

1944-3

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Non-destructive analysis based on neutron induced reactions. & Thermal and epithermal neutron cross sections measurements and applications.

> A. Borella Institute for Reference Materials and Measurements Geel, Belgium

Joint Research Centre (JRC)

Non-destructive analysis based on neutron induced reactions

A. Borella¹, H. Postma², M. Moxon³ and P. Schillebeeckx¹

1-EC-JRC-IRMM, Retieseweg 111, B-2440 Geel 2-IRI, TU-Delft, Mekelweg 15, 2629 JB Delft, the Netherlands 3-Hyde Copse 3, Marcham, United Kingdom

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Overview

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

• Neutron capture process

- Instrumental Neutron Activation Analysis (INAA)
- Prompt Gamma Activation Analysis (PGAA)
- Neutron Resonant Analysis (NRA)
 - Capture (NRCA)
 - Transmission (NRT)

• Principles

- Physics and equations
- Cross sections/Composition
- Application to NDA
- Facilities/Examples
- Concluding Remarks

ર

• Principles/Quantities

- Neutron Capture Reactions
- Reaction Rate
- Flux shape
- Westcott's g-factor and resonance integrals

• INAA for NDA

- Determination of relative abundances
- Standardization (k₀)
- Facilities/Examples

Neutron capture process

4

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Capture cross section

5

The probability that a neutron interacts with a nucleus is expressed as a cross section σ , which has the dimension of an area The unit of a cross section is taken as : 1 barn, 1 b = 10⁻²⁴ cm² To calculate reaction probabilities we express the target thickness in atoms per barn :

$$n = \frac{0.6022}{m_A} \rho t$$

: atomic mass

m₄

ρ

t

n

- : density in g/cm³
- : thickness in cm
- : target thickness in at/b

Capture cross section

6

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Typical Cross Section shape (238U)

Total reaction rate

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

The total reaction rate per atom:

$$\mathsf{R} = \int_{0}^{\infty} \phi(\mathsf{E}_{\mathsf{n}}) \, \sigma_{\mathsf{y}}(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

depends on:

 $φ(E_n)$ the neutron flux and $σ_γ(E_n)$ the capture cross section

Neutron flux in a thermal reactor

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

The neutron flux in <u>a thermal reactor</u> is a sum of three components

- Maxwellian distribution with maximum at E_n =kT
- 1/E^{1+α} distribution due to moderation process of the fast neutrons (epi-thermal spectrum)
- "Watt spectrum" of fission neutrons

At <u>a neutron guide</u>, the neutron flux can be described by the thermal part only 10^7 (e.g. PGAA at Budapest)

a

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

The total reaction rate per atom is:

$$\mathsf{R} = \int_{0}^{\infty} \varphi(\mathsf{E}_{\mathsf{n}}) \, \sigma(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

To solve the integral one separates between the thermal and the epi-thermal region:

$$\mathsf{R} = \int_{0}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} + \int_{\mathsf{E}_{cd}}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

with $E_{Cd} = 0.55 \text{ eV}$

Guided beam

$$\mathsf{R} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

Cd measurement

$$\mathsf{R} = \int_{0}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} + \int_{\mathsf{E}_{cd}}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

$$\mathbf{R} = \phi_t \sigma_0 \mathbf{g}_w \mathbf{G}_{th} + \phi_e \mathbf{I}_r \mathbf{G}_r = \phi_t \sigma_0 \left(\mathbf{g}_w \mathbf{G}_{th} + \frac{1}{f} \frac{\mathbf{I}_r}{\sigma_0} \mathbf{G}_r \right)$$

 ϕ_t thermal flux

IRC

FUROPEAN COMMISSIC

 σ_0 thermal cross section at v=2200 m/s

 g_w generalized g-factor: deviation of the cross section from 1/v

- ϕ_e epithermal flux
 - effective resonance integral
- G_r resonance self-shielding factor
 - ratio of thermal to epithermal flux
- $Q=I_r/\sigma_0$ ratio of the resonance integral and thermal cross section

g_w depends on:

Flux shape (may not be Maxwellian) Cross section shape (may not be 1/v)

If the flux has a Maxwellian distribution and If the cross section is 1/v

$$\sigma_{th} = \frac{\sqrt{\pi}}{2} \sigma_0 \sqrt{\frac{T_0}{T}} \implies g_w = \sqrt{\frac{T_0}{T}}$$

13

The Westcott g_w – factor is temperature dependent

15

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

$$R = \phi_t \sigma_0 g_w G_{th} + \phi_e I_r G_r$$

$$\Rightarrow \phi_e I_r G_r = \int_{E_{cd}}^{\infty} \sigma(E) \phi(E) dE$$

Resonance integral I_r depends on: $\sigma(E)$ (resonance parameters) $\phi(E)$ (e.g. $E^{-(1+\alpha)}$)

Data base of σ_0 , g_w -factor and I_r Compilation by S.F.Mughabghab, BNL, USA "Thermal neutron capture cross sections, resonance integrals and g_w -factors" INDC(NDS) – 440 February 2003

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

So far, one atom Real case N atoms

$$\mathbf{R}_{N} = \mathbf{N}\boldsymbol{\phi}_{t}\boldsymbol{\sigma}_{0} \left(\mathbf{g}_{w}\mathbf{G}_{th} + \frac{1}{f}\frac{\mathbf{I}_{r}}{\boldsymbol{\sigma}_{0}}\mathbf{G}_{r} \right)$$

R_N from measurement

Knowing N, we can deduce σ (nuclear data)

Knowing σ (nuclear data), we can deduce N

How to measure the R_N

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Sample activation by neutron irradiation in reactor
- The sample is transferred into a counting station (Rabbit system)
- (Waiting time)
- Counting
- Isotope identification by means of the γ –ray energy
- High resolution detector needed
 - Ge(Li), HPGe
 - Nal
- Peak analysis
- Correlate peak area with R, isotope abundance

NAA for NDA

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

– Absolute method (ϵ_{FE} , P_{γ} , σ_0 sources of uncertainty)

k0-standardization

20

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Relative abundance

$$\frac{W}{W_{ref}} = \frac{C_{\gamma}}{C_{\gamma,ref}} \frac{\epsilon_{FE,ref}}{\epsilon_{FE}} \frac{G_{t}g_{w} + G_{f}\frac{Q}{f}}{G_{t,ref}g_{w,ref} + G_{f,ref}\frac{Q}{f}} \frac{\sigma_{0,ref}}{\sigma_{0}} \frac{M}{\Theta P_{\gamma}} \frac{\Theta_{ref}P_{\gamma,ref}}{M_{ref}}$$

Reference ¹⁹⁷Au(n, γ) E_{γ}=411.8 keV

 \mathbf{k}_0

accurately determined for many nuclides depends only on the isotope

e.g. De Corte/Simonits (JRNC 133 (1989) 43)

N.B. It is actually a cross section measurement!

k0-standardization

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Relative abundance

$$\frac{W}{W_{ref}} = \frac{C_{\gamma}}{C_{\gamma,ref}} \frac{\epsilon_{FE,ref}}{\epsilon_{FE}} \frac{G_t g_w + G_f \frac{Q}{f}}{G_{t,ref} g_{w,ref} + G_{f,ref} \frac{Q_{ref}}{f}} \frac{1}{k_0}$$

Usually a ¹⁹⁷Au sample is co-irradiated with the sample to analyse

Experimental conditions

$$\begin{array}{ll} & - \ensuremath{\epsilon_{\text{FE}}} \\ & - \ensuremath{\phi(\text{E})} \\ & - \ensuremath{\text{geometry}} \end{array} & \ensuremath{\mathsf{Q}}, \ensuremath{\,g_{\text{w}}}, \ensuremath{\mathsf{f}} \\ & \ensuremath{\mathsf{G}} \end{array}$$

$$\frac{G_{t}g_{w}+G_{f}\frac{Q}{f}}{G_{t,ref}g_{w,ref}+G_{f,ref}\frac{Q_{ref}}{f}}$$

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- NIST Center for Neutron Research
- BNC (H)
 - inorganic impurities in C_{60}
 - selenium in food
- BR-1 at the SCK-CEN (B)
- INAA Laboratory at the Delft University of Technology (NL)

and many others...

