

1944-27

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Capture Cross Section Measurements.

Marrone Stefano Universita' degli Studi di Bari Istituto Nazionale di Fisica Nucleare-INFN Via Orabona, 4 70125 Bari ITALY

n_TOF/C6D6: present & future

Stefano Marrone Istituto Nazionale Fisica Nucleare, Bari

WORKSHOP on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste 19-30 May, 2008.

OUTLINE

- n_TOF-Phase 1: <u>Capture Results</u> and Implications in Nuclear Astrophysics and Nuclear Technologies.
- Preliminary Results on <u>Photon Strength Function</u>
- n_TOF-Phase 2: <u>Future Perspectives.</u>

www.cern.ch/n_TOF

The n_TOF Collaboration

n_TOF is a well established collaboration operating since <u>1999</u>. It is composed of <u>33</u> <u>Research Teams</u> and <u>120 Scientists</u> from Europe, USA, Russia and Japan.

> U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

CAPTURE

www.cern.ch/n_TOF

Resolved Resonance Region

It is possible to resolve each neutron level. The variability of the XS is so high that is impossible to determine a smooth cross section.

In this case the most important information are recorded in the resonance parameters: $E_{\rm R}$, Γ_n , Γ_γ and $\Gamma_{\rm f}$.

An example is given by the Single Level Breit-Wigner formula which links the resonance parameters with the XS.

Several Codes like SAMMY and REFIT, fit the experimental data in order to extract the resonance parameters.

$$\sigma_{n,\gamma} = \frac{\pi}{k^2} g_J \frac{\Gamma_n \Gamma_{\gamma}}{\left(E - E_R\right)^2 + \Gamma^2}$$
$$\Gamma = \Gamma_n + \Gamma_{\gamma}$$

The real world

n_TOF commissioned in 2001-2002

Zr, Pb, and Bi: background problems

Neutron sensitivity of commercial $C_6 D_6$ detector improved very much with the detector assembled at FZK. Carbon Fiber instead of Al can.

EFFICIENCY in C₆D₆

>The problem in the efficiency correction is the γ -cascade (multiplicity and energy).

> In BaF₂ 4π calorimeter it is detected the whole cascade;

> In the C_6D_6 it is used the PHWF;

This technique consists of modify the Response function of C_6D_6 through simulations (Geant-3 and Geant-4) to verify:

 $\varepsilon_{\gamma} = const \cdot E_{\gamma'}$

> This technique is reliable only if the total efficiency is very small (one γ detected);

Ref. Abbondanno et al. NIM A, 521, 454. Ref. Borella et al. NIM A, 577, 626.

The Raw Capture Yield is estimated according to the following equation:

$$Y_{Raw}(E_n) = \frac{\sum_i R_i W_i}{E_{binding} \cdot \mathcal{O}(E_n)} \begin{bmatrix} 1 \end{bmatrix}$$

 $\Sigma R_i W_i$ number of weighted counts per bunch (SiMon) at E_n ; $E_{binding}$ capture energy for the sample under investigation; $\Phi(E_n)$ number of neutrons impinging on the sample.

www.cern.ch/n_TOF

n_TOF experiments: Zr isotopes

Zirconium Alloy is important for several components of Nuclear Reactors. The reason is because is corrosive resistant also at high temperatures.

Zirconium is important also for fuel composition. TRIGA reactor at ENEA Casaccia uses U-Zr-H fuel.

In '80 years 80% of Zr production was dedicated to the construction of Nuclear Reactors (Source American Society of Testing Materials).

n_TOF experiments

C Moreau, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – September 2004 G. Tagliente et al. PRC <u>77</u> (2008)

$$K = g \frac{\Gamma_n \cdot \Gamma_{\gamma}}{(\Gamma_n + \Gamma_{\gamma})},$$

<u>Capture</u>

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96Zr 93Zr ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

The n_TOF Collaboration

n_TOF experiments: 139La(n,γ)

•Used as a Monitor of Neutron Flux in High radiation environment together with other isotopes (e.g. Cd and Au);

•Lanthanum is added to MA to stabilize the fuel (Mechanical and Thermal Properties) and it is used in samples to perform cross section measurements.

•It is one of the most abundant Fission Product produced in Thermal Reactors (~5%).

