

1944-9

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Heavy Water Reactors: 1. Physics, Concepts and History

B.P. Bromley AECL, Chalk River Laboratories Canada

Heavy Water Reactors: 1. Physics, Concepts and History

Blair P. Bromley Reactor and Radiation Physics Branch AECL – Chalk River Laboratories

> Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 26/27, 2008

Outline

- Many topics to cover (by no means complete)
- Fundamental Physics
- Design Options
- Physics and Engineering Issues
- Review of Conventional HWR Power Reactors
 - Prototypes / Experiments (Historical)
 - Commercial Reactors
- Present Day and Near Future
- Additional Information (see Appendix)
 - Other HWR concepts.

Goals

- Better appreciation of heavy water reactors.
 - Historical review.
 - We can learn from the past.
 - Variables change with time.
- Better understanding.
 - Motivation.
 - How it works.
 - Design features.
 - Physics issues, engineering issues.
 - Long term prospects, implications for future.

References

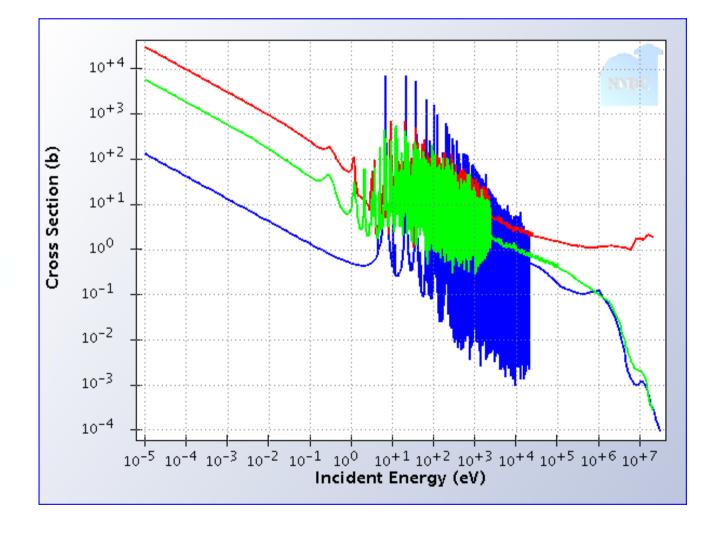
- IAEA, Heavy Water Reactors: Status and Projected Development, Tech. Series 407, Vienna, (2002).
- IAEA, Directory of Nuclear Reactors, Volumes I to X, (1962 to 1976).
- IAEA, Heavy-Water Power Reactors, Proceedings of Symposium, Vienna, 11-15 Sept. 1967 (1968).
- IAEA, Heavy Water Lattices: Second Panel Report, Tech. Series No. 20, Vienna, (1963).
- AECL, *Canada Enters the Nuclear Age*, McGill-Queen's University Press, Montreal, (1997).
- AECL, CANDU 6 Technical Outline, TDSI-105, Mississauga, Ontario, Canada, January (1992).

A Few Useful References

- British Nuclear Energy Society, Steam Generating and Other Heavy Water Reactors, Proc. of Conf. 14-16 May, (1968).
- Power Reactor and Nuclear Fuel Development Corporation (Japan), *The 9th JUICE Meeting on Heavy Water Reactors*, Tokyo, March 11, (1982).
- R.L. Loftness, *Nuclear Power Plants*, D.Van Nostrand, Princeton, NJ, (1964).
- I.R. Cameron, Nuclear Fission Reactors, Plenum Press, New York, (1982).
- J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, New York, (1976).
- J.R. Lamarsh, Introduction to Nuclear Engineering, 2nd Edition, Addison-Wesley, Reading, Massachusetts, (1983).
- J.H. Wright, *Nuclear Heat Sources for Modern Steam Turbines*, Proc. of American Power Conference, Vol. 24, pp.183-194, (1962).
- J.G. Duffy and C.C. Graves, *Design of 10 MWe SDR*, Nuclear Engineering and Science Conference, April 6-9, 1959, Cleveland, Ohio.
- And many more

A Few Useful Websites

- <u>http://www.aecl.ca/site3.aspx</u>
- <u>http://www.aecl.ca/Assets/Publications/C6-Technical-Summary.pdf</u>
- <u>http://www.aecl.ca/Assets/Publications/ACR1000-Tech-Summary.pdf</u>
- http://www.nuceng.ca/
- http://canteach.candu.org/
- <u>http://canteach.candu.org/image_index.html</u>
- http://www.cns-snc.ca/home_eng.html
- http://www.nuclearfaq.ca/
- <u>http://www.npcil.nic.in/nupower_vol13_3/ahwr.htm</u>
- Just Google or Yahoo "heavy water reactor"