Pros:

- Multi elemental method
- High accuracy
- Low detection limits
- Most elements can be traced

Cons:

- Reactor (high flux) needed
- Activation, waiting time

Data needed:

- k₀, g_w, I_r OR
- Thermal cross sections
- Resonance Parameters

10	2 C																-
1																	2
Н															He		
3	4	1										5	6	7	8	9	10
Li	Be											В	C	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	¹ La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105													
Fr	Ra	² Ac	Rf	Db													
¹ Lanthanide			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
² Actinide series			90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	No n	-gamn	na rad	lioacti	ve isot	opes											-

Radioactive isotopes can be produced. Limitation is short half-life or flux energy

Elements routinely determined by INAA

Neutron capture process

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

PGAA - Overview

25

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Principles
 - Basic equations
- PGAA for NDA
 - PGAA Standardization
 - PGAA at the BNC
 - Cold beam
 - Compton suppression system
 - Remarks
- Examples

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Neutron Induced Prompt Gamma Activation Analyses (PGAA or PGNAA)

- Detection of prompt gamma radiation from a neutron induced nuclear reaction, usually radiative capture
- Isotope identification based on E_γ
- Isotope quantification based on I_γ
- Instantaneous method: results appear immediately
- Usually little or negligible residual activation of the sample

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

The total reaction rate per atom:

$$\mathsf{R} = \int_{0}^{\infty} \varphi(\mathsf{E}_{\mathsf{n}}) \, \sigma_{\mathsf{y}}(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

depends on: $\varphi(E_n)$ the neutron flux and $\sigma_{\gamma}(E_n)$ the capture cross section

For a guided (thermal or cold) neutron beam $|R = G_{th} \phi_t \sigma_{\gamma 0} g_w$

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

If we look at a given transition

$$\boldsymbol{R}_{i} = \boldsymbol{G}_{th} \boldsymbol{\phi}_{t} \boldsymbol{\sigma}_{\boldsymbol{\gamma}0,i} \boldsymbol{g}_{w} = \boldsymbol{G}_{th} \boldsymbol{\phi}_{t} \boldsymbol{P}_{\boldsymbol{\gamma}} \boldsymbol{\sigma}_{\boldsymbol{\gamma}0} \boldsymbol{g}_{w}$$

where P_{γ} is the intensity of the transition

for N atoms

$$\boldsymbol{R}_{\text{N,i}} = \boldsymbol{N}\boldsymbol{G}_{\text{th}}\boldsymbol{\phi}_{\text{t}}\boldsymbol{P}_{\!\boldsymbol{\gamma}}\boldsymbol{\sigma}_{\!\boldsymbol{\gamma}\boldsymbol{0}}\boldsymbol{g}_{\text{w}}$$

R_{N,i} from measurement

Knowing N, we can deduce σ (nuclear data)

Knowing σ (nuclear data), we can deduce N

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

How to measure the R_N

- Sample by neutron irradiation (e.g. cold neutron beam)
- Counting
- Isotope identification by means of the γ –ray energy
- High resolution detector needed
 - Ge(Li), HPGe
 - Nal
- Peak analysis
- Correlate peak area with R, isotope abundance

PGAA for NDA

30

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

non radioactive nucleus

$$C_{\gamma} = \frac{N_{av}W\theta}{M}P_{\gamma}\sigma_{\gamma0}g_{w}G_{th}\epsilon_{FE}t_{m}\phi_{t}$$

$$C_{\gamma}$$

 P_{γ}
 ϵ_{FE}
 W
 θ
 M
 t_{m}

Counts (DT,coinc) γ-ray intensity Full Energy peak detection efficiency Sample mass Isotopic abundance Molar mass Counting Time

PGAA for Non Destructive Analysis

$$W = \frac{C_{\gamma}}{\epsilon_{\mathsf{FE}} t_{\mathsf{m}}} \frac{\mathsf{M}}{\mathsf{N}_{\mathsf{av}} \theta} \frac{1}{\mathsf{G}_{\mathsf{th}} \phi_{\mathsf{t}} \mathsf{P}_{\gamma} \sigma_{\gamma 0} \mathsf{g}_{\mathsf{w}}}$$

- Absolute method (large uncertainties)

Relative measurements allow to reduce the uncertainty

- comparator (ref)

- homogeneous sample \Rightarrow G is the same
- efficiency ratio can be determined accurately (<1%)
- method standardization (Revay and Molnar, Radiochimica Acta 91, 361, 2003):
- $-k_0, \sigma_0$ library
- Ultimate comparator: H σ_0 = 0.3326(7) b, 2.2 MeV
- \Rightarrow no standard samples needed

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

PGAA at the **BNC**

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Why using a cold beam?

More neutron with lower energy

Cross section is higher

The count rate is higher

No epithermal neutrons

 g_w is 1 in most cases

PGAA at the **BNC**

34

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Why using Compton suppression system?

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Neutron capture cross section measurements - ^{nat}Pb,²⁰⁶Pb,²⁰⁹Bi,¹²⁷I,¹²⁹I...
- Rocks and minerals (Geology, Archaeology)
 - lapislazuli composition (CI, S content) \Rightarrow ore
- Ceramics (Archaeology)
- Glasses Metals (Archaeology, Industry)
 - Roman silver coins Cu/Ag ratio \Rightarrow period
- Chemistry
 - S in fullerene (C₆₀)
- Metals (Materials Research, Archaeology)
- Nuclear Materials (Safeguards, Transmutation)
 - ²³⁵U/²³⁸U mass ratio

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Pros:

- Multi elemental method
- Applicable in principle to all elements
- No special sample preparation

Cons:

γ-ray spectra more complex than NAA

Data needed:

- g_w $- k_0$
- OR
- Thermal cross sections (Partial cross sections)