•Lanthanum is almost monoisotopic (140La is 0.1%).

n_TOF experiments: 139La(n,γ)

Remarkable energy resolution and background conditions have allowed the determination of the resonance parameters up to 9 keV.

RI = 10.8 ± 1.0 barn average γ -widths: s-waves = 50.7 ± 5.4 meV p-waves = 33.6 ± 6.9 meV $<D_0>= 252 \pm 22 \text{ eV}$ $S_0 = (0.82 \pm 0.05) \times 10^{-4}$ $S_1 = (0.55 \pm 0.04) \times 10^{-4}$

R Terlizzi, et al. PRC 57.

www.cern.ch/n_TOF

The n_TOF Collaboration

n_TOF experiments: Pb and Bi

ADVANTAGES

- SODIUM is chemically very REACTIVE;
- Pb-Bi boiling point (1670 °C) is higher than sodium (883 °C);
- Heavy elements absorb better the radioactivity, especially γ-rays.
- DISADVANTAGES
 - Corrosion of Structural Materials
 - High density and small size reactors limits the safety from the seismic point of view;
 - Radioactivity and Contamination from Po isotopes.

n_TOF experiments: Pb and Bi

Very large energy neutron region to detect the neutron levels.

Very accurate determination of the resonance width.

At low neutron energy, the resonance levels are in agreement with the previous measurements.

ⁿ C Domingo-Pardo, et al. (The n_TOF Collaboration) 3 Pb papers published in Phys. Rev. C **74**, 76, 77 (2006-2007)

Very low neutron sensitivity of capture γ -ray detection systems & high resolution

www.cern.ch/n_TOF

The n_TOF Collaboration

n_TOF experiments: Pb and Bi

C Domingo-Pardo, et al. (The n_TOF Collaboration) Phys. Rev. C **74**, 025807 (2006)

NEW MEASUREMENT OF NEUTRON CAPTURE ...

PHYSICAL REVIEW C 74, 025807 (2006)

TABLE II. Resonance parameters ^a and radiative k	ernels ^o for ²⁰⁹ Bi.	
---	--	--

²⁰⁹Bi(n,γ

E_{\circ} (eV)	1	J	$\Gamma_n (\text{meV})$	Γ_{γ} (meV)	$g\Gamma_{\gamma}\Gamma_n/\Gamma$ (meV)
801.6(1)	0	5	4309(145)	33.3(12)	18.2(6)
2323.8(6)	0	4	17888(333)	26.8(17)	12.0(8)
3350.83(4)	1	5	87(9)	18.2(3)	9.5(2)
4458.74(2)	1	5	173(13)	23.2(22)	11.3(11)
5114.0(3)	0	5	5640(270)	65(2)	35.3(11)
6288.59(2)	1	4	116(18)	17.0(17)	6.7(7)
6525.0(3)	1	3	957(100)	25.3(14)	8.6(5)
9016.8(4)	1	6	408(77)	21.1(14)	13.0(9)
9159.20(7)	1	5	259(45)	21.4(21)	10.9(11)
9718.910(1)	1	4	104(22)	74(7)	19.5(21)
9767.2(3)	1	3	900(114)	90(8)	28.7(26)
12098					65(4) ^c
15649.8(1.0)	1	5	1000	47(4)	20.2(17)
17440.0(1.3)	1	6	1538(300)	32(3)	20.4(18)
17839.5(9)	1	5	464(181)	43(4)	21.7(20)
20870	1	5	954(227)	34.4(33)	18.3(17)
21050	1	4	7444(778)	33(3)	14.8(13)
22286.0(9)	1	5	181(91)	33.6(32)	15.1(15)
23149.1(1.3)	1	6	208(154)	25.3(25)	14.7(15)

^aAngular orbital momenta, *l*, resonance spins *J*, and neutron widths, Γ_n , are mainly from Refs. [27,28].

^bUncertainties are given as $18.2(6) \equiv 18.2 \pm 0.6$.

^cThis area corresponds to the sum of the areas of the broad *s*-wave resonance at the indicated energy, plus two *p*-wave resonances at 12.092 and 12.285 keV.

16% higher MACS for kT = 5-8 keV 81% r-process abundance for ²⁰⁹Bi

The n TOF Collaboration

Pb and Bi: MACS and Implications

Main and Strong s-process Components. Several branching ratios are present. Alpha recycling. Difficult to estimate the r-process contribution without accurate

Cross section measurements.

