the potential and its second derivative scale in the same way

with the small angle which supresses supersymmetry breaking, making η independent of

this angle.

Appendix B. Computation of the D3/D3 Potential in Warped Geometries

To calculate the potential it is actually easier to turn things around and view the

D3-brane as perturbing the background and then calculate the resulting energy of the

anti-D3-brane in this perturbed geometry. This of course gives the same answer for the

potential energy of the brane-antibrane pair.

The coupling of the metric and the five-form to the D3-brane is given by (3.6). On

general grounds one expects that the changes in the metric and F5 caused by the D3-brane

will vary in the directions transverse to the brane. These directions are spanned by the

radial coordinate r and the directions along X5. It is useful to observe that the background

can be written as follows:

ds2 = h−
1

2

(

−dt2 + d~x2
)

+ h
1

2

(

dr2 +
r2

R2
g̃abdy

adyb

)

(B.1)

(F5)rtx1x2x3 = ∂rh
−1, (B.2)

where g̃abdy
adyb is the line element on X5, and h(r) is given by

h(r) =
R4

r4
. (B.3)

It is easy to check that h(r) is a harmonic function in a six-dimensional space spanned

by r and the directions along X5, with metric

ds26 = dr2 +
r2

R2
g̃abdy

adyb. (B.4)
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Adding one additional D3-brane at a radial location r1 results in a perturbed back-

ground which is of the form (B.1), but with a harmonic function now given by

h(r) =
R4

r4
+ δh(r). (B.5)

δh solves the equation ∇2
6δh(r) = Cδ6(~r − ~r1) in the six-dimensional space (B.4).12 For

r ≪ r1 a simple calculation shows that

δh(r) =
R4

N

1

r41
(B.6)

independent of r and the detailed metric on X5. In (B.6) the coefficient N arises because

the ambient background is supported by N units of charge, whereas the perturbation

we are interested in arises due to a single D3-brane. From (B.5) the resulting harmonic

function is

h(r) = R4

(

1

r4
+

1

N

1

r41

)

. (B.7)

To determine the potential we now couple this new background to the anti-D3-brane.

The anti-D3-brane is described by an action of the form (3.6), except that, as was men-

tioned before, the sign of the Chern-Simons term is reversed relative to the case of a

D3-brane. We also remind the reader that the antibrane is located at r = r0; we will

assume that r1 ≫ r0. Combining all these results, after a simple calculation one recovers

the desired potential (3.9).

This calculation of the potential is valid for one brane-antibrane pair. For one brane

and p antibranes, to leading order, (3.9) is simply multiplied by p. Corrections to this

leading-order potential are suppressed for small p.

Appendix C. Warped Inflation

In this appendix we discuss how inflation would look if one managed to fix the overall

volume modulus without giving a mass to the brane motion. We argued above that the low

energy dynamics of the system is described by the action (3.10). The radial position of the

12 The constant C is determined by the tension of the D3-brane.
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D3-brane, r1, will play the role of the inflaton below. We define a canonically normalized

field

φ =
√

T3r1 (C.1)

and φ0 =
√
T3r0. The effective action is then given by

S =

∫

d4x
√−g

( R
16πGN

+
1

2
gµν∂µφ∂νφ− 4π2φ4

0

N

(

1 − 1

N

φ4
0

φ4

))

(C.2)

We have assumed that there are no significant additional terms in the effective action

(C.2).

This inflaton potential is extremely flat: the first term in the potential, which is

independent of the inflaton, is larger than the second term by a factor proportional to

( r1

r0

)4. This factor can be interpreted as the relative redshift between the brane location r1

and the antibrane location r0; as we explained in §4, this redshift is exponentially sensitive

to the parameters of the model:

r0/R = e−
2πK
3gsM (C.3)

where gs is the string coupling and K,M are integers that specify fluxes turned on in the

compactification.

The slow-roll parameters can now be calculated in standard fashion. We will use

conventions where 8πGN = M2
Pl. One finds that

ǫ ≡ M2
Pl

2

(V
′

V

)2

≃ 8

N2
M2

Pl

φ8
0

φ10

η ≡M2
Pl

V
′′

V
≃ −20

N
M2

Pl

φ4
0

φ6
.

(C.4)

Slow-roll requires that |η| ≪ 1, |ǫ| ≪ 1. Of these the condition on η is more restrictive. It

can be met by taking

φ≫
(

20

N
M2

Plφ
4
0

)1/6

. (C.5)

The number of e-foldings is given by

Ne =
1

M2
Pl

∫

V

V ′
dφ ≃ N

24

1

M2
Pl

φ6

φ4
0

. (C.6)

Requiring Ne ∼ 60 can be achieved by taking φ to be sufficiently large and is com-

patible with the bound (C.5).
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Finally, the adiabatic density perturbations are given by ([2], page 186)

δH =
1√
75π

1

M3
Pl

V 3/2

V ′
=

√
Ne

2
√

75

φ5

φ2
0M

3
Pl

. (C.7)

This quantity should be equal to 1.9 ·10−5 at Ne ∼ 60, when the perturbations responsible

for the large scale structure of the observable part of the universe are produced.

After some algebra, δH can be expressed in terms of Ne as follows:

δH = C1N
5/6
e

(

T3

M4
Pl

)1/3
(r0
R

)4/3

. (C.8)

C1 is a constant which is somewhat model dependent; using (C.7) and (C.2), one has

C1 =
31/323/2

5π

(

N

T3R4

)1/6

(C.9)

and after using (4.5), (3.7) one finds that C1 = 0.39 for the model of §4.13

The four-dimensional Planck scale (M−2
Pl ≡ 8πGN ) is given by

M2
Pl =

2V6

(2π)7α′4g2
s

(C.10)

where V6 is the volume of the Calabi-Yau. This formula is strictly applicable only to a

Kaluza-Klein compactification, not a warped compactification of the kind considered here.

However, the approximation is a good one since the graviton zero mode has most of its

support away from the regions with large warping (where its wave function is exponentially

damped.) We may express the brane tension as

T3

M4
Pl

=
(2π)

11

4
g3

s

α′6

V 2
6

(C.11)

This dimensionless ratio evidently depends on the string coupling constant and the vol-

ume of the six compact dimensions. The value T3/M
4
Pl ∼ 10−3 is quite reasonable: it

corresponds to gs ∼ 0.1 and a Calabi-Yau volume of a characteristic size (V6)
1/6 ∼ 5

√
α′.

Larger values of V6 lead to smaller values for T3/M
4
Pl, which make it easier to meet the

density perturbation constraints.

13 C1 increases by a factor
√

p when there are p antibranes. While making numerical estimates

we set p = 2.
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More important, for present purposes, is the factor (r0/R)4/3, which has its origins

in the redshift suppression of the potential that was emphasized in the discussion above.

By taking this factor to be small enough we see that the constraint on δH , (C.7), can be

met. As an example, taking T3/M
4
Pl ∼ 10−3 and Ne = 60, we find that δH ≈ 1.91 · 10−5

for r0/R = 2.5 · 10−4. This condition on r0/R can easily be met for reasonable values of

the flux integers K,M . Taking gs = 0.1, we get r0/R = 2.5 · 10−4, with K/M ≃ 0.4. The

latter condition can be achieved using moderate values of flux, e.g. K = 8,M = 20.

Now that we have ensured that the various constraints can be met in our model, it is

worth exploring the resulting inflationary scenario a little more. The energy scale during

inflation can be expressed in terms of δH . One finds from (C.8), and using the fact that

the potential is well approximated by the first term in (3.9), that

V

M4
Pl

=
2δ3H

C3
1N

5/2
e

. (C.12)

Taking δH = 1.91 · 10−5, Ne = 60, C1 = 0.39 and MPl = 2.4 · 1018 GeV one finds that the

energy scale is

Λ ≡ V 1/4 = 1.3 · 1014 GeV . (C.13)

This is considerably lower than the GUT scale ∼ 1016 GeV. This low scale of inflation is

a generic feature of the scenario.

Next, it is straightforward to see that δH is given in terms of V and ǫ by

δH =
1

5π
√

6ǫ

(

V

M4
Pl

)1/2

. (C.14)

Solving for V from (C.12) gives

ǫ =
δH

75π2C3
1N

5/2
e

. (C.15)

Taking δH = 1.91 · 10−5, C1 = 0.39,Ne = 60 gives

ǫ = 1.54 · 10−11, (C.16)

a very small number. The ratio of the anisotropy in the microwave background generated

by gravitational waves to that generated by adiabatic density perturbations is given (at

large l) by

r ≃ 12.4ǫ. (C.17)
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In our model this is very small, so the anisotropy is almost entirely due to density pertur-

bations.

Finally, η can be related to Ne, and is given by

η = −5

6

1

Ne
. (C.18)

Setting Ne = 60 gives

η = −0.014. (C.19)

Clearly, as we mentioned above, |η| ≫ ǫ. The tilt parameter is given by

n = 1 − 6ǫ+ 2η ≃ 1 + 2η ≈ 0.97, (C.20)

in excellent agreement with observational data from WMAP.

In summary, in our model the scale of inflation Λ (C.13) is generically low. Most of

the anisotropy originates from adiabatic density perturbations, since ǫ is extremely small,

and the tilt in the spectrum, (C.20), is determined by η. The values for these parameters

are nearly model-independent: they are almost entirely determined by the observed value

for δH and by the number of e-foldings, Ne.

Appendix D. Eternal Inflation

At large φ, the potential V (φ) in (C.2) becomes extremely flat. For flat potentials, the

force pushing the field φ down becomes very small, whereas the amplitude of inflationary

fluctuations remains practically constant. As a result, the motion of the field φ at large

φ is mainly governed by quantum jumps. This effect is known to lead to eternal inflation

[36,37].

Eternal inflation leads to formation of a fractal structure of the universe on a very large

scale. It occurs for those values of the field φ for which the post-inflationary amplitude of

perturbations of the metric δH would exceed unity [1]. In our case δH is proportional to

φ5, cf. (C.7). Since the amplitude of the density perturbations is δH ∼ 1.9 · 10−5 in the

observable part of the universe, eternal inflation should occur for all values of the field φ

that are greater than 10 · φ60. Here φ60 is the value of the field at the moment starting

from which the universe inflated eNe ∼ e60 times. In other words, if r60 is the brane
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separation corresponding to the moment when the large-scale structure of the observable

part of the universe was produced, then the regime of eternal inflation occurred when the

brane separation was ten times greater than r60. The possibility of eternal inflation in

our model is very interesting since this regime makes the existence of inflation much more

plausible: even if the probability of initial conditions for eternal inflation is small, the

universes (or the parts of the universe) where these conditions are satisfied rapidly acquire

indefinitely large (and ever growing) volume [38].

Appendix E. Exit from Inflation

In this appendix we comment on the exit from inflation through brane-antibrane

annihilation.

The brane-antibrane potential used in our analysis of inflation is no longer valid when

the brane separation is comparable to the string length. At that stage a tachyon appears

and then condenses. (In this sense, our model, like all the brane inflation models described

in [4], is a particular version of the hybrid inflation scenario [39].) One may attempt to use

the properties of this brane-antibrane tachyon [40,41] to describe the exit from inflation.

Here we will show that one of the possible problems of this scenario, the overproduction

of cosmic strings [42,43], is ameliorated by the warped geometry.

In the case of a merging brane-antibrane pair, the tachyon is a complex field and

there is a U(1) symmetry. Formation of cosmic strings associated with the U(1) symmetry

breaking leads to large-scale perturbations of the metric which are compatible with the

current observations of the cosmic microwave anisotropy [44] only if GN T1 = T1

8πM2

Pl

<∼
10−7, where T1 is the cosmic string tension [45]. This tension can be evaluated either by

the methods of [46], or by identifying cosmic strings with D1-branes. In the usual case

(i.e. ignoring warping) one has

T1 =
1

2πgsα′
. (E.1)

The requirement GN T1 = T1

8πM2

Pl

<∼ 10−7 reads

GN T1 =
gs

16π

(2πls)
6

V6

<∼ 10−7, (E.2)
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i.e.

V6 >∼ 2 × 105 gs (2πls)
6. (E.3)

This shows that the cosmic string contribution to the perturbations of the metric produced

after inflation is unacceptably large unless the volume of the compactified space V6 is at

least five orders of magnitude greater than gs(2πls)
6.

In the brane inflation models of §3, §4, however, the relevant tension is redshifted by

the warped geometry, which leads to exponential suppression of T1:

T1 =
1

2πgsα′
e−

4πK
3gsM . (E.4)

As a result, the undesirable contribution of cosmic strings (D1-branes) to perturbations of

the metric becomes exponentially suppressed.