PGAA detection limits

H 1 03326 0 82 02 0				Eler stable	nent isotope		Detecti 0.0 1-1 10-	on Limi 1 -1 0	t [ppm]				s	M			He 3 ²⁰⁰⁰⁴ 4 4.002602 0.00715 1.3415
Li e'*r	Be			atomic	weight		100	0-1000				B 18 [#] 11 [#]	C 12 ¹¹ 13 ¹¹	N 14 15"	0 18 17 ⁰⁰⁰ 18 ⁰⁰	F	Ne 20 ¹¹ 21 ²³¹ 22 ¹
6.941 705 b 1.97 b	90122 0.0078 b 7.83 b			σ - ca σ - s ca	ttering			data				10.41 1 197 a 524 a	12.011 0.00350 b 5.551 b	1400674 19 b 11 51 b	150004 0.00019 b 4.232 b	18.008 0.0008 b 4.018 b	201797 0.0395 2.6285
Na	Mg 25 " 25 " 26"											Al z	Si 28 [°] 29° 30°	P 31	S 22 ¹¹ 33 34 38	CI 38 ¹¹ 37 ²⁰	Ar 3 635 40***
2298077 0.5305 3.285	24.305 0.069.5 3.71.5											269815 0.2315 1.5035	280.655 0.171.5 2.167.5	309 738 0. 172 b 3. 312 b	32,096 0,53,5 1,026,5	354527 3355 1685	39.948 0.675 b 0.683 b
K 19 ⁴⁴ 40 47 900 989 21 5 1.96 5	Ca 40 ⁶⁷ 42 43 44* 46.48 40.078 2755 2355	SC 45 40550 275 b 235 b	Ti 48'47'48" 49'50' 47,887 60915 43515	V 50 ^{03#} 81 80.9415 5.08 b 5.10 b	Cr 51* 62** 53** 54* 3 05 0 3 05 0	Mn 55 542380 1.335 2.185	Fe 54*54**5*55 55.545 2.565 7.625	C0 53 57.15.5 58.5	Ni e2 ¹⁴ e3 ⁴ e1 ¹¹ e2 ¹⁴ e4 ⁶⁵ e5e 934 4.49 to 185 to	Cu 83# 66" 83546 8,035	Zn es" to es so 2755 ese5	Ga eff 71" 2755 8835	Ge 10 ⁸ 12 ⁸ 13 ⁸ 12 er 2 20 b 8 80 b	As 75 749.218 45.5 5.505	Se 7478'77'78" 10"82 75.98 11.75 8.305	Br 78" st" 79.004 69.5 5905	Kr 78 80 ¹ 82 ¹ 83 ¹ 83 8 28 5 7 88 5
Rb 85° 87" 854 678 038 5 88 5	Sr 54 55" 57" 57 52 1 28 5 8 25 5	¥ 85 8890 895 128 b 7.70 b	Zr 90 ⁴¹ 92 ¹¹ 92 ¹¹ 94 ¹² 98 ³ 91,224 0,185 b 8,46 b	Nb 93 9 200638 1.15 b 8.255 b	0.44 5 MO 02" 04" 05" 07" 14" 00" 05 04 2.45 5 5.71 5	(TC) (28) 20 b 63 b	Ru se*se*se*noo tor "naz*nov not.or 2.56 b e8 b	Rh 103 1029 065 144.8 b 48 b	Pd 102 ¹ 104 ¹¹ 105 ⁰³ 108 ¹⁰ 105 ¹⁰ 10 108.42 8.8.5 4.48.5	Ag 107 ¹⁰ 102 ¹⁰ 1078 882 833 5 4.92 5	Cd strate field strate strate states states states	In 113' 119" 114.818 19.385 2.625	Sn 10 5 1 5 10 11 5 7 0 626 5 4 522 5	Sb 121 ¹¹ 123 ⁰ 121.76 4.91.6 3.90.6	Te apatrizi a/ as as ashar 127.6 47.5 432.5	 127 12600447 6.155 3.815	Xe (2012) (2012) (2012) (201 (2012) (
CS 133 13200 546 2900 5 3905	Ba acquisited after af 197.927 11.6 9.986	La 138 129 ⁸⁸¹ 1382055 8.975 9.665	Hf 174 176" 177" 175" 170" 183" 175.40 10.41 5 1.02 5	Ta 180 181 *** 180 9497 208 5 601 5	W 160,162 [#] 163 ¹¹ 194 [#] 198 [#] 183,84 1.83,6 4.60,6	Re 165" 197 [#] 168, 207 59,715 11,515	Os 1941001107 19010011001 190123 16016 14716	r 1917 192" 192.217 425.5 14.5	Pt 190.1221.14 ⁴¹ 185 ⁴ 195 195.05 105.05 1.715	AU 197 198.98.885 98.85 5 7.73 5	Hg 10 107-102* 20*21*22* 20* 200-50 3723 b 268 b	T 203 [#] 205 [#] 2043833 3435 9595	Pb 204 ¹ 205 ²⁰ 207 ²⁰ 208 ²⁰ 2072 0.1715 11.125	Bi 209 20898 038 0 0338 5 9 156 5	(Po) 23	(At) (210)	(Rn) (222)
(Fr) (223)	(Ra) (226) 128 b 13 b	(Ac) (227)	104	105	106											- 11-	
		Ce 138 136 140" 142" 140 115 0.835 2.945	Pr 141 14000 765 11.50 2040	Nd #2'# 2'146'# 140'# 2'157 144.24 81 b 168b	(Pm) (148) 188.45	Sm 41 47 48 4 50 48 197 50 38 5025 505	EU 1817 187 191,88 191,88	Gd 4000 00 00 19740 07 19748 49000 1975	Tb 189 16802634 23.45 4.945	Dy 1001100110011001 1001100110011001 1025 004 b 903 b	H0 365 16493032 84.75	Er 182 1841 1881 187 ⁹¹ 188 ³¹ 170 ⁹¹ 187 28	16682-421 16682-421 100 b	Yb esind infiniti 173.04 348.5 234.5	LU 178" 178" 174.978 74.0 72.5		

(Pa)

20085

232 0380 7.37 b (Np)

17595 1455 (Pu) (Am) (243) (243)

10173 b

(Cm)

(BK)

(Cf) (Es) (251) (252) (Fm)

(Md) (258) (No) (Lr) (289) (281)

Neutron capture process

• Principle

- Resonances for analysis of elemental composition
- NRCA and NRT

- Data Analysis
 - Calibration approach
 - Methodological approach
- Applications
- NRA and PGAA
- ND for NRA
- Conclusions

EUROPEAN COMMISSION

• Neutron resonances appear at given energies, specific for each nuclide

- Nuclides can be identified and the elemental (and isotopic) composition can be deduced
- Applicable for almost all elements
- No sample preparation required
- 10³ Non Destructive
 - Negligible residual activation

NRA feasibility

40

41

(I)NAA

Intense thermal neutron flux (irradiation in core, i.e. BR1) Gamma detector: gamma ray energy resolution \Rightarrow Ge-detectors

PGNAA

Intense neutron beam, (guided cold neutron beam Budapest, NIST) Gamma detector: gamma ray energy resolution \Rightarrow Ge-detectors

NRA

Pulsed white neutron beam (LINAC) Gamma detector: good time resolution \Rightarrow scintillators

Experimental Setup: Requirements

42

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

$$E_{n} = \frac{1}{2}m_{n}v_{n}^{2} = \frac{1}{2}m_{n}\left(\frac{L}{t}\right)^{2}$$

Good time resolution High neutron flux

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Perego R. et al, MTAA11, June 2004

45

Detector

no correction for efficiency

no normalisation required

but good collimation required

- All detected neutrons must have crossed the sample
- All neutrons scattered by the sample may not reach the detector

low sensitivity (exponential + potential scattering)

More sensitive but the data analysis is more complicated

Detectors for NRCA and NRT

47

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Materials and Measurem

NRCA Gamma Detectors - C₆D₆, YAP Good time resolution (1 ns) Low neutron sensitivity

NRT Neutron Detectors - Li glass NE905 Good time resolution PSND (developed at CCLRC)

Example NRCA TOF - spectrum

48

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

⇒ we can always define a region in the TOF (Energy) spectrum where the resonance of interest dominates

Analysis Procedures (NRCA)

<u>4</u>0

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Traditional approach Area analysis

$$R_{c} = \epsilon_{c} n_{x} \sigma_{\gamma} F \phi S \implies C_{c} = \epsilon_{c} n_{x} A_{\gamma} F \phi S$$

 \Rightarrow only isolated resonances are used

Only valid for relatively weak resonances

neglect neutron scattering in the sample

Calibration

requires representative calibration samples to determine unknown and F

Limited in applications (no complex spectra, samples,...) Limited use of information contained within the spectrum However, Very successful (e.g. Archeology, H. Postma)

Determination of elemental ratios

50

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

$$\frac{\mathbf{C}_{r1,x}}{\mathbf{C}_{r2,y}} = \frac{\varepsilon_{r1,x}}{\varepsilon_{r2,y}} \frac{\mathbf{F}_{r1}}{\mathbf{F}_{r2}} \frac{\mathbf{A}_{\gamma,r1}}{\mathbf{A}_{\gamma,r2}} \frac{\phi_{r1}}{\phi_{r2}} \frac{\mathbf{n}_{x}}{\mathbf{n}_{y}}$$

$$A_{\gamma,r} = 4.097 \times 10^{6} \frac{g\Gamma_{n}\Gamma_{\gamma}}{E_{r}\Gamma} (b)$$

- φ neutron flux ($\varphi_{r1} / \varphi_{r2}$) (only shape required!!) \Rightarrow Independent measurement by e.g. ¹⁰B(n, α)⁷Li
- Resonance capture area ($A_{\gamma,r1}$ & $A_{\gamma r,2}$) \Rightarrow From nuclear data libraries
- ε detection efficiency for capture event (ε_{r1} / ε_{r2})
 ⇒ By calibration with standard samples (no correction for attenuation in sample)
- Self shielding factors (F_{r1} / F_{r2})

 \Rightarrow From combination of at least two resonances, with different strength

Self – shielding correction

51

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

 \Rightarrow Thickness (n) from combination of resonances with different strength !!!