Larger cross section especially at low energies (E_n <15 keV).

Relative isotopical abundance are 5% lower.

Other components higher The n TOF Collaboration

Largest differences for ¹⁸⁸Os. Sizeable differences in the low neutron energy region 10-20 keV.

MACS[186Os] / MACS[187Os] = 0.41

 16.5 ± 2 Gyr higher than other cosmochronometers (14.5 \pm 2.5) but consistent.

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

Low PS duty-cycle favours measurements on radiactive samples

The n_TOF Collaboration

High resolution power of the neutron resonances.

Interesting implications in Nuclear Astrophysics. (Th/U and Th/Eu chronometers).

The most important ones are in Th fuel cycle.

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & G. Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73 (2006)

www.cern.ch/n_TOF

The n_TOF Collaboration

n_TOF experiments

n_TOF experiment: $151Sm(n,\gamma)$ Energy Amplifier Demonstration Facility. 149 Sm 0.0035 0.003 $\langle \sigma_{n,\gamma} \rangle f y \left(b \right)$ PhD. Thesis: A. Herrera-Martinez 0.0025 ¹⁴⁷Pm ¹⁵¹Sm 0.002 ∔ ∔¹⁴⁵Nd 0.0015 ۰. 3 1×10^{13} ENDF (ref.) ¹⁰³Ru I¹³⁵Cs 0.001 JENDL (Pu-239) 0.0005 JEFF (all isotopes) 8x10¹² 110 120 150 abs (JENDL-ENDF) 100130140160 (s/2m) fux (n/2m) (n/2m) (s/2m) (s/2m A (ATOMIC MASS NUMBER) abs (JEFF-ENDF) 2001800.95160 $\Delta k_{\infty} / k_{\infty} (pcm)$ 140 $2x10^{12}$ 0.9120 100 Src 0.85 \sim 80 1x10 00 ⁰⁰ 0.8 1×10^4 1x10⁵ 1×10^{6} 1x10³ 1x10 60 Neutron energy (eV) 400.75 200 07 140 160 180 200 2080 0 60 100120FUEL BURNUP (GW. day/ton)

¹⁵¹Sm $J^{\pi} = 5/2^+$ Capture resonances $J = 2^+$ or 3^+ Selected different resonances between 1 and 400 eV All s-wave (but impossible to tell J)

Advantages:

- very good signal-to-background ratio
- high resolution allows to select different resonances
- accurate study of the detector response (MC simulations and data)

Disadvantages:

- poor γ-ray resolution
- statistics at high energy is limited
- Proposed solution: filter model predictions through detector's response

Models of Photon Strength Function

Photon Strength Function are proportional to the γ -ray cross section on nuclei.

Several Models are under study: BA, KMF, EGLO, K.

Each models has few parameters to fit and reproduce at best some data (neutron capture, photoabsorption, electron scattering etc...)

Large implications in Nuclear Astrophysics especially for the r-process stellar environments.

Monte Carlo Simulations

To simulate the detector response, used three different Monte Carlo codes:

- MCNP-X
- GEANT 3.21
- GEANT 4

Accurate implementation of the materials and detailed geometry of experimental apparatus

- \succ γ -rays are generated uniformily in the sample
- Used same cuts as in the experiment (threshold of 200 keV)
- > Energy resolution of the detectors included in the simulations

Comparison with the Experimental Data

www.cern.ch/n TOF

The n_TOF-Ph2 experiments 2008 and beyond

Capture measurements

<u>Mo, Ru, Pd stable isotopes</u>	r-process residuals, isotopic patterns in SiC grains
<u>Fe, Ni, Zn, and Se (stable isotopes)</u> ⁷⁹ Se	s-process nucleosynthesis in massive stars nuclear data needs for structural materials
<u>A≈150 (isotopes varii)</u>	s-process branching points long-lived fission products
234,236U, 231,233Pa	Th/U nuclear fuel cycle
<u>235,238U</u>	standards, conventional U/Pu fuel cycle
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides

(*) endorsed by CERN Isolde-n_TOF Committee, execution in 2008

www.cern.ch/n_TOF

www.cern.ch/n_TOF

EAR-2: Optimized sensitivity

Improvements (ex: ¹⁵¹ Sr	n case)	consequences for sample mass
sample mass / 3 s/bkgd=1		✓ 50 mg
use BaF ₂ TAC	ε x 10	✓ 5 mg
■ USE D ₂ O - use 20 m flight nath	Ψ ₃₀ Χ 5 Φ × 100	1 mg
	$\Psi_{30} \times 100$	10 μg

boosts sensitivity by a factor of 5000!

problems of sample production and safety issues relaxed

Summary & Conclusions

- n_TOF is able to accurately measure neutron capture cross sections for several isotopes radioactive and not.
- Analysis in progress or almost finished of resonance parameters for several isotopes:
 - \sim C₆D₆: Zr, Mg, Os, Th isotopes in the Resolved Resonance Region. \sim TAC: Am, Np, U isotopes.
- Preliminary results on Fission and Photon Strength Function;
- Large Plan of measurements in EAR-1:

ready to restart activities in 2008!

Future perspectives: Construction of second beam line EAR-2.

Capture

n_TOF experiments 2002-4

data analysis completed, results publisheddata analysis completed, paper in preparationdata analysis in progress

The n_TOF-Ph2 experiments

Capture measurements		
<u>Mo, Ru, Pd stable isotopes</u>	r-process residuals calculation isotopic patterns in SiC grains	
<u>Fe, Ni, Zn, and Se (stable isotopes)</u> ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials	
<u>A≈150 (isotopes varii)</u>	s-process branching points long-lived fission products	
<u>^{234,236}U, ^{231,233}Pa</u>	Th/U nuclear fuel cycle	
235,238U	standards, conventional U/Pu fuel cycle	
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides	

(*) approved by CERN Scientific Committee (planned for execution in 2007)

NEW target design

xz-squared target (40x40x55) with 5cm-thick cylinder moderator containers

P Cennini, V Vlachoudis, K Tsoulou, et al. (CERN/AB/ATB), October 2006

NEW: target design proposal

P Cennini, V Vlachoudis, K Tsoulou, et al. (CERN/AB/ATB), October 2006

The second n_TOF beam line & EAR-2

Flight-path length : ~20 m at 90° respect to p-beam direction expected neutron flux enhancement: ~ 100 drastic reduction of the t_0 flash

The n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 Research Institutions 120 researchers

PS: all quoted documents are available online at

www.cern.ch/ntof

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96**Zr,** ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

&

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

n_TOF

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

for nuclear data

refereed journal

www.cern.ch/ntof

all infos available in

on the n_TOF website

evaluators:

publications

&

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

TABLE IX. The ${}^{151}\text{Sm}(n,\gamma)$ cross section in the unresolved resonance region from 1 keV to 1 MeV.

Energy bin	$\sigma_{(n,\gamma)}$	Un	certainty (%)	
(keV)	(b)	Stat.	Syst.	Tot
1-1.2	24.52	0.8	4.4	4.5
1.2-1.5	23.68	0.8	4.3	4.4
1.5-1.75	21.94	1.0	4.2	4.3
1.75-2	19.76	1.2	4.2	4.3
2-2.5	15.43	1.1	4.1	4.3
2.5-3	15.36	1.3	4.1	4.3
3-4	12.78	1.2	4.1	4.3
4-5	10.04	1.4	4.1	4.3
5-7.5	8.91	2.1	2.9	3.6
7.5-10	5.85	3.0	3.1	4.3
10-12.5	5.38	3.9	2.9	4.8
12.5-15	4.26	4.9	3.2	5.8
15-20	3.82	3.8	3.2	4.9
20-25	3.52	4.6	3.5	5.8
25-30	3.13	4.5	3.1	5.5
30-40	2.69	4.4	3.2	5.5
40-50	2.17	4.8	3.4	5.9
50-60	1.90	5.2	3.3	6.2
60-80	1.66	4.1	3.6	5.5
80-100	1.30	5.1	4.6	6.9

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²⁰⁷Pb(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & accepted for publication in PRC (in press)

substantial disagreement for $E_n > 45 \text{ keV}$

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

TABLE II: Resonance parameters and radiative kernels from the analysis of the $^{207}\mathrm{Pb}(\mathrm{n},\gamma)$ data measured at n_TOF^a.