Appendix F. Fine-tuning of the Potential when the Superpotential Depends

on the Inflaton Field

In this appendix we study a toy model in order to make more precise our statements

concerning the degree of fine-tuning which is required for slow-roll brane inflation. We

should note here that we will be discussing the degree to which the inflaton potential

itself must be tuned. In a given string model, one cannot directly tune the potential, but

only vary choices of the background data like fluxes, compactification manifold, or brane

positions. It could be that the tuning required in terms of this data is more or less severe

than our estimate below, but explicit string calculations of the relevant superpotentials

will be necessary to determine this.

Before studying the example, let us mention how small the inflaton mass term must

be for a given model of slow-roll inflation to be compatible with experiment. The goal is

to have a long stage of inflation producing metric fluctuations with a fairly flat spectrum.

Recent observations suggest that, modulo some uncertainties, the tilt is ns ≈ 1 +
2m2

φ

3H2 =

0.97 ± 0.03 [44,47]. This is compatible with an inflaton mass |m2
φ|/H2 ∼ 10−1 − 10−2.

This could be achieved through fine-tuning ofm2
φ by only about one part in 100. Thus,

the fine-tuning that we need to perform is not extraordinary. Given the large number of

34



possible compactifications, the existence of some configurations which allow inflation seems

quite likely.

We now turn to an example which illustrates this point. Consider a D3-brane trans-

verse to a warped compactification; we would like to know how the (brane-antibrane)

inflaton mass terms vary as the inflaton-dependence of the superpotential varies.

The Kähler potential for the volume modulus and the D3-brane field φ takes the form

K(ρ, ρ̄, φ, φ̄) = −3 log
(

ρ+ ρ̄− k(φ, φ̄)
)

. We will work in the vicinity of the point φ = φ̄ = 0

in moduli space, where k(φ, φ̄) = φφ̄. We choose a superpotential of the form

W (ρ, φ) = W0 + g(ρ)f(φ) (F.1)

where g(ρ) is an arbitrary function of ρ, f(φ) = (1 + δ φ2), and W0 and δ are constants.

This is a slight generalization of the superpotential in [7], which corresponds to δ = 0 and

g(ρ) = Ae−aρ.

One can now calculate the supergravity potential V F = eK(gij̄DiWDjW − 3|W |2)
for the two complex fields ρ, φ. The exact potential has a simple dependence on Im ρ and

Imφ which shows that the point Im ρ = Imφ = 0 is an extremum of the potential (it

is a minimum, at least for small φ). Therefore we will present here the exact potential

V F (σ, ψ) as a function of Re ρ = σ and Reφ = ψ at Im ρ = Imφ = 0.

V F (σ, ψ) =
1

6(σ − ψ2/2)2

(

2δ2ψ2g(σ)2 + f(ψ)g′(σ)g(σ)

(

−3W0

g(σ)
+ σf(ψ)− f(ψ) − 2

))

(F.2)

We are interested in the total potential V F (σ, ψ) + VD3 at small ψ, where VD3 is the

potential due to the antibrane (cf. (5.14)). We may therefore use the stabilization of the

volume in the first approximation at ψ2 = 0 and calculate the potential at the AdS critical

point σc = rc, where, using DρW |φ=0 = 0, one finds

W0 = −g(σc) +
2

3
σcg

′(σc) , VAdS = −(g′(σc))
2

6σc
(F.3)

We now change variables to ψ2 = 2
3
σcϕ

2, where ϕ is a field with the canonical kinetic term

(∂ϕ)2. We find

V F (σc, ϕ) =
1

6σc(1 − ϕ2/3)2

(

−(g′)2 +
4δ2g2

3
ϕ2 − 2δgg′

3
ϕ2(1 +

2δ

3
σcϕ

2) +
4

9
δ2ϕ4σ2

c

)

(F.4)
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From the antibrane we get the additional contribution mentioned above. Keeping terms

up to those quadratic in φ, we finally arrive at

V F (σc, ϕ) + VD̄3(σc, ϕ) ≈ VdS +
2ϕ2

3

(

VdS +
1

6σc
(2δ2g2 − δg′g)

)

(F.5)

Here VdS is the value of the potential at the de Sitter minimum,

VdS = VAdS +
D

4σ2
c

= −(g′(σc))
2

6σc
+

D

4σ2
c

≡ 3H2 (F.6)

The mass-squared of the field φ is

m2
φ = 2H2 +

2|VAdS |
3

[

2

(

δ
g

g′

)2

− δ
g

g′

]

(F.7)

To make m2
φ small, we need δ g

g′
> 0 as well as |VAdS|

3

[

2
(

δ g
g′

)2

− δ g
g′

]

≈ −H2. If the

parameters of the model were arbitrary then this would certainly be possible.

We will express our results in terms of a parameter β = δ g
g′

:

m2
φ = 2H2 − 2

3
|VAdS |(β − 2β2) = 2H2

(

1 − |VAdS |
VdS

(β − 2β2)

)

(F.8)

For β = 0 we recover the “conformal” result

m2
φ = 2H2 (F.9)

As a simple example, if g(ρ) = Ae−aρ, as in [7], we find β = − δ
a . However, let us

assume, as in [7], that |VAdS | ≫ VdS . Then for the simple value β = 1 (i.e. δ = −a) we

have

m2
φ = 2H2

(

1 +
|VAdS |
VdS

)

≈ 2

3
|VAdS | ≫ 2H2 (F.10)

Thus, whereas it is true that our knowledge of W (ρ, φ) is not particularly good, our

absence of knowledge does not allow us to say much about m2
φ. The only thing we can say

is that in our particular example, for |VAdS | ≫ VdS , this mass can be fine-tuned to take

almost any value.14 In particular, one has a flat potential with m2
φ = 0 for

β =
1

4

(

1 ±
√

1 − 8VdS

|VAdS |

)

(F.11)

14 Incidentally, Eq. (F.10) implies that if one does not make any fine-tuning, then for the model

described in [7], with VdS ∼ 10−120 in Planck units, the typical mass squared of the D3 brane

moduli fields is expected to be O(|VAdS |), which can be extremely large. This result may have

interesting phenomenological implications.
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This equation always has solutions for |VAdS | ≥ 8VdS . For |VAdS | ≫ 8VdS , the solutions

are:

β1 =
δ1
a

=
1

2
− VdS

|VAdS |
≈ 1

2
(F.12)

and

β2 =
δ2
a

=
VdS

|VAdS |
≪ 1 (F.13)

In order to satisfy one of these two conditions and have m2
φ = 0 one can fine-tune

either the ratio VdS

|VAdS | (as was done in [7]) or the coefficient δ in the superpotential. In

order to prove that inflation in this scenario is impossible, one would need to prove that

neither of these types of fine-tuning is possible.

It is instructive to compare this situation with the problem of realizing the chaotic

inflation scenario in N = 1 supergravity. Let us consider a canonical Kähler potential K =

φ̄φ+ σ̄iσi, where φ is the inflaton field and σi are some other fields. If the superpotential is

a function of the fields σi but not of the field φ, then the potential of the scalar fields has

the general structure as a function of the real part of the field φ, V = eφ2

V (σi), which

implies that m2
φ = 3H2, i.e. η = 1.

One can resolve this problem by introducing a superpotential depending on the inflaton

field, just as we did in this appendix. However, in the simplest version of chaotic inflation

one needs the inflaton field to be at φ≫ 1, in Planck mass units, and to change significantly,

by ∆φ = O(1), during the last 60 e-folds. It is this last part that causes substantial

difficulties for inflation in N = 1 supergravity. It is always possible to find a superpotential

which depends on the inflaton field φ in such a way that the potential becomes flat in the

vicinity of one particular point. However, one must do this for all φ in a large interval

∆φ = O(1). One needs enormous functional fine-tuning in a large interval at φ≫ 1, where

the term ∼ eφ2

grows very fast.

Meanwhile, in our case the situation is much better. Instead of a functional fine-tuning

in a large interval of φ we need to make a fine-tuning at a single point σ = σc, φ = 0. In

order to estimate the required degree of fine-tuning, let us e.g. fix β = 1/2 and change

the ratio |VAdS |/VdS in Eq. (F.8) in the interval 0 < |VAdS |/VdS < 4. As one can easily

see, in this case the mass squared of the inflaton field changes from 2H2 to −2H2. In

approximately 1% of this interval the condition ns ≈ 1+
2m2

φ

3H2 = 0.97±0.03 is satisfied. On

the other hand, if this condition is substantially violated, which happens in the main part
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of this interval, then inflation becomes either too short or impossible, and the universe

most probably becomes unsuitable for life.

Finally, if inflation can be eternal (and it can be eternal in the models of §3,4, see

Appendix D), then the parts of the universe where eternal inflation is possible have an

indefinitely large and ever-increasing volume. For this reason, regions of the universe

where eternal inflation does occur, however improbable that may have been, are in some

sense favored. One could therefore argue that the problem of fine-tuning in inflationary

cosmology is not as dangerous as one could expect, and sometimes it may not even be

particularly relevant.
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1 Introduction

1.1 Motivation

Cosmological inflation [1] is a remarkable idea that provides a convincing explanation for

the isotropy and homogeneity of the universe. In addition, the theory contains an elegant

mechanism to account for the quantum origin of large scale structure. The observational

evidence for inflation is strong and rapidly growing [2], and in the near future it will be

possible to falsify a large fraction of existing models. This presents a remarkable opportunity

for inflationary model-building, and it intensifies the need for a more fundamental description

of inflation than current phenomenological models can provide.

In string theory, considerable effort has been devoted to this problem. One promising idea

is the identification of the inflaton field with the internal coordinate of a mobile D3-brane,

as in brane-antibrane inflation models [3, 4], in which a Coulombic interaction between the

branes gives rise to the inflaton potential. At the same time, advances in string compactifica-

tion [5, 6] (for reviews, see [7]) have enabled the construction of solutions in which all moduli

are stabilized by a combination of internal fluxes and wrapped D-branes. This has led to the

formulation of realistic and moderately explicit models in which the brane-antibrane pair is

inserted into such a stabilized flux compactification [8, 9, 10]. Particularly in warped throat

regions of the compact space, the force between the branes can be weak enough to allow for

prolonged inflation. It is therefore interesting to study the detailed potential determining

D3-brane motion in a warped throat region, such as the warped deformed conifold [11] or its

‘baryonic branch’ generalizations, the resolved warped deformed conifolds [12, 13]. In [13]

it was observed that a mobile D3-brane in a resolved warped deformed conifold experiences

a force even in the absence of an antibrane at the bottom of the throat. This makes [13]

a possible alternative to the brane-antibrane scenario of [8]. The calculations in this paper

are carried out in a region sufficiently far from the bottom of the throat that the metrics of

[11, 12, 13] are well-approximated by the asymptotic warped conifold metric found in [14].

Therefore, our methods apply to both scenarios, as well as to their generalizations to other

warped cones.

A truly satisfactory model of inflation in string theory should include a complete spec-

ification of a string compactification, together with a reliable computation of the resulting

four-dimensional effective theory. While some models come close to this goal, very small

corrections to the potential can spoil the delicate flatness conditions required for slow-roll

inflation [15]. In particular, gravitational corrections typically induce inflaton masses of order

the Hubble parameter H , which are fatal for slow-roll. String theory provides a framework

for a systematic computation of these corrections, but so far it has rarely been possible, in

practice, to compute all the relevant effects. However, there is no obstacle in principle, and
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one of our main goals in this work is to improve the status of this problem.

It is well-known that a D3-brane probe of a ‘no-scale’ compactification [5] with imagi-

nary self-dual three-form fluxes experiences no force: gravitational attraction and Ramond-

Ramond repulsion cancel, and the brane can sit at any point of the compact space with

no energy cost. This no-force result is no longer true, in general, when the volume of the

compactification is stabilized. The D-brane moduli space is lifted by the same nonperturba-

tive effect that fixes the compactification volume. This has particular relevance for inflation

models involving moving D-branes.

In the warped brane inflation model of Kachru et al. [8] it was established that the

interaction potential of a brane-antibrane pair in a warped throat geometry is exceptionally

flat, in the approximation that moduli-stabilization effects are neglected. However, incor-

porating these effects yielded a potential that generically was not flat enough for slow roll.