Self-shielding correction F_r

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

F_r from ratio of resonances with different strength

Verification of self-shielding correction

53

NRCA requires capture yield, Yc

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Correction for the shape of the incoming neutron flux Account for detection efficiency of the gamma event

 $(\mathsf{PHWT} \Rightarrow \mathsf{NIM A 577} (2007) 626-640)$

Advantages:

Resonance Shape Analysis (R-matrix) vs area analysis Correction for self - shielding and multiple scattering Resolution of TOF - spectrometer and Doppler broadening The whole energy spectrum can be used to assess the nuclide abundance Simultaneous fit of several data sets (both NRT and NRCA) Easy to handle multi-elemental homogenous samples

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

G is an analytical model describing the observed capture yield:

$$Y_{c} = G(R, T, RP, F, \mu, S_{x}^{*}, n_{x}, S_{y}^{*}, n_{y},...)$$

- R resolution of spectrometer
- T temperature (Doppler broad.)
- RP nuclear data to deduce $\sigma_{c},\,\sigma_{t}$
- F self shielding
- μ multiple scattering
- S_x^* binding energy nucleus x
- n_x atom density of nucleus x

\Rightarrow n_x, n_y, ... : adjustable fitting parameters

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Archaeology

- Zn/Sn, Cu/Pb ratio
- Ancient Charm Project (2D and 3D scanning)
- **Trace Analysis**
 - P/Ca in bones, Cl/Ca in marbles
- Determination of neutron poison in uranium
 - Gd in U
- Characterisation of reference materials
 - Ag in Bi, Y_2O_3 , Sb in Pb, ¹⁰³Rh, Pb₂I

Determination of the composition of special alloys

Archaeology: Authenticity of Etruscan artefacts

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

JRC

EUROPEAN COMMISSION

Postma H., Schillebeeckx P. and Halbertsma R.B., Archaeometry 46 (2004) 365

Archaeology NRCA of Geistingen Axes

Cat Nr.	Find spot	Element									
		Cu	Sn	As	Sb	Ag	Fe	Ni	Со	In	Pb
B550	Maastricht	94.30	0.06	0.67	1.63	0.54				5.1 ppm	< 2
B551	Maastricht	93.38	0.64	0.91	2.14	0.56				14.8 ppm	< 2
K787	Kleve	93.01	0.98	1.64	3.02	1.36				0.0.r	< 2
K788	Kleve	86.24	6.54	2.32	2.66	2.10			0.15	0.0.r	< 2
B562	Nijmegen	84.51	9.07	1.01	2.10	2.21	0.61		0.49	0.0.r	< 2
B557	Vierlingsbeek	80.93	12.72	0.06	0.01	0.04	6.20			0.0.r	< 2

Trace Analysis

1000

100

Neutron Energy / eV

60

6 ⁶³Cu Response / (1/ns) 0.08 ¹¹⁵In at ppm level 4 0.04 0.00 ĭ.0 1.5 2.0 ⁶⁵Cu 2 ¹¹⁶Sn ¹⁰⁹Ag

10

Element	Fractions (%)		Isotope	Resonance (eV)
Cu	77.76	(0.11)		
			⁶³ Cu	579.0
			⁶⁵ Cu	230.0
Sn	20.85	(0.10)		
•		()	¹¹² Sn	94.8
			¹¹⁶ Sn	111.2
			¹¹⁷ Sn	38.8
			¹¹⁸ Sn	45.7
			¹¹⁹ Sn	222.6
			¹²⁰ Sn	427.5
			¹²² Sn	1756.0
			¹²⁴ Sn	62.0
٨s	0.34	(0.01)		
A 3	0.04	(0.01)	⁷⁵ Ac	47.0
		(0.004)	A3	47.0
Sb	0.196	(0.021)	101	
			¹²¹ Sb	6.24
			¹²³ Sb	21.4
	0 000	(0.01)		
Ag	0.050	(0.01)		
			¹⁰⁷ Ag	16.3
			¹⁰⁹ Ag	5.2
Fe	0.770	(0.09)		
			⁵⁶ Fe	1147.4
In	0 0061	(0.0003)		
	0.0001	(0.0003)	¹¹⁵ In	1.46
				1.10
	m _{NRCA} =	= 13.0 ((= 13.25	ว.5) g ด	
	'''weigth	10.20	9	

Postma H. et al., Int. Symposium on Archaeometry, Amsterdam, April 2002

NRCA: Neutron poison in U samples

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Determination of Gd in U - fit

62

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

NRCA: Neutron poison in U samples

EUROPEAN COMMISSION

NRCA: Neutron poison in U samples

U / g	Gd / g	n(¹⁵⁵ Gd) / n(²³⁸ U)		n(¹⁵⁷ Gd) / n(²³⁸ U)		
		declared abund.	NRCA	declared abund.	NRCA	
20.988	0.0536	5.77 10 ⁻⁴	(5.76 ± 0.04) 10 ⁻⁴	6.10 10 ⁻⁴	(6.59 ± 0.07) 10 ⁻⁴	
20.608	0.5206	5.71 10 ⁻³	$(5.73 \pm 0.01) \ 10^{-3}$	6.03 10 ⁻⁴	$(6.53 \pm 0.02) \ 10^{-3}$	
18.656	2.6240	3.13 10 ⁻²	(3.14 ± 0.01) 10 ⁻²	3.36 10 ⁻²	(3.51 ± 0.03) 10 ⁻²	

 $^{dep}U_3O_8$ + $^{nat}Gd_2O_3$

 \Rightarrow nuclear data ¹⁵⁷Gd

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

NRT for sample characterization

NRCA for sample characterization

Y₂O₃ matrix important to obtain uniform samples

Impurities found in Y_2O_3 matrix

NRCA for sample characterization

Y₂O₃ matrix important to obtain uniform samples

Impurities found in Y_2O_3 matrix

NRCA for sample characterization

Y₂O₃ matrix important to obtain uniform samples

Impurities found in Y_2O_3 matrix

NRCA for sample characterization

Y₂O₃ matrix important to obtain uniform samples

Impurities found in Y_2O_3 matrix

NRCA for sample characterization

Y₂O₃ matrix important to obtain uniform samples

Impurities found in Y_2O_3 matrix

Pb shielding for

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Am sample
- Detectors

Sb-free lead is required to measure Am resonances

Characterisation of Reference Materials ¹⁰³Rh metal disc

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

	Natural abundance (wt %)	Relative Amo (wt %)	ount
¹⁰³ Rh	100	99.5137	
¹⁸¹ Ta	99.988	0.0337 (0.0	029)
¹⁹¹ lr ¹⁹³ lr	37.3 62.7	0.0870 (0.0 0.1478 (0.0)033))076)
¹⁸² W ¹⁸³ W ¹⁸⁶ W	26.3 14.3 28.6	0.0552 (0.0 0.0302 (0.0 0.0613 (0.0)027))028))025)
¹⁹⁷ Au	100	0.0059 (0.0	0011)

Impurities contribute for 0.5 % to the observed count rate in the thermal energy region $^{103}Rh(n_{th},\gamma)$ cross section is requested with an accuracy < 2%

Postma H. et al.,, ND2004, Santa Fe, September 2004

Characterisation of Reference Materials Pbl₂ samples from reprocessed fuel

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Elememt		NRCA		ICP-MS		(I)NAA
lodine	Total ¹²⁷ I ¹²⁹ I	20.5 3.4 17.1	(0.8) (0.1) (0.8)	19.9 3.4 16.5	(0.5) (0.1) (0.5)	3.4 (0.1)
Lead	Total ²⁰⁴ Pb ²⁰⁶ Pb ²⁰⁷ Pb ²⁰⁸ Pb	53.5 0.8 12.8 12.1 27.8	(3.0) (0.5) (0.3) (3.0)	59.5	(0.2)	51.1 (1.8)
Oxygen Sulfur		15.2 6.2	(0.8) (0.4)	14.5	(1.5)	

72

NRCA: special alloys composition

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Nuclear Data for NRA - Examples

natCu

Important/Abundant element in archeological objects

Resonance Parameters E, Γ_n for 578 eV resonance are wrong in ENDFB.VII, JEFF, JENDL

Missing Resonances too

Nuclear Data for NRA - Examples

75

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

natCu

Important/Abundant element in archeological objects

Resonance Parameters E, Γ_n for 578 eV resonance are wrong in ENDFB.VII, JEFF, JENDL