E_{\circ}	l	J	Γ_n	Γ_{γ}	$g\Gamma_{\gamma}\Gamma_n/\Gamma$
(eV)			(meV)	(meV)	(meV)
3064.700(3)	1	2	111.0(8)	145.0(9)	78.6(9)
10190.80(4)	1	2	656(50)	145.2(12)	149(14)
16172.80(10)	1	2	1395(126)	275(3)	287(30)
29396.1	1	2	16000	189(7)	234(9)
30485.9(5)	1	1	608(45)	592(50)	225(30)
37751(3)	1	1	50×10^{3}	843(40)	620(30)
41149(46)	0	1	1.220×10^{6}	3970(160)	2970(120)
48410(2)	1	2	1000	230(20)	235(20)
82990(12)	1	2	29×10^{3}	360(30)	444(30)
90228(24)	1	1	272×10^{3}	1615(100)	1200(80)
127900	1	1	613×10^{3}	1939(150)	1449(120)
130230	1	1	87×10^{3}	900(80)	675(60)
181510(6)	0	1	57.3×10^{3}	14709(500)	8780(300)
254440	2	3	111×10^{3}	1219(90)	2110(150)
256430	0	1	1.66×10^{6}	12740(380)	9482(280)
317000	0	1	$850{ imes}10^3$	10967(480)	8120(350)
Orbital angular	m	om	enta l and	resonance sp	bins J are from

Ref. [17].

3% accuracy of the capture kernel

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²⁰⁴Pb(n,γ)

²³²Th

^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & submitted for publication to PRC, October 2006

TABLE IV: Average neutron capture cross section for ²⁰⁴Pb.

E_{low}	E_{high}	Cross section	Statistical uncertainty ^a
(keV)	(keV)	(barn)	(%)
88.210	92.404	0.059	9
92.404	96.748	0.059	5
96.748	101.406	0.058	11
101.406	106.408	0.057	8
106.408	111.790	0.057	7
111.790	117.591	0.056	8
117.591	123.855	0.056	7
123.855	130.634	0.055	7
130.634	137.985	0.054	6
137.985	145.974	0.054	6
145.974	154.678	0.053	6
154.678	164.185	0.053	7
164.185	174.596	0.052	7
174.596	186.030	0.051	6
186.030	198.625	0.051	5
198.625	212.544	0.050	5
212.544	227.981	0.049	5
227.981	245.162	0.049	5
245.162	264.363	0.048	4
264.363	285.911	0.047	4
285.911	310.207	0.046	4
310.207	337.739	0.046	4
337.739	369.107	0.045	4
369.107	405.060	0.044	4
405.060	443.512	0.043	3

^aThis value has to be added in quadrature with the overall systematic uncertainty of 10%.

¹⁵¹Sm

204,206,207,208Pb 209Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

²⁰⁹Bi(n,γ)

NEW MEASUREMENT OF NEUTRON CAPTURE ...

PHYSICAL REVIEW C 74, 025807 (2006)

TABLE II. Resonance parameters" and radiative kernels" for>BI.					
$E_{\circ} (\mathrm{eV})$	1	J	$\Gamma_n ({\rm meV})$	Γ_{γ} (meV)	$g\Gamma_{\gamma}\Gamma_n/\Gamma(\mathrm{meV})$
801.6(1)	0	5	4309(145)	33.3(12)	18.2(6)
2323.8(6)	0	4	17888(333)	26.8(17)	12.0(8)
3350.83(4)	1	5	87(9)	18.2(3)	9.5(2)
4458.74(2)	1	5	173(13)	23.2(22)	11.3(11)
5114.0(3)	0	5	5640(270)	65(2)	35.3(11)
6288.59(2)	1	4	116(18)	17.0(17)	6.7(7)
6525.0(3)	1	3	957(100)	25.3(14)	8.6(5)
9016.8(4)	1	6	408(77)	21.1(14)	13.0(9)
9159.20(7)	1	5	259(45)	21.4(21)	10.9(11)
9718.910(1)	1	4	104(22)	74(7)	19.5(21)
9767.2(3)	1	3	900(114)	90(8)	28.7(26)
12098					65(4) ^c
15649.8(1.0)	1	5	1000	47(4)	20.2(17)
17440.0(1.3)	1	6	1538(300)	32(3)	20.4(18)
17839.5(9)	1	5	464(181)	43(4)	21.7(20)
20870	1	5	954(227)	34.4(33)	18.3(17)
21050	1	4	7444(778)	33(3)	14.8(13)
22286.0(9)	1	5	181(91)	33.6(32)	15.1(15)
23149.1(1.3)	1	6	208(154)	25.3(25)	14.7(15)

^aAngular orbital momenta, *l*, resonance spins *J*, and neutron widths, Γ_n , are mainly from Refs. [27,28].