That is, certain correction terms to the inflaton potential arising from the Kähler potential1

and from volume-inflaton mixing [8] could be computed in detail, and gave explicit infla-

ton masses of order H .2 One further mass term, arising from a one-loop correction to the

volume-stabilizing nonperturbative superpotential, was shown to be present, but was not

computed. The authors of [8] argued that in some small percentage of possible models, this

one-loop mass term might take a value that approximately canceled the other inflaton mass

terms and produced an overall potential suitable for slow-roll. This was a fine-tuning, but

not an explicit one: lacking a concrete computation of the one-loop correction, it was not

possible to specify fine-tuned microscopic parameters, such as fluxes, geometry, and brane

locations, in such a way that the total mass term was known to be small. In this paper

we give an explicit computation of this key, missing inflaton mass term for brane motion in

general warped throat backgrounds. Applications of our results to issues in brane inflation

will be discussed in a future paper [17].

1.2 Method

The inflaton mass problem described in [8] appears in any model of slow-roll inflation involv-

ing D3-branes moving in a stabilized flux compactification. Thus, it is necessary to search

for a general method for computing the dependence of the nonperturbative superpotential

on the D3-brane position. Ganor [18] studied this problem early on, and found that the cor-

rection to the superpotential is a section of a bundle called the ‘divisor bundle’, which has a

1These terms are those associated with the usual supergravity eta problem.
2Similar problems are expected to affect other warped throat inflation scenarios, such as [13]. Indeed,

concerns about the Hubble-scale corrections to the inflaton potential of [13] have been raised in [16], but the

effects of compactification were not considered there. In this paper we calculate some of the most salient

such effects, those due to D-branes wrapping internal four-cycles.
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zero at the four-cycle where the wrapped brane is located. The problem was addressed more

explicitly by Berg, Haack, and Körs (BHK) [19], who computed the threshold corrections to

gaugino condensate superpotentials in toroidal orientifolds. This gave a substantially com-

plete3 potential for brane inflation models in such backgrounds. However, their approach

involved a challenging open-string one-loop computation that is difficult to generalize to

more complicated Calabi-Yau geometries and to backgrounds with flux and warping, such as

the warped throat backgrounds relevant for a sizeable fraction of current models. Moreover,

KKLT-type volume stabilization often proceeds via a superpotential generated by Euclidean

D3-branes [22], not by gaugino condensation or other strong gauge dynamics. In this case

the one-loop correction comes from an instanton fluctuation determinant, which has not

been computed to date.

Following [23], we overcome these difficulties by viewing the correction to the mobile D3-

brane potential as arising from a distortion, sourced by the D3-brane itself, of the background

near the four-cycle responsible for the nonperturbative effect. This corrects the warped

volume of the four-cycle, changing the magnitude of the nonperturbative effect. Specifically,

we assume that the Kähler moduli are stabilized by nonperturbative effects, arising either

from Euclidean D3-branes or from strong gauge dynamics (such as gaugino condensation) on

D7-branes. In either case, the nonperturbative superpotential is associated with a particular

four-cycle, and has exponential dependence on the warped volume of this cycle. Inclusion of

a D3-brane in the compact space slightly modifies the supergravity background, changing the

warped volume of the four-cycle and hence the gauge coupling in the D7-brane gauge theory.

Due to gaugino condensation this in turn changes the superpotential of the four-dimensional

effective theory. The result is an energy cost for the D3-brane that depends on its location.

This method may be viewed as a closed-string dual of the open-string computation of

BHK [19]. In §4.2 we compute the correction for a toroidal compactification, where an

explicit comparison is possible, and verify that the closed-string method exactly reproduces

the result of [19]. We view this as a highly nontrivial check of the closed-string method.

Employing the closed-string perspective allows us to study the potential for a D3-brane

in a warped throat region, such as the warped deformed conifold [11] or its generalizations

[12, 13], glued into a flux compactification. This is a case of direct phenomenological interest.

To model the four-cycle bearing the most relevant nonperturbative effect, we compute the

change in the warped volume of a variety of holomorphic four-cycles, as a function of the D3-

brane position. We find that most of the details of the geometry far from the throat region

are irrelevant. Note that our method is applicable provided that the internal manifold has

large volume.

The distortion produced by moving a D3-brane in a warped throat corresponds to a defor-

3Corrections to the Kähler potential provide one additional effect; see [20, 21].
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mation of the gauge theory dual to the throat by expectation values of certain gauge-invariant

operators [24]. Hence, it is possible, and convenient, to use methods and perspectives from

the AdS/CFT correspondence [25] (see [26, 27] for reviews).

1.3 Outline

The organization of this paper is as follows. In §2 we recall the problem of determining the

potential for a D3-brane in a stabilized flux compactification. We stress that a consistent

computation must include a one-loop correction to the volume-stabilizing nonperturbative

superpotential. In §3 we explain how this correction may be computed in supergravity, as a

correction to the warped volume of each four-cycle producing a nonperturbative effect. We

present the Green’s function method for determining the perturbation of the warp factor at

the location of the four-cycle in §4. We argue that supersymmetric four-cycles provide a good

model for the four-cycles producing nonperturbative effects in general compactifications, and

in particular in warped throats. In §5 we compute in detail the corrected warped volumes of

certain supersymmetric four-cycles in the singular conifold. We also give results for corrected

volumes in some other asymptotically conical spaces. In §6 we give an explicit and physically

intuitive solution to the ‘rho problem’ [19], i.e. the problem of defining a holomorphic volume

modulus in a compactification with D3-branes. We also discuss the important possibility of

model-dependent effects from the bulk of the compactification. We conclude in §7.

In Appendix A we present some facts about Green’s functions on conical geometries, as

needed for the computation of §5. We relegate the technical details of our computation for

warped conifolds to Appendix B. The equivalent calculation for Y p,q cones is presented in

Appendix C.

2 D3-branes and Volume Stabilization

2.1 Nonperturbative Volume Stabilization

For realistic applications to cosmology and particle phenomenology, it is important to sta-

bilize all the moduli. The flux-induced superpotential [28] stabilizes the dilaton and the

complex structure moduli [5], but is independent of the Kähler moduli. However, nonper-

turbative terms in the superpotential do depend on the Kähler moduli, and hence can lead

to their stabilization [6]. There are two sources for such effects:

1. Euclidean D3-branes wrapping a four-cycle in the Calabi-Yau [22].
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2. Gaugino condensation or other strong gauge dynamics on a stack of ND7 spacetime-

filling D7-branes wrapping a four-cycle in the Calabi-Yau.

bulk CY

warped throat

D7

r

D3
D3

Figure 1: Cartoon of an embedded stack of D7-branes wrapping a four-cycle Σ4, and a mobile

D3-brane, in a warped throat region of a compact Calabi-Yau. In the scenario of [8] the D3-brane

feels a force from an anti-D3-brane at the tip of the throat. Alternatively, in [13] it was argued

that a D3-brane in the resolved warped deformed conifold background feels a force even in the

absence of an anti-D3-brane. In this paper we consider an additional contribution to the D3-brane

potential, coming from nonperturbative effects on D7-branes.

Let ρ be the volume of a given four-cycle that admits a nonperturbative effect.4 The

resulting superpotential is expected to be of the form [6]

Wnp(ρ) = A(χ,X)e−aρ . (1)

Here a is a numerical constant and A(χ,X) is a holomorphic function of the complex struc-

ture moduli χ ≡ {χ1, . . . , χh2,1} and of the positions X of any D3-branes in the internal

space.5 The functional form of A will depend on the particular four-cycle in question.

4In general, there are h1,1 Kähler moduli ρi. For notational simplicity we limit our discussion to a single

Kähler modulus ρ, but point out that our treatment straightforwardly generalizes to many moduli. The

identification of a holomorphic Kähler modulus, i.e. a complex scalar belonging to a single chiral superfield,

is actually quite subtle. We address this important point in §6.1. At the present stage ρ may simply be

taken to be the volume as defined in e.g. [5].
5Strictly speaking, there are three complex fields, corresponding to the dimensionality of the internal

space, but we will refer to a single field for notational convenience.
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The prefactor A(χ,X) arises from a one-loop correction to the nonperturbative superpo-

tential. For a Euclidean D3-brane superpotential, A(χ,X) represents a one-loop determinant

of fluctuations around the instanton. In the case of D7-brane gauge dynamics the prefactor

comes from a threshold correction to the gauge coupling on the D7-branes.

In the original KKLT proposal, the complex structure moduli acquired moderately large

masses from the fluxes, and no probe D3-brane was present. Thus, it was possible to ignore

the moduli-dependence of A(χ,X) and treat A as a constant, albeit an unknown one. In

the case of present interest (as in [8]), the complex structure moduli are still massive enough

to be negligible, but there is at least one mobile D3-brane in the compact space, so we

must write A = A(X). (See [18] for a very general argument that no prefactor A can be

independent of a D3-brane location X.)

The goal of this paper is to compute A(X). As we explained in the introduction, this

has already been achieved in certain toroidal orientifolds [19], and the relevance of A(X)

for brane inflation has also been recognized [8, 19, 29]. Here we will use a closed-string

channel method for computing A(X), allowing us to study more general compactifications.

In particular, we will give the first concrete results for A(X) in the warped throats relevant

for many brane inflation models.

2.2 D3-brane Potential After Volume Stabilization

The F -term part of the supergravity potential is

VF = eκ
2

4
K

[

Kij̄DiWDjW − 3κ2
4|W |2

]

. (2)

DeWolfe and Giddings [30] showed that the Kähler potential K in the presence of mobile

D3-branes is

κ2
4K = −3 log

[

ρ+ ρ̄− γk(X, X̄)
]

≡ −2 logV , (3)

where k(X, X̄) is the Kähler potential for the Calabi-Yau metric, i.e. the Kähler potential on

the putative moduli space of a D3-brane probe, V is the physical volume of the internal space,

and γ is a constant.6 We address this volume-inflaton mixing in more detail in §6.1. For

clarity we have assumed here that there is only one Kähler modulus, but our later analysis

is more general.

The superpotential W is the sum of a constant flux term [28] Wflux(χ⋆) =
∫

G∧Ω ≡W0

at fixed complex structure χ⋆ and a term Wnp (1) from nonperturbative effects,

W = W0 + A(X)e−aρ . (4)

6In §6.1 we will find that γ ≡ 1
3κ2

4T3, where T3 is the D3-brane tension.
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Equations (2) to (4) imply three distinct sources for corrections to the potential for

D3-brane motion:

1. mK: The X-dependence of the Kähler potential K leads to a mass term familiar from

the supergravity eta problem.

2. mD: Sources of D-term energy, if present, will scale with the physical volume V and

hence depend on the D3-brane location. This leads to a mass term for D3-brane

displacements.

3. mA: The prefactor A(X) in the superpotential (4) leads to a mass term via the F -term

potential (2).

The masses mK and mD were calculated explicitly in [8] and shown to be of order the

Hubble parameter H . On the other hand, mA has been computed only for the toroidal

orientifolds of [19]. It has been suggested [8] that there might exist non-generic configurations

in which mA cancels against the other two terms. It is in these fine-tuned situations that

D3-brane motion could produce slow-roll inflation. By computing mA explicitly, one can

determine whether or not this hope is realized [17].

3 Warped Volumes and the Superpotential

3.1 The Role of the Warped Volume

The nonperturbative effects discussed in §2.1 depend exponentially on the warped volume

of the associated four-cycle: the warped volume governs the instanton action in the case

of Euclidean D3-branes, and the gauge coupling in the case of strong gauge dynamics on

D7-branes. To see this, consider a warped background with the line element

ds2 = Gµνdx
µdxν +GijdY

idY j ≡ h−1/2(Y )gµνdx
µdxν + h1/2(Y )gijdY

idY j , (5)

where Y i and gij are the coordinates and the unwarped metric on the internal space, respec-

tively, and h(Y ) is the warp factor.

The Yang-Mills coupling g7 of the 7 + 1 dimensional gauge theory living on a stack of

D7-branes is given by7

g2
7 ≡ 2(2π)5gs(α

′)2 . (6)

7In the notation of [31], g2
7 = 2g2

D7.
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The action for gauge fields on D7-branes that wrap a four-cycle Σ4 is

S =
1

2g2
7

∫

Σ4

d4ξ
√

gind h(Y ) ·
∫

d4x
√
g gµαgνβ TrFµνFαβ , (7)

where ξi are coordinates on Σ4 and gind is the metric induced on Σ4 from gij. A key point

is the appearance of a single power of h(Y ) [23]. Defining the warped volume of Σ4,

V w
Σ4

≡
∫

Σ4

d4ξ
√

gind h(Y ) (8)

and recalling the D3-brane tension

T3 ≡
1

(2π)3gs(α′)2
(9)

we read off the gauge coupling of the four-dimensional theory from (7):

1

g2
=
V w

Σ4

g2
7

=
T3V

w
Σ4

8π2
. (10)

In N = 1 super-Yang-Mills theory, the Wilsonian gauge coupling is the real part of a

holomorphic function which receives one-loop corrections, but no higher perturbative cor-

rections [32, 33, 34]. The modulus of the gaugino condensate superpotential in SU(ND7)

super-Yang-Mills with ultraviolet cutoff MUV is given by

|Wnp| = 16π2M3
UV exp

(

− 1

ND7

8π2

g2

)

∝ exp
(

−T3V
w
Σ4

ND7

)

. (11)

The mobile D3-brane adds a flavor to the SU(ND7) gauge theory, whose mass m is a holo-

morphic function of the D3-brane coordinates. In particular, the mass vanishes when the

D3-brane coincides with the D7-brane. In such a gauge theory, the superpotential is propor-

tional to m1/ND7 [35]. Our explicit closed-string channel calculations will confirm this form

of the superpotential.