0.4 EXP Calc (ENDFB/VII.0) 0.3 ر ≻^{° 0.2} 0.1 -0.0 -570 590 580 550 560 600 610 E_n/eV

Missing Resonances too

Nuclear Data for NRA - Examples

natCu

Important/Abundant element in archeological objects

Resonance Parameters E, Γ_n for 578 eV resonance are wrong in ENDFB.VII, ^{0.} JEFF, JENDL

Missing Resonances too

PGAA ⇔ NRCA

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

PGAA (at Budapest) and NRCA (at GELINA) Accuracy for Cu in a bronze artefact about 1%

 \Rightarrow k_o and C_r relative to Cu

PGAA best for light elements H, S, P, and K

NRCA best for heavy elements As, Ag, Sb, Au and Pb

 $PGAA \Leftrightarrow NRCA$

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Both NRCA and PGAA are fully non-destructive methods for bulk analysis

The residual activation is negligible, especially for NRCA

PGAA is good for light elements, NRCA better for heavy elements

PGAA can be hampered by an unfavourable balance between the thermal capture cross sections of the elements ⇒ for NRCA we can always choose a region in the TOFspectrum where the resonance of interest dominates

Pros:

- Multi elemental method
- Applicable to all elements with resonances
- No special sample preparation
- Negligible residual activation

Cons:

- Data analysis not easy
- Additional measurements with methodological approach

Data needed:

– Resonance Parameters $\Rightarrow \sigma_{\gamma}(E), \sigma_{t}(E)$

79

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Collaborators: J.C. Drohe', J. Van Gils, R. Wynants
- ICTP/IAEA
- This work is supported by the European Commission's 6th Framework Programme in the frame of ANCIENT CHARM Work performed with financial support by the European Community "New and Emerging Science and Technology" Contract No 15311

Joint Research Centre (JRC)

Thermal and epithermal neutron cross sections measurements and applications

A. Borella¹, H. Postma², M. Moxon³ and P. Schillebeeckx¹

1-EC-JRC-IRMM, Retieseweg 111, B-2440 Geel 2-IRI, TU-Delft, Mekelweg 15, 2629 JB Delft, the Netherlands 3-Hyde Copse 3, Marcham, United Kingdom

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Overview

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

• Neutron capture process

Techniques originally developped for material analysis

- Instrumental Neutron Activation Analysis (INAA)
- Prompt Gamma Activation Analysis (PGAA)
- Techniques originally developped for cross section measurements
- Neutron Resonant Analysis (NRA)
 - Capture (NRCA)
 - Transmission (NRT)
- Principles
 - Physics and equations
- Application to NDA/XS measurements
- Facilities/Examples
- Concluding Remarks

• Principles/Quantities

- Neutron Capture Reactions
- Reaction Rate
- Flux shape
- Generalised g-factor and resonance integrals

• INAA for NDA

- Determination of relative abundances
- Standardization (k₀)
- Facilities/Examples

Neutron capture process

4

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Capture cross section

5

The probability that a neutron interacts with a nucleus is expressed as a cross section σ , which has the dimension of an area The unit of a cross section is taken as : 1 barn, 1 b = 10⁻²⁴ cm²

The total reaction rate per atom:

$$\mathsf{R} = \int_{0}^{\infty} \varphi(\mathsf{E}_{\mathsf{n}}) \, \sigma_{\mathsf{y}}(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

depends on:

 $φ(E_n)$ the neutron flux and $σ_y(E_n)$ the capture cross section

Neutron flux in a thermal reactor

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

The neutron flux in <u>a thermal reactor</u> is a sum of three components

- Maxwellian distribution with maximum at E_n =kT
- 1/E^{1+α} distribution due to moderation process of the fast neutrons (epi-thermal spectrum)
- "Watt spectrum" of fission neutrons

At <u>a neutron guide</u>, the neutron flux can be described by the thermal part only 10⁷ (e.g. PGAA at Budapest)

The total reaction rate per atom is:

$$\mathsf{R} = \int_{0}^{\infty} \varphi(\mathsf{E}_{\mathsf{n}}) \, \sigma(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

To solve the integral one separates between the thermal and the epi-thermal region:

$$\mathsf{R} = \int_{0}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E} + \int_{\mathsf{E}_{cd}}^{\infty} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

with $E_{Cd} = 0.55 \text{ eV}$

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Guided beam

$$\mathsf{R} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

Cd measurement

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Guided beam

$$\mathsf{R} = \int_{0}^{\mathsf{E}_{cd}} \sigma(\mathsf{E}) \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

Cd measurement

$$R = \int_{0}^{\infty} \sigma(E)\phi(E)dE = \int_{0}^{E_{cd}} \sigma(E)\phi(E)dE + \int_{E_{cd}}^{\infty} \sigma(E)\phi(E)dE = R_{th} + R_{epi}$$

$$R_{th} = \phi_t \sigma_0 g_w G_{th}$$

 ϕ_t thermal flux

- σ_0 thermal cross section at v=2200 m/s
- g_w generalized g-factor: deviation of the cross section from 1/v
- G_{th} thermal flux depression factor

$$R = \int_{0}^{\infty} \sigma(E)\phi(E)dE = \int_{0}^{E_{cd}} \sigma(E)\phi(E)dE + \int_{E_{cd}}^{\infty} \sigma(E)\phi(E)dE = R_{th} + R_{epi}$$

$$R_{epi} = \phi_e I_r G_r = \phi_t \sigma_0 \frac{1}{f} \frac{I_r}{\sigma_0} G_r$$

 ϕ_e epithermal flux

l_r

f

- effective resonance integral
- G_r resonance self-shielding factor
 - ratio of thermal to epithermal flux
- $Q=I_r/\sigma_0$ ratio of the resonance integral and thermal cross section

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

g_w depends on:

Flux shape (may not be Maxwellian) Cross section shape (may not be 1/v)

If the flux has a Maxwellian distribution and If the cross section is 1/v

$$\sigma_{th} = \frac{\sqrt{\pi}}{2} \sigma_0 \sqrt{\frac{T_0}{T}} \implies g_w = \sqrt{\frac{T_0}{T}}$$

Neutron Energy / eV

Neutron Energy / eV

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Reaction rate in a thermal reactor

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

$$R = \phi_t \sigma_0 g_w G_{th} + \phi_e I_r G_r$$

$$> \phi_e I_r G_r = \int_{E_{cd}}^{\infty} \sigma(E) \phi(E) dE$$

$$\phi_{e} = \int_{\mathsf{E}_{\mathsf{cd}}}^{\infty} \phi(\mathsf{E}) \mathsf{d}\mathsf{E}$$

Resonance integral I_r depends on: $\sigma(E)$ (resonance parameters) $\phi(E)$ (e.g. $E^{-(1+\alpha)}$)

Data base of σ_0 , g_w -factor and I_r Compilation by S.F.Mughabghab, BNL, USA "Thermal neutron capture cross sections, resonance integrals and g_w -factors" INDC(NDS) – 440 February 2003

So far, one atom Real case N atoms

$$R_{N} = N\phi_{t}\sigma_{0}\left(g_{w}G_{th} + \frac{1}{f}\frac{I_{r}}{\sigma_{0}}G_{r}\right)$$

R_N from measurement

Knowing N, we can deduce σ (nuclear data)

Knowing σ (nuclear data), we can deduce N

18

How to measure the R_N

- Sample activation by neutron irradiation in reactor
- The sample is transferred into a counting station (Rabbit system)
- (Waiting time)
- Counting
- Isotope identification by means of the γ -ray energy
- High resolution detector needed
 - Ge(Li), HPGe
 - Nal
- Peak analysis
- Correlate peak area with R, isotope abundance

NAA for NDA

 C_{γ} Counts (DT,coinc) Simple reaction/decay (no branching...) W Sample mass Isotopic abundance θ Μ Atomic mass $C_{\gamma} = \frac{N_{av}W\theta}{N4} P_{\gamma} \varepsilon_{FE} R(1 - e^{-\lambda t_{i}}) e^{-\lambda t_{d}} \frac{(1 - e^{-\lambda t_{m}})}{2}$ N_{av} Avogadro's number Ρ γ -ray intensity $\mathbf{R} = \phi_t \sigma_0 \left(\mathbf{g}_w \mathbf{G}_{th} + \frac{\mathbf{I}}{\mathbf{f}} \frac{\mathbf{I}_r}{\sigma_0} \mathbf{G}_r \right)$ **NAA for Non Destructive Analysis** Irradation Time t_i **Decay** Time Μ ι_d W = $(1-e^{-\lambda t_m})$ **Counting Time** $(1-e^{-\lambda t_i})e^{-\lambda t_d}$ $N_{av}\theta R$ ۲m