^bUncertainties are given as $18.2(6) \equiv 18.2 \pm 0.6$.

^cThis area corresponds to the sum of the areas of the broad *s*-wave resonance at the indicated energy, plus two *p*-wave resonances at 12.092 and 12.285 keV.

16% higher MACS for kT = 5-8 keV 81% r-process abundance for ²⁰⁹Bi

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

n_TOF experiments

G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

TABLE II. Different components of
estimated systematic or correlated uncer-
tainty in the measured cross section.

Component	Uncertainty (%)
PHWT	0.5
Normalization	0.5
Background	2.5
Flux shape	2.0
Total	3.3

For $E_n = 4$ keV up to 1 MeV full dataset is available on the PRC publication

E _{low} (keV)	E _{high} (keV)	Cross section (b)	Uncertainty (b)
3.994	4.482	0.958	0.020
4.482	5.028	1.281	0.021
5.028	5.642	1.097	0.016
5.642	6.331	1.004	0.014
6.331	7.103	0.912	0.013
7.103	7.970	0.919	0.013
7.970	8.942	0.848	0.013
8.942	10.033	0.817	0.012
10.033	11.257	0.800	0.012
11.257	12.631	0.787	0.012
12.631	14.172	0.761	0.012
14.172	15.902	0.729	0.011
15.902	17.842	0.685	0.011
17.842	20.019	0.613	0.010
20.019	22.461	0.641	0.010
22.461	25.202	0.566	0.009
25.202	28.277	0.545	0.009
28.277	31.728	0.513	0.008
31.728	35.599	0.497	0.009
35.599	39.943	0.468	0.009
39.943	44.816	0.456	0.008
44.816	50.285	0.413	0.007
50.285	56.421	0.365	0.006
56.421	63.305	0.346	0.006
63.305	71.029	0.318	0.006
71.029	79.696	0.275	0.005
79.696	89.421	0.248	0.005
89.421	100.332	0.229	0.005
100.332	112.574	0.220	0.004
112.574	126.310	0.204	0.004
126.310	141.722	0.192	0.004

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

F Gunsing, et al. - The n_TOF Collaboration ²³²Th(n,γ) ND2004 Conference, Santa Fe, NM – Sept. 2004 10^{0} 10^{-1} capture yield 10⁻²⊦ 10 10⁻⁻ 1.0 100.0 1000.0 10.0 neutron energy (eV)

RRR region analysis in progress

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96**Zr**, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Very low neutron sensitivity of capture γ -ray detection systems & high resolution The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Source: P Koehler & S O'Brien

Capture & transmission data (from ORELA) analyzed simultanously

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

24,25,26<mark>Mg</mark>

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Moreau, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – September 2004 G Tagliente et al. (The n_TOF Collaboration) NIC-IX, CERN, June 2006

Capture ¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96<mark>Zr</mark> ⁹³Zr ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La(n,γ)

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

R Terlizzi, et al. (The n_TOF Collaboration) CGS12 Notre Dame, IN, USA AIP Conference Proceedings 819 & submitted for publication to PRC, October 2006

Capture

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96**Zr**, ⁹³**Z**r ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

Figure 3: Neutron capture on ²³⁴U yield in the thermal region and for the first resonance obtained in the present experiment.

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 $^{234}U(n,\gamma)$ full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg

90,91,92,94,96<mark>Zr,</mark> ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm
204,206,207,208Pb, 209Bi
232Th
24,25,26Mg
90,91,92,94,96Zr, 93Zr
139La
186,187,188Os
233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 ²³⁴U(n,γ) full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232Th 24,25,26**Mg** 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr 139 a 186,187,188**Os** 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232Th 24,25,26Mg 90,91,92,94,96Zr, 93Zr ¹³⁹La 186,187,188Os 233,234U 237Np 240Pu,243Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np experimetal Yield fitted with SAMMY

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np Radiative Kernel from nTOF compared to JENDL