In the case that the nonperturbative effect comes from a Euclidean D3-brane, the instan-

ton action is

S = T3

∫

Σ4

d4ξ
√
Gind = T3

∫

Σ4

d4ξ
√

gind h(Y ) ≡ T3V
w
Σ4
, (12)

so that, just as in (7), the action depends on a single power of h(Y ). The modulus of the

nonperturbative superpotential is then

|Wnp| ∝ exp
(

−T3V
w
Σ4

)

. (13)
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3.2 Corrections to the Warped Volumes of Four-Cycles

The displacement of a D3-brane in the compactification creates a slight distortion δh of the

warped background, and hence affects the warped volumes of four-cycles. The correction

takes the form

δV w
Σ4

≡
∫

Σ4

d4Y
√

gind(X;Y ) δh(X;Y ) . (14)

By computing this change in volume we will extract the dependence of the superpotential on

the D3-brane location X. In the non-compact throat approximation, we will calculate δV w
Σ4

explicitly, and find that it is the real part of a holomorphic function ζ(X).8 Its imaginary

part is determined by the integral of the Ramond-Ramond four-form perturbation δC4 over

Σ4 (we will not compute this explicitly, but will be able to deduce the result using the

holomorphy of ζ(X)).

The nonperturbative superpotential of the form (1), generated by the gaugino condensa-

tion, is then determined by

A(X) = A0 exp
(

−T3 ζ(X)

ND7

)

. (15)

We have introduced an unimportant constant A0 that depends on the values at which the

complex structure moduli are stabilized, but is independent of the D3-brane position. As

remarked above, computing (15) is equivalent to computing the dependence of the threshold

correction to the gauge coupling on the mass m of the flavor coming from strings that stretch

from the D7-branes to the D3-brane.

In the case of Euclidean D3-branes, the change in the instanton action is proportional to

the change in the warped four-cycle volume. Hence, the nonperturbative superpotential is

of the form (1) with

A(X) = A0 exp
(

−T3 ζ(X)
)

. (16)

In this case, computing (14) is equivalent to computing the D3-brane dependence of an

instanton fluctuation determinant.

Finally, we can write a unified expression that applies to both sources of nonperturbative

effects:

A(X) = A0 exp
(

−T3 ζ(X)

n

)

, (17)

where n = ND7 for the case of gaugino condensation on D7-branes and n = 1 for the case of

Euclidean D3-branes.

8In the compact case, it is no longer true that δV w
Σ4

is the real part of a holomorphic function. This is

related to the ‘rho problem’ [19], and in fact leads to a resolution of the problem, as we shall explain in §6.1.

The result is that in terms of an appropriately-defined holomorphic Kähler modulus ρ (62), the holomorphic

correction to the gauge coupling coincides with the holomorphic result of our non-compact calculation.
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4 D3-brane Backreaction

4.1 The Green’s Function Method

A D3-brane located at some position X in a six-dimensional space with coordinates Y acts

as a point source for a perturbation δh of the geometry:

−∇2
Y δh(X;Y ) = C

[

δ(6)(X − Y )
√

g(Y )
− ρbg(Y )

]

. (18)

That is, the perturbation δh is a Green’s function for the Laplace problem on the background

of interest. Here C ≡ 2κ2
10T3 = (2π)4gs(α

′)2 ensures the correct normalization of a single

D3-brane source term relative to the four-dimensional Einstein-Hilbert action. A consistent

flux compactification contains a background charge density ρbg(Y ) which satisfies
∫

d6Y
√
g ρbg(Y ) = 1 (19)

to account for the Gauss’s law constraint on the compact space [5].

To solve (18), we first solve

−∇2
Y ′Φ(Y ;Y ′) = −∇2

Y Φ(Y ;Y ′) =
δ(6)(Y − Y ′)√

g
− 1

V6
, (20)

where V6 ≡
∫

d6Y
√
g. The solution to (18) is then

δh(X;Y ) = C
[

Φ(X;Y ) −
∫

d6Y ′
√
gΦ(Y ;Y ′)ρbg(Y

′)
]

. (21)

We note for later use that

−∇2
Xδh(X;Y ) = C

[

δ(6)(X − Y )
√

g(X)
− 1

V6

]

. (22)

This relation is independent of the form of the background charge ρbg.

To compute A(X) from (17), we simply solve for the Green’s function δh obeying (18)

and then integrate δh over the four-cycle of interest, according to (14).

4.2 Comparison with the Open-String Approach

Let us show that this supergravity (closed-string channel) method is consistent with the

results of BHK [19], where the correction to the gaugino condensate superpotential was

derived via a one-loop open-string computation.9

9Some analogous pairs of closed-string and open-string computations exist in the literature, e.g. [36].
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The analysis of [19] applied to configurations of D7-branes and D3-branes on certain

toroidal orientifolds, e.g. T 2×T 4/Z2. We introduce a complex coordinate X for the position

of the D3-branes on T 2, as well as a complex structure modulus τ for T 2, and without loss

of generality we set the volume of T 4/Z2 to unity. Let us consider the case where all the

D7-branes wrap T 4/Z2 and sit at the origin X = 0 in T 2.

The goal is to determine the dependence of the gauge coupling on the position X of

a D3-brane. (The location of the D3-brane in the T 4/Z2 wrapped by the D7-branes is

immaterial.) For this purpose, we may omit terms computed in [19] that depend only on

the complex structure and not on the D3-brane location. Such terms will only affect the

D3-brane potential by an overall constant.

Then, the relevant terms from equation (44) of [19], in our notation10, are

δ
(8π2

g2

)

=
1

4π Im(τ)

[

Im(X)
]2

− 1

2
ln

∣

∣

∣

∣

ϑ1

(

X

2π

∣

∣

∣
τ

)
∣

∣

∣

∣

2

. (23)

Let us now compare (23) to the result of the supergravity computation. In principle,

the prescription of equation (14) is to integrate the Green’s function on a six-torus over the

wrapped four-torus. However, we notice that this procedure of integration will reduce the

six-dimensional Laplace problem to the Laplace problem on the two-torus parametrized by

X,

−∇2
Xδh(X; 0) = C

[

δ(2)(X) − 1

VT 2

]

, (24)

where VT 2 = 8π2 Im(τ). The correction to the gauge coupling, in the supergravity approach,

is then proportional to δh(X; 0). Solving (24) and using (10), we get exactly (23). We

conclude that our method precisely reproduces the results of [19], at least for those terms

that directly enter the D3-brane potential.

4.3 A Model for the Four-Cycles

The closed-string channel approach to calculating A(X) is well-defined for any given back-

ground, but further assumptions are required when no complete metric for the compactifica-

tion is available. Fortunately, explicit metrics are available for many non-compact Calabi-Yau

spaces, and at the same time, the associated warped throat regions are of particular interest

for inflationary phenomenology. For a given warped throat geometry, our approach is to

compute the D3-brane backreaction on specific four-cycles in the non-compact, asymptoti-

cally conical space. We will demonstrate that this gives an excellent approximation to the

10After the replacement X → w, our definitions of the theta functions and torus coordinates correspond

to those of [31]; our X differs from the A of [19] by a factor of 2π.

12



backreaction in a compactification in which the same warped throat is glued into a compact

bulk. In particular, we will show in §6.2 that the physical effect in question is localized in

the throat, i.e. is determined primarily by the shape of the four-cycle in the highly warped

region. The model therefore only depends on well-known data, such as the specific warped

metric and the embedding equations of the four-cycles, and is insensitive to the unknown

details of the unwarped bulk. In principle, our method can be extended to general compact

models for which metric data is available.

It still remains to identify the four-cycles responsible for nonperturbative effects in this

model of a warped throat attached to a compact space. Such a space will in general have

many Kähler moduli, and hence, assuming that stabilization is possible at all, will have many

contributions to the nonperturbative superpotential. The most relevant term, for the purpose

of determining the D3-brane potential, is the term corresponding to the four-cycle closest

to the D3-brane. For a D3-brane moving in the throat region, this is the four-cycle that

reaches farthest down the throat. In addition, the gauge theory living on the corresponding

D7-branes should be making an important contribution to the superpotential.

The nonperturbative effects of interest are present only when the four-cycle satisfies an

appropriate topological condition [22], which we will not discuss in detail.11 This topological

condition is, of course, related to the global properties of the four-cycle, whereas the effect

we compute is dominated by the part of the four-cycle in the highly-warped throat region,

and is insensitive to details of the four-cycle in the unwarped region. That is, our meth-

ods are not sensitive to the distinction between four-cycles that do admit nonperturbative

effects, and those that do not. We therefore propose to model the four-cycles producing non-

perturbative effects with four-cycles that are merely supersymmetric, i.e. can be wrapped

supersymmetrically by D7-branes. Many members of the latter class are not members of

the former, but as the shape of the cycle in the highly-warped region is the only important

quantity, we expect this distinction to be unimportant.

We are therefore led to consider the backreaction of a D3-brane on the volume of a

stack of supersymmetric D7-branes wrapping a four-cycle in a warped throat geometry. The

simplest configuration of this sort is a supersymmetric ‘flavor brane’ embedding of several

D7-branes in a conifold [38, 39, 40].

11These rules can be changed in the presence of flux. For recent progress, see e.g. [37].
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5 Backreaction in Warped Conifold Geometries

We now recall some relevant geometry. The singular conifold12 is a non-compact Calabi-Yau

threefold defined as the locus
4
∑

i=1

z2
i = 0 (25)

in C4. After a linear change of variables (w1 = z1 + iz2, w2 = z1 − iz2, etc.), the constraint

(25) becomes

w1w2 − w3w4 = 0 . (26)

The Calabi-Yau metric on the conifold is

ds2
6 = dr2 + r2ds2

T 1,1 . (27)

The base of the cone is the T 1,1 coset space (SU(2)A × SU(2)B)/U(1)R whose metric in

angular coordinates θi ∈ [0, π], φi ∈ [0, 2π], ψ ∈ [0, 4π] is

ds2
T 1,1 =

1

9

(

dψ +
2
∑

i=1

cos θi dφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin2 θi dφ

2
i

)

. (28)

A stack of N D3-branes placed at the singularity wi = 0 backreacts on the geometry,

producing the ten-dimensional metric

ds2
10 = h−1/2(r)dx2

4 + h1/2(r)ds2
6 , (29)

where the warp factor is

h(r) =
27πgsN(α′)2

4r4
. (30)

This is the AdS5 × T 1,1 background of type IIB string theory, whose dual N = 1 supersym-

metric conformal gauge theory was constructed in [41]. The dual is an SU(N) × SU(N)

gauge theory coupled to bi-fundamental chiral superfields A1, A2, B1, B2, each having R-

charge 1/2. Under the SU(2)A × SU(2)B global symmetry, the superfields transform as

doublets. If we further add M D5-branes wrapped over the two-cycle inside T 1,1, then the

gauge group changes to SU(N +M)×SU(N), giving a cascading gauge theory [14, 11]. The

metric remains of the form (29), but the warp factor is modified to [14, 42]

h(r) =
27π(α′)2

4r4

[

gsN + b(gsM)2 log
( r

r0

)

+
1

4
b(gsM)2

]

, (31)

12The KS geometry [11] and its generalizations [12] are warped versions of the deformed conifold, defined

by
∑4

i=1 z2
i = ε2. When the D3-branes and D7-branes are sufficiently far from the tip of the deformed

conifold, it will suffice to consider the simpler case of the warped singular conifold constructed in [14].
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with b ≡ 3
2π

, and r0 ∼ ε2/3e2πN/(3gsM). If an extra D3-brane is added at small r, it produces

a small change of the warp factor, δh = 27πgs(α′)2

4r4
+ O(r−11/2). A precise determination of

δh on the conifold, using the Green’s function method, is one of our goals in this paper. As

discussed above, this needs to be integrated over a supersymmetric four-cycle.