– Absolute method (ϵ_{FE} , P_{γ} , σ_0 sources of uncertainty)

 $M \theta_{ref} P_{\gamma, ref}$

 $\sigma_{0,ref}$

 σ_0

 \mathbf{k}_{0}

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Relative abundance

$$\frac{W}{W_{ref}} = \frac{C_{\gamma}}{C_{\gamma,ref}} \frac{\epsilon_{FE,ref}}{\epsilon_{FE}} \frac{G_{t}g_{w} + G_{f}\frac{Q}{f}}{G_{t,ref}g_{w,ref} + G_{f,ref}\frac{Q}{f}} \frac{\sigma_{0,ref}}{\sigma_{0}} \frac{M}{\theta P_{\gamma}} \frac{\theta_{ref}P_{\gamma,ref}}{M_{ref}}$$

Reference ¹⁹⁷Au(n, γ) E_{γ}=411.8 keV

k₀

accurately determined for many nuclides depends only on the isotope

e.g. De Corte/Simonits (JRNC 133 (1989) 43)

N.B. It is actually a cross section measurement!

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Relative abundance

$$\frac{W}{W_{ref}} = \frac{C_{\gamma}}{C_{\gamma,ref}} \frac{\epsilon_{\text{FE,ref}}}{\epsilon_{\text{FE}}} \frac{G_{t}g_{w} + G_{f}\frac{Q}{f}}{G_{t,ref}g_{w,ref} + G_{f,ref}\frac{Q_{ref}}{f}\frac{1}{k_{0}}}$$

Usually a ¹⁹⁷Au sample is co-irradiated with the sample to analyse

Experimental conditions

$$\begin{array}{ll} & - \ \epsilon_{FE} \\ & - \ \phi(E) \\ & - \ geometry \end{array} \quad \begin{array}{l} Q, \ g_w, f \\ G \end{array}$$

Microscopic data $-\sigma(E)$

$$Q, g_w, k_0$$

$$\frac{G_{t}g_{w}+G_{f}\frac{Q}{f}}{G_{t,ref}g_{w,ref}+G_{f,ref}\frac{Q_{ref}}{f}}$$

- NIST Center for Neutron Research
- BNC (H)
 - inorganic impurities in C_{60}
 - selenium in food
- BR-1 at the SCK-CEN (B)
- INAA Laboratory at the Delft University of Technology (NL)

and many others...

Neutron capture process

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

- Principles
 - Basic equations
- PGAA
 - PGAA at the BNC
 - Cold beam
 - Compton suppression system
 - PGAA Standardization (NDA)
 - Examples
 - PGAA for XS measurements
 - Examples (²⁰⁹Bi, ²⁰⁶Pb)

Neutron Induced Prompt Gamma Activation Analyses (PGAA or PGNAA)

- Detection of prompt gamma radiation from a neutron induced nuclear reaction, usually radiative capture
- Isotope identification based on E_{γ}
- Isotope quantification based on I_{γ}
- Instantaneous method: results appear immediately
- Usually little or negligible residual activation of the sample

The total reaction rate per atom:

$$\mathsf{R} = \int_{0}^{\infty} \varphi(\mathsf{E}_{\mathsf{n}}) \, \sigma_{\mathsf{y}}(\mathsf{E}_{\mathsf{n}}) \, \mathsf{d}\mathsf{E}_{\mathsf{n}}$$

depends on: $\phi(E_n)$ the neutron flux and $\sigma_{v}(E_n)$ the capture cross section

For a guided (thermal or cold) neutron beam $R = G_{th} \phi_t \sigma_{v0} g_w$

If we look at a given transition

$$\boldsymbol{\mathsf{R}}_{i} = \boldsymbol{\mathsf{G}}_{th} \boldsymbol{\phi}_{t} \boldsymbol{\sigma}_{\boldsymbol{\gamma}0,i} \boldsymbol{\mathsf{g}}_{w} = \boldsymbol{\mathsf{G}}_{th} \boldsymbol{\phi}_{t} \boldsymbol{\mathsf{P}}_{\boldsymbol{\gamma}} \boldsymbol{\sigma}_{\boldsymbol{\gamma}0} \boldsymbol{\mathsf{g}}_{w}$$

where P_{γ} is the intensity of the transition for N atoms

$$\boldsymbol{R}_{\text{N,i}} = \boldsymbol{N}\boldsymbol{G}_{th}\boldsymbol{\phi}_t\boldsymbol{P}_{\!\!\gamma}\boldsymbol{\sigma}_{\!\!\gamma\boldsymbol{0}}\boldsymbol{g}_w$$

 $R_{N,i}$ from measurement

Knowing N, we can deduce σ (nuclear data)

Knowing σ (nuclear data), we can deduce N

How to measure the R_N

- We look at the prompt-gamma emission after neutron irradiation (e.g. cold neutron beam)
- Isotope identification by means of the γ –ray energy
- High resolution detector needed
 - Ge(Li), HPGe
 - Nal
- Peak analysis
- Correlate peak area with R, isotope abundance/ $\!\sigma$

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Why using a cold beam?

Wavelength spectra of thermal and cold beams

wavelength (AA)

15

20

PGAA at the **BNC**

33

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Why using Compton suppression system?

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

non radioactive nucleus

$$C_{\gamma} = \frac{N_{av}W\theta}{M}P_{\gamma}\sigma_{\gamma0}g_{w}G_{th}\epsilon_{FE}t_{m}\phi_{t}$$

$$\begin{array}{c}
\mathbf{C}_{\gamma} \\
\mathbf{P}_{\gamma} \\
\mathbf{\epsilon}_{\mathsf{FE}} \\
\mathbf{W} \\
\boldsymbol{\theta} \\
\mathbf{M} \\
\mathbf{t}_{\mathsf{m}}
\end{array}$$

 $\left(\right)$

Counts (DT,coinc) γ-ray intensity Full Energy peak detection efficiency Sample mass Isotopic abundance Atomic mass Counting Time

PGAA for Non Destructive Analysis

$$W = \frac{C_{\gamma}}{\epsilon_{\mathsf{FE}} t_{\mathsf{m}}} \frac{\mathsf{M}}{\mathsf{N}_{\mathsf{av}} \theta} \frac{1}{\mathsf{G}_{\mathsf{th}} \phi_{\mathsf{t}} \mathsf{P}_{\gamma} \sigma_{\gamma 0} \mathsf{g}_{\mathsf{w}}}$$

- Absolute method (large uncertainties)

Relative measurements allow to reduce the uncertainty

- comparator (ref)

- homogeneous sample \Rightarrow G is the same
- efficiency ratio can be determined accurately (<1%)
- method standardization (Revay and Molnar, Radiochimica Acta 91, 361, 2003):
- $-k_0, \sigma_0$ library
- Ultimate comparator: H σ_0 = 0.3326(7) b, 2.2 MeV
- \Rightarrow no standard samples needed

- Neutron capture cross section measurements - ^{nat}Pb,²⁰⁶Pb,²⁰⁹Bi,¹²⁷I,¹²⁹I...
- Rocks and minerals (Geology, Archaeology)
 - lapislazuli composition (CI, S content) \Rightarrow ore
- Ceramics (Archaeology)
- Glasses Metals (Archaeology, Industry)
 - Roman silver coins Cu/Ag ratio \Rightarrow period
- Chemistry
 - S in fullerene (C₆₀)
- Metals (Materials Research, Archaeology)
- Nuclear Materials (Safeguards, Transmutation)
 - ²³⁵U/²³⁸U mass ratio

37

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Counts (DT,coinc)
γ-ray intensity
Full Energy peak
detection efficiency
Sample mass
Isotopic abundance
Atomic mass
Counting Time