 $RK_{n_{TOF}}$ on average 3% below the RK_{JENDL} and 6% below the RK_{ENDF}

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr 139 a 186,187,188**Os** 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

Capture

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**Os** 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi

n_TOF TAC in operation

The n TOF Collaboration

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n TOF ²⁴⁰Pu $\sigma(n,\gamma)$ compared to Evaluated Data Libraries

²³⁷Np ^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np²⁴⁰Pu²⁴³Am **Fission** 233,234,235,236,238 232**Th** ²⁰⁹Bi

²³⁷Np 241,243Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²⁴⁰Pu Radiative Kernel from nTOF compared to evaluated data

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr 139 a 186,187,188**Os** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
90,91,92,94,96Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

An unprecedent wide energy range can be explored at n_TOF in a single experiment

The n_TOF Collaboration

n_TOF experiments

²³⁴U(n,f)

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr 139La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission

233,234,235,236,<u>238</u>U

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

An unprecedent wide energy range can be explored at n_TOF in a single experiment

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>OS</mark> 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr 139 a 186,187,188<mark>OS</mark> 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

An unprecedent wide energy range can be explored at n_TOF in a single experiment

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Higher fission x-section in the sub-threshold region

The n_TOF Collaboration

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Higher fission x-section in the sub-threshold region

The n_TOF Collaboration

<u>Capture</u> ¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

FIC-1 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Recommended CERN'2004

180

The n TOF Collaboration

200

15% lower U8/U5 ratio at high energies

80

100

Neutron Energy, MeV

120

140

160

60

40

0.6

20

Capture studies: Mo, Ru and Pd

Motivations:

- Accurate determination of the r-process abundances (r-process residuals) from observations
- SiC grains carry direct information on s-process efficiencies in individual AGB stars. Abundance ratios in SiC grains strongly depend on available capture cross sections data.

$$N_r = N_{solar} - N_s$$

Capture studies: Mo, Ru and Pd

- Setup: The n_TOF TAC in EAR-1 (a few cases with C₆D₆ if larger neutron scattering)
- All samples are stable and non-hazardous
- Metal samples preferable (oxides acceptable)

Capture studies: Fe, Ni, Zn, and Se

Motivations:

- Study of the weak s-process component (nucleosynthesis up to A ~ 90)
- Contribution of massive stars (core He-burning phase) to the s-process nucleosynthesis.
- s-process efficiency due to bottleneck cross sections (Example: ⁶²Ni)

$\begin{array}{c} 1.6 \\ 1.6 \\ 1.4 \\ 0.6 \\ 0.8 \\ 0.6 \\$

mass number

n TOF-Ph

In addition:

Fe and Ni are the most important structural materials for nuclear technologies. Results of previous measurements at n_TOF show that capture rates for light and intermediate-mass isotopes need to be revised.

Capture studies: Fe, Ni, Zn, and Se

The ⁷⁹Se case

• s-process branching: neutron density & temperature conditions for the weak component. • $t_{1/2} < 6.5 \times 10^4 \text{ yr}$

Capture studies: Fe, Ni, Zn, and Se

- Setup: C₆D₆ in EAR-1
- All samples are stable(*) and non-hazardous
- Metal samples preferable (oxides acceptable)

(*) except ⁷⁹Se

Capture studies: A \approx 150 s-process path ¹⁵⁷Gd ⁵⁶Gd Sm Pm ¹⁵⁶Eu ⁵⁵Eu .761 a 15.2 d lld 148 150 Nd ⁵⁴Sm s-process path • EAR-2 required • Sample from ISOLDE? r-process • branching isotope in the Sm-Eu-Gd region: test for low-mass TP-AGB • branching ratio (capture/ β -decay) provides infos on the thermodynamical conditions of the s-processing (if accurate capture rates are known!)

Capture studies: actinides

Neutron cross section measurements for nuclear waste transmutation and advanced nuclear technologies

^{241,243} Am	The most important neutron poison in the fuels proposed for transmutation scenarios. Build up of Cm isotopes.
239,240,242PU	(n,γ) and (n,f) with active canning. Build up of Am and Cm isotopes.
²⁴⁵ Cm	No data available.
235,238	Improvement of standard cross sections.
²³² Th, ^{233,234} U ^{231,233} Pa	Th/U advanced nuclear fuels. ²³³ U fission with active canning.