5.1 Supersymmetric Four-Cycles in the Conifold

The complex coordinates wi can be related to the real coordinates (r, θi, φi, ψ) via

w1 = r3/2e
i

2
(ψ−φ1−φ2) sin

θ1
2

sin
θ2
2
, (32)

w2 = r3/2e
i

2
(ψ+φ1+φ2) cos

θ1
2

cos
θ2
2
, (33)

w3 = r3/2e
i

2
(ψ+φ1−φ2) cos

θ1
2

sin
θ2
2
, (34)

w4 = r3/2e
i

2
(ψ−φ1+φ2) sin

θ1
2

cos
θ2
2
. (35)

It was shown in [40] that the following holomorphic four-cycles admit supersymmetric D7-

branes:13

f(wi) ≡
4
∏

i=1

wpii − µP = 0 . (36)

Here pi ∈ Z, P ≡∑4
i=1 pi, and µ ∈ C are constants defining the embedding of the D7-branes.

In real coordinates the embedding condition (36) becomes

ψ(φ1, φ2) = n1φ1 + n2φ2 + ψs , (37)

r(θ1, θ2) = rmin

[

x1+n1(1 − x)1−n1y1+n2(1 − y)1−n2

]−1/6
, (38)

where

r
3/2
min ≡ |µ| , (39)

1

2
ψs ≡ arg(µ) +

2πs

P
, s ∈ {0, 1, . . . , P − 1} . (40)

We have defined the coordinates

x ≡ sin2 θ1
2
, y ≡ sin2 θ2

2
(41)

and the rational winding numbers

n1 ≡
p1 − p2 − p3 + p4

P
, n2 ≡

p1 − p2 + p3 − p4

P
. (42)

13This is not an exhaustive list: another holomorphic embedding was used in [43].
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To compute the integral over the four-cycle we will need the volume form on the wrapped

D7-brane, which is

dθ1dθ2dφ1dφ2

√

gind =
VT 1,1

16π3
r4 G(x, y) dxdydφ1dφ2 , (43)

where

G(x, y) ≡ (1 + n1)
2

2

1

x(1 − x)
− 2n1

1

1 − x

+
(1 + n2)

2

2

1

y(1 − y)
− 2n2

1

1 − y
− 1 . (44)

In (43) we defined the volume of T 1,1

VT 1,1 ≡
∫

d5Ψ
√
gT 1,1 =

16π3

27
, (45)

with Ψ standing for all five angular coordinates on T 1,1.

For applications to brane inflation, we are interested in four-cycles that do not reach the

tip of the conifold (|ni| ≤ 1). Two simple special cases of (36) have this property:

• Ouyang embedding [39]:

w1 = µ .

• Karch-Katz embedding [38]:

w1w2 = µ2 .

Analogous supersymmetric four-cycles are known [44] in some more complicated asymp-

totically conical spaces, such as cones over Y p,q manifolds. We will consider this case in §5.4

and in Appendix C.

5.2 Relation to the Dual Gauge Theory Computation

The calculation of δh and its integration over a holomorphic four-cycle is not sensitive to the

background warp factor. Let us discuss a gauge theory interpretation of the calculation when

we choose the background warp factor from (30), i.e. we ignore the effect of M wrapped

D5-branes. Here the gauge theory is exactly conformal, and we may invoke the AdS/CFT

correspondence to give a simple meaning to the multipole expansion of δh,

δh =
27πgs(α

′)2

4r4

[

1 +
∑

i

cifi(θ1, θ2, φ1, φ2, ψ)

r∆i

]

. (46)
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In the dual gauge theory, the ci are proportional to the expectation values of gauge-invariant

operators Oi determined by the position of the D3-brane [24]. Among these operators a

special role is played by the chiral operators of R-charge k, Tr[Aα1
Bβ̇1

Aα2
Bβ̇2

. . . AαkBβ̇k
],

symmetric in both the dotted and the undotted indices. These operators have exact dimen-

sions ∆chiral
i = 3k/2 and transform as (k/2, k/2) under the SU(2)A × SU(2)B symmetry. In

addition to these operators, many non-chiral operators, whose dimensions ∆i are not quan-

tized [45], acquire expectation values and therefore affect the multipole expansion of the

warp factor. But remarkably, all these non-chiral contributions vanish upon integration over

a holomorphic four-cycle. Therefore, the contributing terms in δh have the simple form [24]

δhchiral =
27πgs(α

′)2

4r4

[

1 +
∞
∑

k=1

(fa1...ak ẑa1...ak + c.c.)

r3k/2

]

, (47)

where fa1...ak ∼ ǭa1 ǭa2 . . . ǭak for a D3-brane positioned at za = ǫa. Above, ẑa1...ak are the

normalized spherical harmonics on T 1,1 that transform as (k/2, k/2) under the SU(2)A ×
SU(2)B. The normalization factors are defined in Appendix A.

The leading term in (46), which falls off as 1/r4, gives a logarithmic divergence at large

r when integrated over a four-cycle. We note that this term does not appear if we define δh

as the solution of (18) with
√
g ρbg(Y ) = δ(6)(Y − X0). This corresponds to evaluating the

change in the warp factor, δh, created by moving the D3-brane to X from some reference

point X0. If we choose the reference point X0 to be at the tip of the cone, r = 0, then (46)

is modified to

δh =
27πgs(α

′)2

4r4

[

∑

i

cifi(θ1, θ2, φ1, φ2, ψ)

r∆i

]

. (48)

An advantage of this definition is that now there is a precise correspondence between our

calculation and the expectation values of operators in the dual gauge theory.

5.3 Results for the Conifold

We are now ready to compute the D3-brane-dependent correction to the warped volume

of a supersymmetric four-cycle in the conifold. Using the Green’s function on the singular

conifold (80), which we derive in Appendix A, and the explicit form of the induced metric
√

gind (43), we carry out integration term by term and find that most terms in (14) do not

contribute. We relegate the details of this computation to Appendix B. As we demonstrate

in Appendix B, the terms that do not cancel are precisely those corresponding to (anti)chiral

deformations of the dual gauge theory.

Integrating (48) term by term as prescribed in (14), we find that the final result for a
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general embedding (36) is

T3 δV
w
Σ4

= T3 Re (ζ(wi)) = −Re

(

log

[

µP −∏4
i=1w

pi
i

µP

])

, (49)

so that

A = A0

(

µP −∏4
i=1w

pi
i

µP

)1/n

. (50)

Comparing to (36), we see that A is proportional to a power of the holomorphic equation

that specifies the embedding. For n = ND7 coincident D7-branes, this power is 1/n. This

behavior agrees with the results of [18]; note in particular that when n = 1, (50) has a simple

zero everywhere on the four-cycle, as required by [18].

Finally, let us specialize to the two cases of particular interest, the Ouyang [39] and

Karch-Katz [38] embeddings in which the four-cycle does not reach all the way to the tip of

the throat. For the Ouyang embedding we find

A(w1) = A0

(

µ− w1

µ

)1/n

, (51)

whereas for the Karch-Katz embedding we have

A(w1, w2) = A0

(

µ2 − w1w2

µ2

)1/n

. (52)

5.4 Results for Y p,q Cones

Recently, a new infinite class of Sasaki-Einstein manifolds Y p,q of topology S2 × S3 was

discovered [46, 47]. The N = 1 superconformal gauge theories dual to AdS5 × Y p,q were

constructed in [48]. These quiver theories, which live on N D3-branes at the apex of the

Calabi-Yau cone over Y p,q, have gauge groups SU(N)2p, bifundamental matter, and marginal

superpotentials involving both cubic and quartic terms. Addition of M D5-branes wrapped

over the S2 at the apex produces a class of cascading gauge theories whose warped cone

duals were constructed in [49]. A D3-brane moving in such a throat could also serve as a

model of D-brane inflation [13].

Having described the calculation for the singular conifold in some detail, we now cite

the results of an equivalent computation for cones over Y p,q manifolds. More details can be

found in Appendix C.

Supersymmetric four-cycles in Y p,q cones are defined by the following embedding condi-

tion [44]

f(wi) ≡
3
∏

i=1

wpii − µ2p3 = 0 , (53)
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where the complex coordinates wi are defined in Appendix C. Integration of the Green’s

function over the four-cycle leads to the following result for the perturbation to the warped

volume

T3 δV
w
Σ4

= T3 Re (ζ(wi)) = −Re

(

log

[

µ2p3 −∏3
i=1w

pi
i

µ2p3

])

, (54)

so that

A = A0

(

µ2p3 −∏3
i=1w

pi
i

µ2p3

)1/n

. (55)

5.5 General Compactifications

The arguments in [18], which were based on studying the change in the theta angle as one

moves the D3-brane around the D7-branes, indicate that the correction is a section of a

bundle called the ‘divisor bundle’. This section has a zero at the location of the D7-branes.

The correction has to live in a non-trivial bundle since a holomorphic function on a compact

space would be a constant. In the non-compact examples we considered above we can work

in only one coordinate patch and obtain the correction as a simple function, the function

characterizing the embedding. Strictly speaking, the arguments in [18] were made for the case

that the superpotential is generated by wrapped D3-instantons. But the same arguments

can be used to compute the correction for the gauge coupling on D7-branes.

In summary, we have explicitly computed the modulus of A, and found a result in perfect

agreement with the analysis of the phase of A in [18]. One has a general answer of the form

A(wi) = A0

(

f(wi)
)1/n

, (56)

where f is a section of the divisor bundle and f(wi) = 0 specifies the location of the D7-

branes.

6 Compactification Effects

6.1 Holomorphy of the Gauge Coupling

In compactifications with mobile D3-branes, the identification of holomorphic Kähler moduli

and holomorphic gauge couplings is quite subtle. This has become known as the ‘rho problem’

[19, 23].14 Let us recall the difficulty. In the internal metric gij appearing in (5), we can

14Similar issues were discussed in [50].
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identify the breathing mode of the compact space via

gij ≡ g̃ije
2u , (57)

where g̃ij is a fiducial metric. In the following, all quantities computed from g̃ij will be

denoted by a tilde. The Born-Infeld kinetic term for a D3-brane, expressed in Einstein

frame and in terms of complex coordinates X, X̄ on the brane configuration space, is then

Skin = −T3

∫

d4x
√
ge−4u∂µX

i∂µX̄ j̄ g̃ij̄ . (58)

DeWolfe and Giddings argued in [30] that to reproduce this volume scaling, as well as the

known no-scale, sequestered property of the D3-brane action in this background, the Kähler

potential must take the form

κ2
4K = −3 log e4u , (59)

with the crucial additional requirement that

∂i∂j̄e
4u ∝ g̃ij̄ , (60)

so that e4u contains a term proportional to the Kähler potential k(X, X̄) for the fiducial

Calabi-Yau metric. Comparing (58) to the kinetic term derived from (59), we find in fact

∂i∂j̄e
4u = −

(

κ2
4T3

3

)

k,ij̄ . (61)

We can now define the holomorphic volume modulus ρ as follows. The real part of ρ is given

by

ρ+ ρ̄ ≡ e4u +

(

κ2
4T3

3

)

k(X, X̄) (62)

and the imaginary part is the axion from the Ramond-Ramond four-form potential. As

explained in [8], this is consistent with the fact that the axion moduli space is a circle that

is non-trivially fibered over the D3-brane moduli space.

Next, the gauge coupling on a D7-brane is easily seen to be proportional to the breathing

mode of the metric, e4u ≡ ρ+ ρ̄−
(

1
3
κ2

4T3

)

k(X, X̄), which is not the real part of holomorphic

function on the brane moduli space. However, supersymmetry requires that the gauge kinetic

function is a holomorphic function of the moduli. This conflict is the rho problem.

We can trace this problem to an incomplete inclusion of the backreaction due to the

D3-brane. Through (62), the physical volume modulus e4u has been allowed to depend on

the D3-brane position. That is, the difference between the holomorphic modulus ρ and the

physical modulus e4u is affected by the D3-brane position. This was necessary in order to

recover the known properties of the brane/volume moduli space. Notice from (62) that the

20



strength of this open-closed mixing is controlled by κ2
4T3, and so is manifestly a consequence

of D3-brane backreaction in the compact space. However, as we explained in §3, the warp

factor h also depends on the D3-brane position, again via backreaction. To include the

effects of the brane on the breathing mode, but not on the warp factor, is not consistent.15

One might expect that consideration of the correction δh to the warp factor would restore

holomorphy and resolve the rho problem. We will now see that this is indeed the case.