Number of nuclei

$$\sigma_{\gamma}=P_{\gamma}\sigma_{\gamma0}$$

Partial Capture cross section

38

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

$$\boldsymbol{C}_{\boldsymbol{\gamma}} = \boldsymbol{n}\boldsymbol{\sigma}_{\boldsymbol{\gamma}}\boldsymbol{g}_{\mathsf{w}}\boldsymbol{G}_{\mathsf{th}}\boldsymbol{\epsilon}_{\mathsf{FE}}\boldsymbol{t}_{\mathsf{m}}\boldsymbol{\phi}_{\mathsf{t}}$$

$$\begin{array}{c}
\mathbf{U}_{\gamma} \\
\mathbf{\sigma}_{\gamma} \\
\mathbf{\varepsilon}_{\mathsf{FE}} \\
\mathbf{W} \\
\mathbf{\theta} \\
\mathbf{M} \\
\mathbf{f}
\end{array}$$

 $\langle \mathbf{C} \rangle$

Counts (DT,coinc) Partial γ-ray cross section Full Energy peak detection efficiency Sample mass Isotopic abundance Atomic mass

 $\langle t_m \rangle$ Counting Time

PGAA for cross section measurements

- Internal conversion coefficient, important for low energy transitions

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Mixture

$$\frac{\sigma_{\gamma,1x}}{\sigma_{\gamma,2y}} = \frac{\left(\mathsf{P}_{\gamma}\sigma_{\gamma0}\right)_{1}}{\left(\mathsf{P}_{\gamma}\sigma_{\gamma0}\right)_{2}} = \frac{C_{\gamma,1}}{C_{\gamma,2}} \frac{\varepsilon_{\mathsf{FE},2}}{\varepsilon_{\mathsf{FE},1}} \frac{n_{\mathsf{y}}}{n_{\mathsf{x}}} \frac{\alpha_{\gamma1}+1}{\alpha_{\gamma2}+1} \frac{g_{\mathsf{w},2}}{g_{\mathsf{w},1}}$$

Relative partial cross section

Stoichiometric compounds

n_Y/n_X known

e.g. nitrate sample Pb(NO₃)₂, Bi(NO₃)₃, normalisation to ¹⁴N(n_{th} , γ) 1884 keV line

3

Accounts also γ -ray attenuation in the sample, can be accessed experimentally with measurements on ad-hoc sample or with simulations (e.g. MCNP)

40

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Adding partial cross section feeding/depopulating one state

For primary gamma's

 $\sigma_{\gamma 0} = \sum_{J_0} \sigma_{\gamma,i}$

Gamma's to the ground state

$$\sigma_{_{\gamma 0,g}} = \sum_{_{J_{gs}}} \sigma_{_{\gamma,i}}$$

Alternative method: Total energy (all observed gamma's)

$$\underset{J=all}{\sum}\sigma_{\gamma,i}E_{\gamma,i}=\sigma_{\gamma0}E^{*}$$

²¹⁰Bi

 $\sigma_{g} = \sum \sigma_{\gamma g, j}$

Workshop On Nuclear Data for Advanced Reactor Technologies. ICTP 22-05-2008. A. Borella					42
	Method	σ_{m^+g} / mb	σ_{m} / mb	σ_{g} / mb	_
	Primary γ's	34.2 (0.4)			320 keV transition
	Feeding state	35.0 (1.4) ^a 37.0 (1.5) ^b 39.2 (1.6) ^c	<u>17.7 (0.7)</u>	17.3 (0.7) ^a 19.3 (0.8) ^b 21.5 (0.9) ^c	a 100% E2 b 50% M1 + 50% E2 c 100% M1
	Total energy	39.8 (1.6) ^a 40.0 (1.6) ^b 40.1 (1.6) ^c	17.7 (0.7)	22.1 (1.4) ^a 22.3 (1.4) ^b 22.4 (1.4) ^c	

 $σ_{m+g}$ = 40.1 (1.2) mb $σ_{m+g}$ = $σ_m$ + $σ_g$ for 320 keV transition M1 isomeric ratio at n_{th} is β = 1.27 (0.09)

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Phys. Rev. C 2002

 $\sigma_{\gamma}(E_{th}) = 27.3 (0.8) \text{ mb}$ 26.3 (1.2) mb (Blackmon et al.)

 $\sigma_{\gamma}(E_{th})$ = s-wave resonances + direct capture 8.3 (0.2) mb + 14.0 mb = <u>22.3</u> mb \Rightarrow Experimental evidence of direct capture in ²⁰⁶Pb

Neutron capture process

• Principle

- Resonances for analysis of elemental composition
- NRCA and NRT
- Data Analysis
 - Calibration approach
 - Methodological approach
- Applications
- NRA and PGAA
- Conclusions

UROPEAN COMMISSION

• Neutron resonances appear at given energies, specific for each nuclide

46

- Nuclides can be identified and the elemental (and isotopic) composition can be deduced
- Applicable for almost all elements
- No sample preparation required
- 10³ Non Destructive
 - Negligible residual activation

(I)NAA

Intense thermal neutron flux (irradiation in core, i.e. BR1) Gamma detector: gamma ray energy resolution \Rightarrow Ge-detectors

PGNAA

Intense neutron beam, (guided cold neutron beam Budapest, NIST) Gamma detector: gamma ray energy resolution \Rightarrow Ge-detectors

NRA

Pulsed white neutron beam (LINAC) Gamma/Neutron detector: good time resolution \Rightarrow scintillators

Experimental Setup: Requirements

<u>4</u>0

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

GELINA

Pulsed Neutron Beam White Neutron Energy Spectrum TOF $\Leftrightarrow E_n$

$$E_{n} = \frac{1}{2}m_{h}v_{n}^{2} = \frac{1}{2}m_{h}\left(\frac{L}{t}\right)^{2}$$

Good time resolution High neutron flux

Perego R. et al, MTAA11, June 2004

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Detector

no correction for efficiency

no normalisation required

but good collimation required

- All detected neutrons must have crossed the sample
- All neutrons scattered by the sample may not reach the detector

low sensitivity (exponential + potential scattering)

More sensitive but the data analysis is more complicated

NRCA Gamma Detectors - C₆D₆, YAP Good time resolution (1 ns) Low neutron sensitivity

NRT Neutron Detectors - Li glass NE905 Good time resolution PSND (developed at CCLRC)

Traditional approach Area analysis

$$R_{c} = \epsilon_{c} n_{x} \sigma_{\gamma} F \phi S \implies C_{c} = \epsilon_{c} n_{x} A_{\gamma} F \phi S$$

 \Rightarrow only isolated resonances are used

Only valid for relatively weak resonances

neglect neutron scattering in the sample

Calibration

requires representative calibration samples to determine unknown and F

Limited in applications (no complex spectra, samples,...) Limited use of information contained within the spectrum However, Very successful (e.g. Archeology, H. Postma) 55

$$\frac{\mathbf{C_{r1,x}}}{\mathbf{C_{r2,y}}} = \frac{\varepsilon_{r1,x}}{\varepsilon_{r2,y}} \frac{\mathbf{F_{r1}}}{\mathbf{F_{r2}}} \frac{\mathbf{A_{\gamma,r1}}}{\mathbf{A_{\gamma,r2}}} \frac{\phi_{r1}}{\phi_{r2}} \frac{\mathbf{n_x}}{\mathbf{n_y}}$$

$$A_{\gamma,r} = 4.097 \times 10^{6} \frac{g\Gamma_{n}\Gamma_{\gamma}}{E_{r}\Gamma}(b)$$

- φ neutron flux ($\varphi_{r1} / \varphi_{r2}$) (only shape required!!) \Rightarrow Independent measurement by e.g. ¹⁰B(n, α)⁷Li
- Resonance capture area ($A_{\gamma,r1}$ & $A_{\gamma r,2}$) \Rightarrow From nuclear data libraries
- ϵ detection efficiency for capture event ($\epsilon_{r1} / \epsilon_{r2}$)
 - ⇒ By calibration with standard samples (no correction for attenuation in sample)
- Self shielding factors (F_{r1} / F_{r2}) \Rightarrow F=F(n, σ_{tot})

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

 $F_{r} = \begin{pmatrix} 1 - e^{-n\sigma_{t}} \\ n\sigma_{t} \end{pmatrix} \qquad \begin{array}{l} n\sigma_{t} << 1 \Longrightarrow F \cong 1 \\ \text{for main elements use weaker resonances} \\ \text{for traces to be set to complete the set of the se$ for traces use stronger resonances

Looking at resonances of the same element $(n_x = n_y)$

 \Rightarrow Thickness (n) from combination of resonances with different strength !!!