All measurements can be done in EAR-1 (except ²⁴¹Am and ²³³Pa)

Capture studies: actual TAC setup

Capture studies: active canning for simultaneous (n,γ) & (n,f) measurements

<u><< back</u>

Measurement of capture cross sections of fissile materials (veto) and measurement of the $(n,\gamma)/(n,f)$ ratio.

n_TOF-Ph2

Fission studies

Fission studies absolute ²³⁵U(n,f) cross section from (n,p) scattering

Fission studies FF distributions in vibrational resonances

Principles:

- Time-tag detector for the "start" signal
- Masses (kinetic energies) of FF from position-sensitive detectors (MICROMEGAS or semiconductors)

Fission studies cross sections with PPAC detectors: present setup

Measurements:

- ²³¹Pa(n,f)
- Fission fragments angular distributions (45° tilted targets) for ²³²Th, ²³⁸U and other low-activity actinides

EAR-2 boost:

- measurements of ^{241,243}Am (in class-A lab)
- measurements of ²⁴¹Pu and ²⁴⁴Cm (in class-A lab)

Fission studies with twin ionization chamber

Twin ionization detector with measurement of both FF (PPAC principle)

Measurements:

- FF yields: mass & charge
- Test measurement with ²³⁵U then measurements of other MA

(n,p), (n, α) & (n,lcp) measurements

 CIC: compensated ion chamber already tested at n_TOF

For n_TOF-Ph2:

 four chambers in the same volume for multi-sample measurements

Measurements:

- ¹⁴⁷Sm(n, α) (tune up experiment)
- ⁶LiF target for calibration

EAR-2 boost:

 approx 100 times the ORELA count rate expected

n TOF-Ph2

• ^{67}Zn and $^{99}Ru(n,\alpha)$ measurements

(n,p), (n, α) & (n,lcp) measurements

2. MICROMEGAS

already used for measurements of nuclear recoils at n_TOF

Neutron detection Particle Product HV1 Amplification Conversion -0.2-3 mm ~-1000 V kV/cm neutron converter charged Particle e" Product 0 kV/cm Micromesh 50-100 µm HV2 ~-400 V Strips

MICROMEGAS

For n_TOF-Ph2:

- converter replaced by sample
- expected count rate: 1 reaction/pulse (σ=200 mb, Ø=5cm, 1µm thick)

(n,p), (n, α) & (n,lcp) measurements

3. Scattering chambers with ΔE -E or ΔE - ΔE -E telescopes

Setup: in parallel with fission detectors

- \checkmark production cross sections $\sigma(\mathsf{E}_n)$ for (n,xc)
- <u>ν c</u> = p, α, d

✓ differential cross sections $d\sigma/d\Omega$, $d\sigma/dE$

Measurements:

- ⁵⁶Fe and ²⁰⁸Pb (tune up experiment)
 Al, V, Cr, Zr, Th, and ²³⁸U
- a few x 10¹⁸ protons/sample in fission mode

<< back

Neutron scattering reactions

Direct n + n scattering experiment not feasible!

Alternatively, interaction of two neutrons in the final state of a nuclear reaction. Examples of such reactions are:

 $\bullet \pi^+ + {}^2H \rightarrow n + n + \gamma$

■ n + $^{2}H \rightarrow$ n + n + p

Neutron incident energy 30 – 75 MeV in 2.5 MeV bins

²³²Th(n,γ): n_TOF & GELINA

Source: L Leal, IAEA CRP meeting, December 2004
²³⁷Np(n,γ) at LANSCE

Source: J Ullman, n_BANT workshop, CERN, March 2005

²³⁷Np(n,γ) at LANSCE

Source: J Ullman, n_BANT workshop, CERN, March 2005

²³⁷Np(n,γ) at n_TOF

www.cern.ch/n_TOF

< back

The n_TOF Collaboration

Parallel Plate Avalache Counters (PPACs)

•20x20 cm²
•Isobutane gas 7 mbar
•HV 500-600 V
•3 mm between electrodes
•1 anode (a few ns signal width)
•Electrode thickness: 1.5 μm (Mylar+Al)
•Deposit thickness : 100-300 μg/cm²
•Backing thickness : 0.1 μm (Al)
• : 1.5 μm (Mylar)

•Fission event identification: T2 in coincidence with T1

IN2P3 (IPN Orsay)

position-sensitive!