What we find is that the uncorrected warped volume (V w
Σ4

)0, as well as the correction

δV w
Σ4

, are both non-holomorphic, but their non-holomorphic pieces precisely cancel, so that

the corrected warped volume V w
Σ4

is the real part of a holomorphic function of the moduli ρ

and X.

First, we separate the constant, zero-mode, piece of the warp factor:

h(X;Y ) = h0 + δh(X;Y ) . (63)

By definition δh(X;Y ) integrates to zero over the compact manifold,

∫

d6Y
√

g(Y ) δh(X;Y ) = 0 . (64)

This implies that the factor of the volume that appears in the four-dimensional Newton

constant is unaffected by δh. Thus we have κ−2
4 = κ−2

10 h0Ṽ6. We define the uncorrected

warped volume via

(V w
Σ4

)0 ≡
∫

Σ4

d4ξ
√

gind h0 = e4u(X,X̄) h0 ṼΣ4
. (65)

This is non-holomorphic because of the prefactor e4u(X,X̄). In particular, using (62), we have

(V w
Σ4

)0 = −
(

κ2
4T3

3

)

ṼΣ4
h0 k(X, X̄) + [hol.+ antihol.] . (66)

We next consider δh. When the D3-brane is not coincident with the four-cycle of interest,

we find from (22) that δh obeys

∇2
Xδh(X;Y ) =

C
V6

(67)

where C ≡ 2κ2
10T3 = 2κ2

4T3h0Ṽ6. Hence, δh is not the real part of a holomorphic function

of X. The source of the deviation from holomorphy is the term 1
V6

in (22). Although this

term is superficially similar to a constant background charge density, it is independent of

15Let us point out that this is precisely the closed-string dual of the resolution found in [19]: careful

inclusion of the open-string one-loop corrections to the gauge coupling resolved the rho problem. In that

language, the initial inconsistency was the inclusion of only some of the one-loop effects.
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the density ρbg(Y ) of physical D3-brane charge in the internal space, which has coordinates

Y . Instead, 1
V6

may be thought of as a ‘background charge’ on the D3-brane moduli space,

which has coordinates X. From this perspective, it is the Gauss’s law constraint on the

D3-brane moduli space that forces δh to be non-holomorphic.

In complex coordinates, using the metric g̃, and noting that Ṽ6 = V6 e
−6u, (67) may be

written as

g̃ij̄∂i∂j̄δh = κ2
4T3 h0 e

−4u , (68)

where because the compact space is Kähler, we can write the Laplacian using partial deriva-

tives. It follows that

δh =

(

κ2
4T3

3

)

h0 e
−4uk(X, X̄) + [hol.+ antihol.] . (69)

The omitted holomorphic and antiholomorphic terms are precisely those that we computed

in the preceding sections. Furthermore, recalling the definition (14), we have

δV w
Σ4

=

(

κ2
4T3

3

)

h0 ṼΣ4
k(X, X̄) + [ζ(X) + ζ(X)] . (70)

The non-holomorphic first term in (70) precisely cancels the non-holomorphic term in (V w
Σ4

)0

(66), so that

V w
Σ4

= (V w
Σ4

)0 + δV w
Σ4

= ṼΣ4
h0 (ρ+ ρ̄) + [ζ(X) + ζ(X)] . (71)

We conclude that V w
Σ4

can be the real part of a holomorphic function.16

To summarize, we have seen that the background charge term in (22), which was required

by a constraint analogous to Gauss’s law on the D3-brane moduli space, causes δV w
Σ4

to have a

non-holomorphic term proportional to k(X, X̄). Furthermore, the DeWolfe-Giddings Kähler

potential produces a well-known non-holomorphic term, also proportional to k(X, X̄), in the

uncorrected warped volume (V w
Σ4

)0. We found that these two terms precisely cancel, so that

the total warped volume V w
Σ4

= (V w
Σ4

)0 +δV w
Σ4

can be holomorphic. Thus, the corrected gauge

coupling on D7-branes, and the corrected Euclidean D3-brane action, are holomorphic.17

Note that, as a consequence of this discussion, the holomorphic part of the correction

to the volume changes under Kähler transformations of k(X, X̄). This implies that the

correction is in a bundle whose field strength is proportional to the Kähler form.

16Strictly speaking, we have shown only that V w
Σ4

is in the kernel of the Laplacian; the r.h.s. of (69) and

(71) could in principle contain extra terms that are annihilated by the Laplacian but are not the real parts

of holomorphic functions. However, the obstruction to holomorphy presented by k(X, X̄) has disappeared,

and we expect no further obstructions.
17To complete the identification of the holomorphic variable, we note that the constant a appearing in (1)

is a ≡ 2T3ṼΣ4
h0/n. The resulting dependence on gs could be absorbed by a redefinition of ρ, as in [6].
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6.2 Model-Dependent Effects from the Bulk

In §2.2, we listed three contributions to the potential for D3-brane motion. The first two

were given explicitly in [8], and we have computed the third. It is now important to ask

whether this is an exhaustive list: in other words, might there be further effects that generate

D3-brane mass terms of order H? In particular, could coupling of the throat to a compact

bulk generate corrections to our results, and hence adjust the brane potential?

First, let us justify our approach of using noncompact warped throats to model D3-brane

potentials in compact spaces with finite warped throat regions. The idea is that the effect of

the D3-brane on a four-cycle is localized in that portion of the four-cycle that is deepest in

the throat. Comparing (43) to (48), we see that all corrections to the warped volume scale

inversely with r, and are therefore supported in the infrared region of the throat. Hence,

as anticipated in §4.3, the effects of interest are automatically concentrated in the well-

understood region of high warping, far from the model-dependent region where the throat is

glued into the rest of the compact space. This is true even though a typical four-cycle will

have most of its volume in the bulk, outside the highly warped region. The perturbation due

to the D3-brane already falls off faster than r−4 in the throat, where the measure factor is

r4, and in the bulk the perturbation will diminish even more rapidly. Except in remarkable

cases, the diminution of the perturbation will continue to dominate the growth of the measure

factor. A similar argument reinforces our assertion that the dominant effect on a D3-brane

comes from whichever wrapped brane descends farthest into the throat.

We conclude that the effects of the gluing region, where the throat meets the bulk, and of

the bulk itself, produce negligible corrections to the terms we have computed. Fortunately,

the leading effects are concentrated in the highly warped region, where one has access to

explicit metrics and can do complete computations.

We have now given a complete account of the nonperturbative superpotential. However,

the Kähler potential is not protected against perturbative corrections, which could conceiv-

ably contribute to the low-energy potential for D3-brane motion. Explicit results are not

available for general compact spaces (see, however, [20, 21]); here we will simply argue that

these corrections can be made negligible. Recall that the DeWolfe-Giddings Kähler potential

provides a mixing between the volume and the D3-brane position that generates brane mass

terms of order H . Any further corrections to the Kähler potential, whether from string loops

or sigma-model loops, will be subleading in the large-volume, weak-coupling limit, and will

therefore generically give mass terms that are small compared to H . In addition, the results

of [51] give some constraints on α′ corrections to warped throat geometries. We leave a

systematic study of this question for the future.
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7 Implications and Conclusion

We have used a supergravity approach (see also [23]) to study the D3-brane corrections to

the nonperturbative superpotential induced by D7-branes or Euclidean D3-branes wrapping

four-cycles of a compactification. This has been a key, unknown element of the potential

governing D3-brane motion in such a compactification. We integrated the perturbation to

the background warping due to the D3-brane over the wrapped four-cycle. The resulting

position-dependent correction to the warped four-cycle volume modifies the strength of the

nonperturbative effect, which in turn implies a force on the D3-brane. This computation

is the closed-string channel dual of the threshold correction computation of [19], and we

showed that the closed-string method efficiently reproduces the results of [19].

We then investigated the D3-brane potential in explicit warped throat backgrounds with

embedded wrapped branes. We showed that for holomorphic embeddings, only those de-

formations corresponding to (anti)chiral operators in the dual gauge theory contribute to

correcting the superpotential. This led to a strikingly simple result: the superpotential

correction is given by the embedding condition for the wrapped brane, in accord with [18].

An important application of our results is to cosmological models with moving D3-branes,

particularly warped brane inflation models [8, 9, 10, 13]. It is well-known that these models

suffer from an eta problem and hence produce substantial inflation only if the inflaton mass

term is fine-tuned to fall in a certain range. Our result determines a ‘missing’ contribution to

the inflaton potential that was discussed in [8], but was not computed there. Equipped with

this contribution, one can quantify the fine-tuning in warped brane inflation by considering

specific choices of throat geometries and of embedded wrapped branes, and determining

whether prolonged inflation occurs [17]. This amounts to a microscopically justified method

for selecting points or regions within the phenomenological parameter space described in

[10]. This approach was initiated in [19], but the open-string method used there does not

readily extend beyond toroidal orientifolds, and is especially difficult for warped throats in

flux compactifications. In contrast, our concrete computations were performed in warped

throat backgrounds, and thus apply directly to warped brane inflation models, including

backgrounds with fluxes.

Our approach also led to a natural solution of the ‘rho problem’, i.e. the apparent

non-holomorphy of the gauge coupling on wrapped D7-branes in backgrounds with D3-

branes. This problem arises from incomplete inclusion of D3-brane backreaction effects, and

in particular from omission of the correction to the warped volume that we computed in this

work. We observed that the correction is itself non-holomorphic, as a result of a Gauss’s law

constraint on the D3-brane moduli space. Moreover, the non-holomorphic correction cancels

precisely against the non-holomorphic term in the uncorrected warped volume, leading to a

final gauge kinetic function that is holomorphic.
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In closing, let us emphasize that the problem of fine-tuning in D-brane inflation models

has not disappeared, but can now be made more explicit. A detailed analysis of this will be

presented in a future paper [17].
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A Green’s Functions on Conical Geometries

A.1 Green’s Function on the Singular Conifold

The D3-branes that we consider in this paper are point sources in the six-dimensional internal

space. The backreaction they induce on the background geometry can therefore be related

to the Green’s functions for the Laplace problem on conical geometries (see §4)

−∇2
XG(X;X ′) =

δ(6)(X −X ′)
√

g(X)
. (72)

In the following we present explicit results for the Green’s function on the singular conifold.

In the large r-limit, far from the tip, the Green’s functions for the resolved and deformed

conifold reduce to those of the singular conifold.

In the singular conifold geometry (27), the defining equation (72) for the Green’s function

becomes
1

r5

∂

∂r

(

r5 ∂

∂r
G
)

+
1

r2
∇2

ΨG = − 1

r5
δ(r − r′)δT 1,1(Ψ − Ψ′) , (73)

where ∇2
Ψ and δT 1,1(Ψ − Ψ′) are the Laplacian and the normalized delta function on T 1,1,

respectively. Ψ stands collectively for the five angular coordinates of the base andX ≡ (r,Ψ).

An explicit solution for the Green’s function is obtained by a series expansion of the form

G(X;X ′) =
∑

L

Y ∗

L (Ψ′)YL(Ψ)HL(r; r
′) . (74)

The YL’s are eigenfunctions of the angular Laplacian,

∇2
ΨYL(Ψ) = −ΛLYL(Ψ) , (75)

where the multi-index L represents the set of discrete quantum numbers related to the

symmetries of the base of the cone. The angular eigenproblem is worked out in detail in

§A.2. If the angular wavefunctions are normalized as

∫

d5Ψ
√
gT 1,1 Y ∗

L (Ψ)YL′(Ψ) = δLL′ , (76)

then
∑

L

Y ∗

L (Ψ′)YL(Ψ) = δT 1,1(Ψ − Ψ′) , (77)

and equation (73) reduces to the radial equation

1

r5

∂

∂r

(

r5 ∂

∂r
HL

)

− ΛL

r2
HL = − 1

r5
δ(r − r′) , (78)
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whose solution away from r = r′ is

HL(r; r
′) = A±(r′)rc

±

L , c±L ≡ −2 ±
√

ΛL + 4 . (79)

The constants A± are uniquely determined by integrating equation (78) across r = r′. The

Green’s function on the singular conifold is

G(X;X ′) =
∑

L

1

2
√

ΛL + 4
× Y ∗

L (Ψ′)YL(Ψ) ×











1
r′4

(

r
r′

)c+
L

r ≤ r′ ,

1
r4

(

r′

r

)c+
L

r ≥ r′ ,

(80)

where the angular eigenfunctions YL(Ψ) are given explicitly in §A.2.