H. Postma et al., Czech. J. Phys., 33 (2003) A233

NRCA requires capture yield, Yc

Correction for the shape of the incoming neutron flux

Account for detection efficiency of the gamma event

 $(PHWT \Rightarrow NIM A 577 (2007) 626-640)$

Advantages:

Resonance Shape Analysis (R-matrix) vs area analysis Correction for self - shielding and multiple scattering Resolution of TOF - spectrometer and Doppler broadening The whole energy spectrum can be used to assess the nuclide abundance Simultaneous fit of several data sets (both NRT and NRCA) Easy to handle multi-elemental homogenous samples 59

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

G is an analytical model describing the observed capture yield:

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Archaeology

- Zn/Sn, Cu/Pb ratio
- Ancient Charm Project (2D and 3D scanning)

Trace Analysis

- P/Ca in bones, Cl/Ca in marbles
- Determination of neutron poison in uranium
 - Gd in U

Characterisation of reference materials

- Ag in Bi, Y_2O_3 , Sb in Pb, ¹⁰³Rh, Pb₂I

Determination of the composition of special alloys

Archaeology: Authenticity of Etruscan artefacts

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Postma H., Schillebeeckx P. and Halbertsma R.B., Archaeometry 46 (2004) 365

Archaeology: Authenticity of Etruscan artefacts

63

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

JRC

EUROPEAN COMMISSION

Archaeology NRCA of Geistingen Axes

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Cat Nr.	Find spot										
		Cu	Sn	As	Sb	Ag	Fe	Ni	Со	In	Pb
B550	Maastricht	94.30	0.06	0.67	1.63	0.54				5.1 ppm	< 2
B551	Maastricht	93.38	0.64	0.91	2.14	0.56				14.8 ppm	< 2
K787	Kleve	93.01	0.98	1.64	3.02	1.36				0.0.r	< 2
K788	Kleve	86.24	6.54	2.32	2.66	2.10			0.15	0.0.r	< 2
B562	Nijmegen	84.51	9.07	1.01	2.10	2.21	0.61		0.49	0.0.r	< 2
B557	Vierlingsbeek	80.93	12.72	0.06	0.01	0.04	6.20			0.0.r	< 2

64

Trace Analysis

NRCA: Neutron poison in U samples

66

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

depU₃O₈ + natGd₂O₃ powder

Determination of Gd in U - fit

67

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

NRCA: Neutron poison in U samples

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

NRCA: Neutron poison in U samples

U / g	Gd / g	n(¹⁵⁵ Gd)) / n(²³⁸ U)	n(¹⁵⁷ Gd) / n(²³⁸ U)				
		declared abund.	NRCA	declared abund.	NRCA			
20.988	0.0536	5.77 10 ⁻⁴	$(5.76 \pm 0.04) \ 10^{-4}$	6.10 10 ⁻⁴	(6.59 ± 0.07) 10 ⁻⁴			
20.608	0.5206	5.71 10 ⁻³	$(5.73 \pm 0.01) \ 10^{-3}$	6.03 10 ⁻⁴	(6.53 ± 0.02) 10 ⁻³			
18.656	2.6240	3.13 10 ⁻²	(3.14 ± 0.01) 10 ⁻²	3.36 10 ⁻²	$(3.51 \pm 0.03) \ 10^{-2}$			

 $^{dep}U_3O_8$ + $^{nat}Gd_2O_3$

 \Rightarrow nuclear data ¹⁵⁷Gd

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

NRT for sample characterization

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

	Natural abundance (wt %)	Relative Amount (wt %)					
¹⁰³ Rh	100	99.5137					
¹⁸¹ Ta	99.988	0.0337	(0.0029)				
¹⁹¹ lr ¹⁹³ lr	37.3 62.7	0.0870 0.1478	(0.0033) (0.0076)				
¹⁸² W ¹⁸³ W ¹⁸⁶ W	26.3 14.3 28.6	0.0552 0.0302 0.0613	(0.0027) (0.0028) (0.0025)				
¹⁹⁷ Au	100	0.0059	(0.0011)				

Impurities contribute for 0.5 % to the observed count rate in the thermal energy region $^{103}Rh(n_{th},\gamma)$ cross section is requested with an accuracy < 2%

Postma H. et al., ND2004, Santa Fe, September 2004

Characterisation of Reference Materials Pbl₂ samples from reprocessed fuel

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Elememt		NRC	A	ICP-N	٨S	(I)NAA			
lodine	Total ¹²⁷ I ¹²⁹ I	20.5 3.4 17.1	(0.8) (0.1) (0.8)	19.9 3.4 16.5	(0.5) (0.1) (0.5)	3.4	(0.1)		
Lead	Total ²⁰⁴ Pb ²⁰⁶ Pb ²⁰⁷ Pb ²⁰⁸ Pb	53.5 0.8 12.8 12.1 27.8	(3.0) (0.5) (0.3) (3.0)	59.5	(0.2)	51.1	(1.8)		
Oxygen Sulfur		15.2 6.2	(0.8) (0.4)	14.5	(1.5)				

NRCA: special alloys composition

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

PGAA ⇔ NRCA

73

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

PGAA (at Budapest) and NRCA (at GELINA) Accuracy for Cu in a bronze artefact about 1%

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Both NRCA and PGAA are fully non-destructive methods for bulk analysis

The residual activation is negligible, especially for NRCA

PGAA is good for light elements, NRCA better for heavy elements

PGAA can be hampered by an unfavourable balance between the thermal capture cross sections of the elements ⇒ for NRCA we can always choose a region in the TOFspectrum where the resonance of interest dominates

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Pros:

- Multi elemental method
- High accuracy
- Low detection limits
- Most elements can be traced

Cons:

- Reactor (high flux) needed
- Activation, waiting time

Data needed:

- $\begin{array}{l} \ k_{0}, g_{w}, \ I_{r} \\ OR \end{array}$
- Thermal cross sections
- Resonance Parameters

																	-
1																	2
H																	He
3	4	1										5	6	7	8	9	10
Li	Be											В	C	Ν	0	F	Ne
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	¹ La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105													
Fr	Ra	² Ac	Rf	Db													
¹ Lan	thanic	le	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Zanthaniae			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	
² Actinide series			90	91	92	93	94	95	96	97	98	- 99	100	101	102	103	
Actinitic series			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
											1						

No n-gamma radioactive isotopes

Radioactive isotopes can be produced. Limitation is short half-life or flux energy

Elements routinely determined by INAA

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Pros:

- Multi elemental method
- Applicable in principle to all elements
- No special sample preparation

Cons:

γ-ray spectra more complex than NAA

Data needed:

 Thermal cross sections (Partial cross sections)

PGAA detection limits

(BK)

(Pa)

20085

232.0380 7.37.5 13.36.5 (Np) (239)

1759b

(Pu)

10173 b 7.7 b (Am) (Cm)

(243) (247)

(Es) (Fm) (252) (257) (Md)

(No)

(Lſ) (281)

(Cf) (251)

н

<10 eV

10 - 100 eV

77

He

Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP 22-05-2008, A. Borella

Pros:

- Multi elemental method
- Applicable to all elements with resonances
- No special sample preparation
- Negligible residual activation

Cons:

- Data analysis not easy
- Additional measurements with methodological approach

Data needed:

1000 - 10000 eV

10000 - 100000 eV

 $-A_{\gamma}$ OR

- Resonance Parameters $\Rightarrow \sigma_{\gamma}(E), \sigma_{t}(E)$

- Collaborators: J.C. Drohe', J. Van Gils, R. Wynants
- ICTP/IAEA
- This work is supported by the European Commission's 6th Framework Programme in the frame of ANCIENT CHARM Work performed with financial support by the European Community "New and Emerging Science and Technology" Contract No 15311