A.2 Eigenfunctions of the Laplacian on T 1,1

In this section we complete the Green’s function on the singular conifold (80) by solving for

the eigenfunctions of the Laplacian on T 1,1

∇2
ΨYL =

1√
g
∂m(gmn

√
g∂nYL) = (6∇2

1 + 6∇2
2 + 9∇2

R)YL (81)

= −ΛLYL ,

where

∇2
iYL ≡ 1

sin θi
∂θi(sin θi∂θiYL) +

( 1

sin θi
∂φi − cot θi∂ψ

)2

YL , (82)

∇2
RYL ≡ ∂2

ψYL . (83)

The solution to equation (81) is obtained through separation of variables

YL(Ψ) = Jl1,m1,R(θ1)Jl2,m2,R(θ2)e
im1φ1+im2φ2e

i

2
Rψ , (84)

where

1

sin θi
∂θi(sin θi∂θiJli,mi,R(θi)) −

( mi

sin θi
− R

2
cot θi

)2

Jli,mi,R(θi) = −Λli,RJli,mi,R(θi) . (85)

The eigenvalues are Λli,R ≡ li(li + 1) − R2

4
. Explicit solutions for equation (85) are given in

terms of hypergeometric functions 2F1(a, b, c; x)

JΥ
li,mi,R

(θi) = NΥ
L (sin θi)

mi
(

cot
θi
2

)R/2

×

2F1

(

−li +mi, 1 + li +mi, 1 +mi −
R

2
; sin2 θi

2

)

, (86)

JΩ
li,mi,R

(θi) = NΩ
L (sin θi)

R/2
(

cot
θi
2

)mi
×

2F1

(

−li +
R

2
, 1 + li +

R

2
, 1 −mi +

R

2
; sin2 θi

2

)

, (87)
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where NΥ
L and NΩ

L are determined by the normalization condition (76). If mi ≥ R/2,

solution Υ is non-singular. If mi ≤ R/2, solution Ω is non-singular. The full wavefunction

corresponds to the spectrum

ΛL = 6
(

l1(l1 + 1) + l2(l2 + 1) − R2

8

)

. (88)

The eigenfunctions transform under SU(2)1 × SU(2)2 as the spin (l1, l2) representation and

under the U(1)R with charge R. The multi-index L has the data:

L ≡ (l1, l2), (m1, m2), R .

The following restrictions on the quantum numbers correspond to the existence of single-

valued regular solutions:

• l1 and l2 are both integers or both half-integers.

• m1 ∈ {−l1, · · · , l1} and m2 ∈ {−l2, · · · , l2} .

• R ∈ Z with R
2
∈ {−l1, · · · , l1} and R

2
∈ {−l2, · · · , l2}.

As discussed in §5.2, chiral operators in the dual gauge theory correspond to l1 = R
2

= l2.

B Computation of Backreaction in the Singular Coni-

fold

B.1 Correction to the Four-Cycle Volume

Recall the definition (14) of the (holomorphic) correction to the warped volume of a four-cycle

Σ4

δV w
Σ4

= Re(ζ(X ′)) =

∫

Σ4

d4X
√

gind(X) δh(X;X ′) , (89)

where δh(X;X ′) = CG(X;X ′) and T3C = 2π.

Embedding, Induced Metric and a Selection Rule

The induced metric on the four-cycle, gind, is determined from the background metric and

the embedding constraint. In §5.1 we introduced the class of supersymmetric embeddings

(36).
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Equation (37) and the form of the angular eigenfunctions of the Green’s function (§A.2)

imply that (89) is proportional to

e
i

2
Rψs

(2π)2

∫ 2π

0

dφ1 e
i(m1+R

2
n1)φ1

∫ 2π

0

dφ2 e
i(m2+R

2
n2)φ2 = e

i

2
Rψsδm1,−

R

2
n1

· δm2,−
R

2
n2
. (90)

We may therefore restrict the computation to values of the R-charge that satisfy

m1 = −R
2
n1 , m2 = −R

2
n2 . (91)

The winding numbers ni (42) are rational numbers of the form

ni ≡
ñi
q
, ñi ∈ Z , (92)

where ñi and q do not have a common divisor. Therefore the requirement that the magnetic

quantum numbers mi be integer or half-integer leads to the following selection rule for the

R-charge

R = q · k , k ∈ Z . (93)

Green’s Function and Reduced Angular Eigenfunctions

The Green’s function on the conifold (§A.1) is

G(X;X ′) =
∑

L

Y ∗

L (Ψ′)YL(Ψ)HL(r; r
′) , (94)

where it is important that the angular eigenfunctions (§A.2) are normalized correctly on T 1,1

∫

d5Ψ
√
gT 1,1|YL|2 = 1 , (95)

or

VT 1,1

∫ 1

0

dx [Jl1,m1,R(x)]2
∫ 1

0

dy [Jl2,m2,R(y)]2 = 1 . (96)

The coordinates x and y are defined in (41). Next, we show that the hypergeometric angular

eigenfunctions reduce to Jacobi polynomials if we define

l1 ≡
R

2
+ L1 , l2 ≡

R

2
+ L2 , L1, L2 ∈ Z . (97)

This parameterization is convenient because chiral terms are easily identified by L1 = 0 = L2.

Non-chiral terms correspond to non-zero L1 and/or L2. Without loss of generality we define
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chiral terms to have R > 0 and anti-chiral terms to have R < 0. With these restrictions the

angular eigenfunctions of §A.2 simplify to

JR
2

+L1,−
R

2
n1,R

(x) = x
R

4
(1+n1)(1 − x)

R

4
(1−n1) PL1,R,n1

(x) , (98)

JR
2

+L2,−
R

2
n2,R

(y) = y
R

4
(1+n2)(1 − y)

R

4
(1−n2) PL2,R,n2

(y) , (99)

where

PL1,R,n1
(x) ≡ NL1,R,n1

P
R

2
(1+n1),R

2
(1−n1)

L1
(1 − 2x) , (100)

PL2,R,n2
(y) ≡ NL2,R,n2

P
R

2
(1+n2),R

2
(1−n2)

L2
(1 − 2y) . (101)

The P α,β
N are Jacobi polynomials and the normalization constants NL1,R,n1

and NL2,R,n2
can

be determined from (96).

Main Integral

Assembling the ingredients of the previous subsections (induced metric, embedding con-

straint, Green’s function) we find that (89) may be expressed as

T3 δV
w
Σ4

= (2π)3

∫ 1

0

dxdy
√

gind(x, y)
∑

L,ψs

Y ∗

L (x′, y′)YL(x, y)HL(r; r
′)

=
VT 1,1

2

∑

L,ψs

Y ∗

L (r′)c
+

L × e
i

2
Rψ′

sr
−c+

L

min × InK(Q+
L)√

ΛL + 4
, (102)

where

InK(Q+
L) ≡

∫ 1

0

dxdy G(x, y)

(

r(x, y)

rmin

)−6Q+

L

PL1,R,n1
(x)PL2,R,n2

(y) . (103)

Here K ≡ (L1, L2, R), n ≡ (n1, n2) and

Q±

L ≡ c±L
6

+
R

4
, c±L ≡ −2 ±

√

ΛL + 4 . (104)

The sum in equation (102) is restricted by the selection rules (91) and (93). Equation (103)

is the main result of this section. In the following we will show that the integral vanishes for

all non-chiral terms and reduces to a simple expression for (anti)chiral terms.
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B.2 Non-Chiral Contributions

In this section we prove that

InK(Q) ≡
∫ 1

0

dxdy PL1,R,n1
(x)PL2,R,n2

(y) ×

×xQ(1+n1)(1 − x)Q(1−n1)yQ(1+n2)(1 − y)Q(1−n2) ×

×
[(1 + n1)

2

2

1

x(1 − x)
− 2n1

1

1 − x

+
(1 + n2)

2

2

1

y(1 − y)
− 2n2

1

1 − y
− 1
]

(105)

vanishes for Q → Q+
L iff L1 6= 0 or L2 6= 0. This proves that non-chiral terms do not con-

tribute to the perturbation δV w
Σ4

to the warped four-cycle volume.

The Jacobi polynomial P α,β
N (x) satisfies the following differential equation

−N(N + α + β + 1)P α,β
N (1 − 2x) =

= x−α(1 − x)−β
d

dx

(

x1+α(1 − x)1+β d

dx
P α,β
N (1 − 2x)

)

. (106)

Multiplying both sides by xqα(1 − x)qβ and integrating over x gives

−N(N + α + β + 1)

∫ 1

0

dxP α,β
N (1 − 2x)xqα(1 − x)qβ =

=

∫ 1

0

dxP α,β
N (1 − 2x)xqα(1 − x)qβ × (107)

×
[

(qα + qβ + 1)(α+ β − qα − qβ) +
qα(α− qα) − qβ(β − qβ)

(1 − x)
+
qα(qα − α)

x(1 − x)

]

,

where we have used integration by parts. In the case of interest, (105), we make the following

identifications: N ≡ L1, α ≡ R
2
(1 + n1), β ≡ R

2
(1 − n1), qα ≡ Q(1 + n1), qβ ≡ Q(1 − n1).

This gives

∫ 1

0

dxP
R

2
(1+n1),R

2
(1−n1)

L1
(1 − 2x) xQ(1+n1)(1 − x)Q(1−n1) ×

(

(1 + n1)
2

2x(1 − x)
− 2n1

(1 − x)

)

=

= XL1,R,Q

∫ 1

0

dxP
R

2
(1+n1),R

2
(1−n1)

L1
(1 − 2x) xQ(1+n1)(1 − x)Q(1−n1) , (108)

where

XL1,R,Q ≡ (2Q+ 4Q2 − L2
1 − L1R− R− 2L1 − 2RQ)

Q(2Q−R)
.
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The corresponding identity for the y-integral follows from the above expression and the

replacements L1 → L2 and n1 → n2. We then notice that the integral (105) is

InK(Q) = (XL1,R,Q + YL2,R,Q − 1) × ΛL1,R,n1,Q ΛL2,R,n2,Q

=
6(Q−Q+

L)(Q−Q−

L)

Q(2Q− R)
× ΛL1,R,n1,Q ΛL2,R,n2,Q , (109)

where

ΛL1,R,n1,Q ≡
∫ 1

0

dxPL1,R,n1
(x) xQ(1+n1)(1 − x)Q(1−n1) , (110)

ΛL2,R,n2,Q ≡
∫ 1

0

dy PL2,R,n2
(y) yQ(1+n2)(1 − y)Q(1−n2) . (111)

Since InK(Q) ∝ (Q − Q+
L) it just remain to observe that the integrals (110) and (111) are

finite to conclude that

lim
Q→Q+

L

InK = 0 iff Q+
L 6= R

2
. (112)

This proves that non-chiral terms do not contribute corrections to the warped volume of any

holomorphic four-cycle of the form (36).

B.3 Chiral Contributions

Finally, let us consider the special case Q+
L = R

2
which corresponds to chiral operators

(L1 = L2 = 0) in the dual gauge theory. In this case,

Ichiral
R ≡ lim

Q→
R

2

InK =
3R + 4

2

1

R
× Λ0,R,n1,

R

2

× Λ0,R,n2,
R

2

, (113)

where

Λ0,R,n1,
R

2

≡
∫ 1

0

dxP0,R,n1
(x) x

R

2
(1+n1)(1 − x)

R

2
(1−n1) , (114)

Λ0,R,n2,
R

2

≡
∫ 1

0

dy P0,R,n2
(y) y

R

2
(1+n2)(1 − y)

R

2
(1−n2) . (115)

Notice that P0,R,ni = N0,R,ni = (N0,R,ni)
−1(P0,R,ni)

2. Hence,

Λ0,R,n1,
R

2

≡ (N0,R,n1
)−1

∫ 1

0

dx
(

P0,R,n1
(x)
[

x(1+n1)(1 − x)(1−n1)
]R/4

)2

Λ0,R,n2,
R

2

≡ (N0,R,n2
)−1

∫ 1

0

dy
(

P0,R,n2
(y)
[

y(1+n2)(1 − y)(1−n2)
]R/4

)2
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and

Λ0,R,n1,
R

2

× Λ0,R,n2,
R

2

=
1

VT 1,1N0,R,n1
N0,R,n2

(116)

by the normalization condition (96) on the angular wave function. Therefore, we get the

simple result
Ichiral
R

√

Λchiral
R + 4

=
1

VT 1,1N0,R,n1
N0,R,n2

× 1

R
. (117)

We substitute this into equation (102) and get

T3 (δV w
Σ4

)chiral =
1

2

∑

s

∑

R=q·k

1

R
×
(

∏

i

(w̄′

i)
pi
)R/P

× 1

µ̄R
× ei

R

P
2πs , (118)

where we used

(r′)3R/2 Y ∗

R(Ψ′)

N0,R,n1
N0,R,n2

=
(

∏

i

(w̄′

i)
pi
)R/P

(119)

and

eiarg(µ)Rr
−3R/2
min =

1

µ̄R
. (120)

The sum over s in (118) counts the P different roots of equation (36):

P−1
∑

s=0

e
q·k

P
2πs = P δ q·k

P
,j , j ∈ Z . (121)

Dropping primes, we therefore arrive at the following sum

T3 (δV w
Σ4

)chiral =
1

2

∞
∑

j=1

1

j
×
(

∏

i

w̄pii

)j

× 1

µ̄P ·j
, (122)

which gives

T3 (δV w
Σ4

)chiral = −1

2
log

[

1 −
∏

i w̄
pi
i

µ̄P

]

. (123)

For the anti-chiral terms (R < 0) an equivalent computation gives the complex conjugate

of this result.

The R = 0 term formally gives a divergent contribution that needs to be regularized by

introducing a UV cutoff at the end of the throat. Alternatively, as discussed in §5.2, this

term does not appear if we define δh as the solution of (18) with
√
g ρbg(Y ) = δ(6)(Y −X0).

This choice amounts to evaluating the change in the warp factor, δh, created by moving the

D3-brane from some reference point X0 to X. We may choose the reference point X0 to be

at the tip of the cone, r = 0, and thereby remove the divergent zero mode.
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The total change in the warped volume of the four-cycle is therefore

δV w
Σ4

= (δV w
Σ4

)chiral + (δV w
Σ4

)anti−chiral (124)

and

T3 Re(ζ) = T3 δV
w
Σ4

= −Re
(

log

[

µP −∏i w
pi
i

µP

]

)

. (125)

Finally, the prefactor of the nonperturbative superpotential is

A(wi) = A0 e
−T3ζ/n = A0

(µP −∏i w
pi
i

µP

)1/n

. (126)

C Computation of Backreaction in Y p,q Cones

C.1 Setup

Metric and Coordinates on Y p,q

Cones over Y p,q manifolds have the metric

ds2 = dr2 + r2ds2
Y p,q , (127)

where the Sasaki-Einstein metric on the Y p,q base is given by [46, 47]

ds2
Y p,q =

1 − y

6
(dθ2 + sin2 θ dφ2) +

1

v(y)w(y)
dy2 +

v(y)

9
(dψ + cos θ dφ)2

+w(y)
[

dα + f(y) (dψ + cos θ dφ)
]2
. (128)

The following functions have been defined:

v(y) ≡ b− 3y2 + 2y3

b− y2
, w(y) ≡ 2(b− y2)

1 − y
, f(y) ≡ b− 2y + y2

6(b− y2)
, (129)

with

b =
1

2
− p2 − 3q2

4p3

√

4p2 − 3q2 . (130)

The parameters p and q are two coprime positive integers. The zeros of v(y) are

y1,2 ≡
1

4p

(

2p ∓ 3q −
√

4p2 − 3q2
)

, y3 ≡
3

2
− (y1 + y2) . (131)

It is also convenient to introduce

x =
y − y1

y2 − y1

. (132)

34



The angular coordinates θ, φ, ψ, x, and α span the ranges:

0 ≤ θ ≤ π , 0 < φ ≤ 2π , 0 < ψ ≤ 2π ,

0 ≤ x ≤ 1 , 0 < α ≤ 2πℓ , (133)

where ℓ ≡ − q
4p2y1y2

.

Green’s Function

The Green’s function on the Y p,q cone is

G(X;X ′) =
∑

L

1

4(λ+ 1)
× Y ∗

L (Ψ′)YL(Ψ) ×











1
r′4

(

r
r′

)2λ

r ≤ r′ ,

1
r4

(

r′

r

)2λ

r ≥ r′ .
(134)

Here L is again a complete set of quantum numbers and Ψ represents the set of angular

coordinates (θ, φ, ψ, x, α). The eigenvalue of the angular Laplacian is ΛL ≡ 4λ(λ + 2). The

spectrum of the scalar Laplacian on Y p,q, as well as the eigenfunctions YL(Ψ), were calculated

in [52, 53]. We do not review this treatment here, but simply present an explicit form of

YL(Ψ)

YL(Ψ) = NL e
i(mφ+nψψ+nα

ℓ
α)Jl,m,2nψ(θ)Rnα,nψ,l,λ(x) , (135)

where

Rnα,nψ,l,λ(x) = xα1(1 − x)α2(a− x)α3h(x) , a ≡ y1 − y3

y1 − y2
. (136)

The parameters αi depend on nψ, nα (see [53]), and the function h(x) satisfies the following

differential equation
[

d2

dx2
+

(

γ

x
+

δ

x− 1
+

ǫ

x− a

)

d

dx
+

αβx− k

x(1 − x)(a− x)

]

h(x) = 0 . (137)

The parameters α, β, γ, δ, ǫ, k depend on p, q and on the quantum numbers of the Y p,q base.

Explicit expressions may be found in [53].

Finally, we introduce the normalization condition that fixes NL in (135). If we define

z ≡ sin2 θ
2

then the normalization condition
∫

d5Ψ
√
gY p,q |YL|2 = 1 (138)

becomes

N2
L

∫ 1

0

dz dx
√

g(x, z)J2R2 =
1

(2π)3ℓ
, (139)

where
√

g(x, z) =
√

g(x) =
q(2p+ 3q +

√

4p2 − 3q2 − 6qx)

24p2
. (140)
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Embedding, Induced Metric and a Selection Rule

The holomorphic embedding of four-cycles in Y p,q cones is described by the algebraic equation

[44]
3
∏

i=1

wpii = µ2p3 , (141)

where

w1 ≡ tan
θ

2
e−iφ , (142)

w2 ≡ 1

2
sin θ x

1

2y1 (1 − x)
1

2y2 (a− x)
1

2y3 ei(ψ+6α) , (143)

w3 ≡ 1

2
r3 sin θ [x(1 − x)(a− x)]1/2eiψ . (144)

This results in the following embedding equations in terms of the real coordinates

ψ =
1

1 + n2
(n1φ− 6n2α) − ψs , (145)

r = rmin

[

z1+n1+n2(1 − z)1−n1+n2

]−1/6 [
x2e1(1 − x)2e2(a− x)2e3

]−1/6

≡ rminrzrx , (146)

where

ψs ≡ arg(µ) +
2πs

p2 + p3
, s ∈ {0, 1, . . . , (p2 + p3) − 1} (147)

r
3/2
min ≡ |µ| , (148)

and

ei ≡ 1

2

(

1 +
n2

yi

)

, (149)

n1 ≡ p1

p3

, (150)

n2 ≡ p2

p3
. (151)

Integration over φ and α together with the embedding equation (145) dictates the fol-

lowing selection rules for the quantum numbers of the angular eigenfunctions (135),

m = −n1

2
QR , nα = 3ℓn2QR , nψ =

1 + n2

2
QR , (152)

where QR is the R-charge defined as QR ≡ 2nψ − 1
3ℓ
nα. In this case αi = ei

QR
2

.
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Finally, we need the determinant of the induced metric on the four-cycle

dθdx
√

gind =
r4

z(1 − z)x(1 − x)(a− x)
G(x, z) dzdx . (153)

The function G is too involved to be written out explicitly here, but is available upon request.

It is a polynomial of order 3 in x and of order 2 in z.

Main Integral

The main integral (the analog of (103)) is therefore given by

IL =

∫

dxdz G(x, z)N2
L

z(1 − z)x(1 − x)(a− x)

(

r

rmin

)−6Q+

L

P a,b
A=l−nψ

(1 − 2z)hL(x) , (154)

with a ≡ (1 +n1 + n2)
QR
2

, b ≡ (1− n1 + n2)
QR
2

and 6Q+
L ≡ 2λ+ 3

2
QR. We will calculate this

integral for a general 6Q+
L = 2w + 3

2
QR and then take the limit w → λ.

First we compute the integral over z in complete analogy to the treatment of Appendix

B. The Jacobi polynomial satisfies

r3QR
z

d

dz

(

r−3QR
z z(1 − z)

d

dz
P a,b
A (1 − 2z)

)

+ A(A+ 1 + a + b)P a,b
A (1 − 2z) = 0 . (155)

Let us multiply this equation by r
−(2w+ 3

2
QR)

z and integrate over z. It can be shown that there

is a third order polynomial G(x) which is implicitly defined by the following relation

G(x, z)

z(1 − z)
− G(x) =

G(x, z = 0)

(1 + n1 + n2)2
(

w2

92 − Q2

R

16

) ×

×
[

r
2w+ 3

2
Qr

z
d

dz

(

z(1 − z)r−3QR
z

d

dz

(

r
3

2
QR−2w

z

)

)

+ A(A+ 1 + a+ b)

]

. (156)

The right-hand side vanishes after multiplying by r
−6Q+

L
z P a,b

A (1−2z) and integrating, and we

get

IL =

∫

dxG(x)N2
L

x(1 − x)(a− x)
r
−6Q+

L
x hL(x)

∫

dz r
−6Q+

L
z P a,b

A (1 − 2z) . (157)
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C.2 Non-Chiral Contributions

To evaluate (157) we make use of the differential equation (137). We multiply (137) by

r
−2w− 3

2
QR

x and integrate over x. There exists a first order polynomial M
√

g(x) such that

G(x)

x(1 − x)(a− x)
−M

√

g(x) =

=
144 G(x = 0)

(1 − n2)(3QR + 4λ)(18QRn2 + 8λn2 − 9QR − 4λ− 24)
×
[

(αβx− k) −

−r2w+ 3

2
QR

x
d

dx

(

r
−2w− 3

2
QR

x (γ(1 − x)(a− x) + δx(x− a) + ǫx(x− 1))
)

+r
2w+ 3

2
QR

x
d2

dx2

(

x(1 − x)(a− x)r
−2w− 3

2
QR

x

)]

, (158)

where we defined

M ≡ 48(λ− w)(λ+ w + 2)

(1 + n2)(16w2 − 9Q2
R)

. (159)

After multiplying by r
−6Q+

L
x h(x) and integrating over x, the right-hand side vanishes and we

have

IL = MN2
L

∫

dxdz
√

g(x, z)

(

r

rmin

)−6Q+

L

P a,b
A (1 − 2z)h(x) (160)

= MNL

∫

dzdx
√
g

(

r

rmin

)−2λ

JR . (161)

Since limw→λM = 0, this immediately implies that limw→λ IL = 0 ‘on-shell’, i.e. for all

operators except for the chiral ones. Just as for the singular conifold case, we have therefore

proven that non-chiral terms do not contribute to the perturbation to the warped four-cycle

volume.

C.3 Chiral Contributions

For the chiral operators one finds

λ =
3

4
QR (162)

and both the numerator and the denominator of M (159) vanish. Chiral operators also

require A = l − nψ to be equal to zero. Taking the chiral limit we therefore find

IL =
(3QR + 4)

(1 + n2)QR
N2
L

∫

dx q(2p+ 3q +
√

4p2 − 3q2 − 6qx)

24p2

(

r

rmin

)−3QR

(163)

=
(3QR + 4)

(1 + n2)QR

1

(2π)3ℓ
, (164)
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since A = 0 implies P a,b
A (1 − 2z) = 1 and h(x) = 1. The integral in (163) reduces to

the normalization condition (139). Finally, we use the identity for chiral wave-functions

r
3

2
QRYL(Ψ) = (wn1

1 w
n2

2 w3)
QR

2 and the relation between T3(δV
w
Σ4

)chiral and IL (an analog of

(102)). Note that the (2π)3 in (102) should be changed to (2π)3ℓ as α runs from 0 to 2πℓ.

We hence arrive at the analog of (118)

T3(δV
w
Σ4

)chiral =
1

2

∑

QR,s

2

(1 + n2)QR

(w̄n1

1 w̄
n2

2 w̄3)
QR

2 ei
(1+n2)

2
QRψs , (165)

where we recall that ψs = 2πs
p2+p3

. The summation over s effectively picks out nψ = (1+n2)
2

QR

to be of the form (p2 + p3)s
′ with natural s′, or QR = 2p3s

′. After summation over s′ we

have

T3(δV
w
Σ4

)chiral = −1

2
log

[

µ̄2p3 −∏i w̄
pi
i

µ̄2p3

]

. (166)

A similar calculation for the anti-chiral contributions gives the complex conjugate of

(166).

The final result for the perturbation of the warped volume of four-cycles in cones over

Y p,q manifolds is then

T3 δV
w
Σ4

= −Re
(

log

[

µ2p3 −∏i w
pi
i

µ2p3

]

)

, (167)

so that

A(wi) = A0

(µ2p3 −∏i w
pi
i

µ2p3

)1/n

. (168)
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