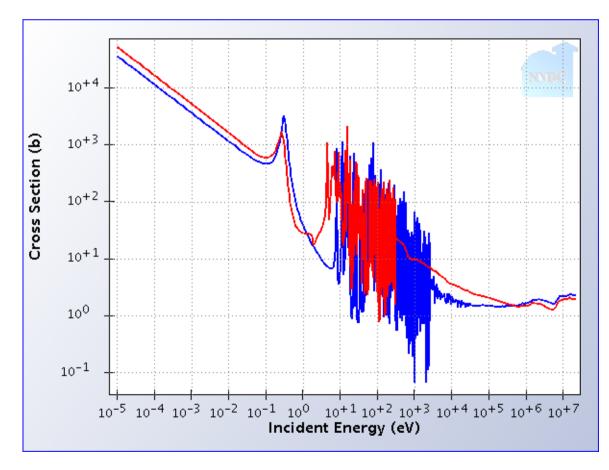

A

Reactor Physics Considerations

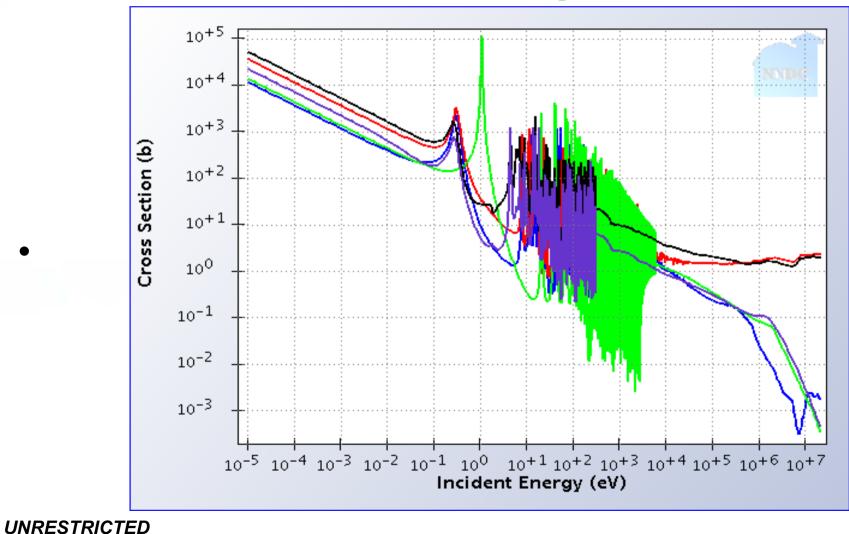
- Goal is to sustain fission reactions in a critical assembly using available fissile (and fertile) isotopes.
- Fission cross section for various isotopes
 - Thermal spectrum: ~ 500 barns to 1000 barns
 - Fast spectrum: ~1 barn to 10 barns
- Minimize enrichment requirements
 - Cost
 - Safety
- Incentive to use thermal reactors

U-235 / U-238

U-235 Fission, U-235 capture, U-238 capture

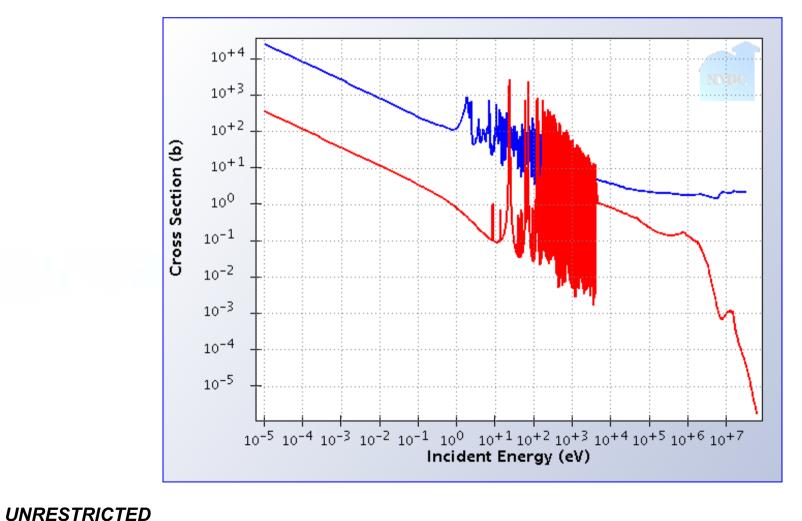


UNRESTRICTED


A

• Fission cross sections

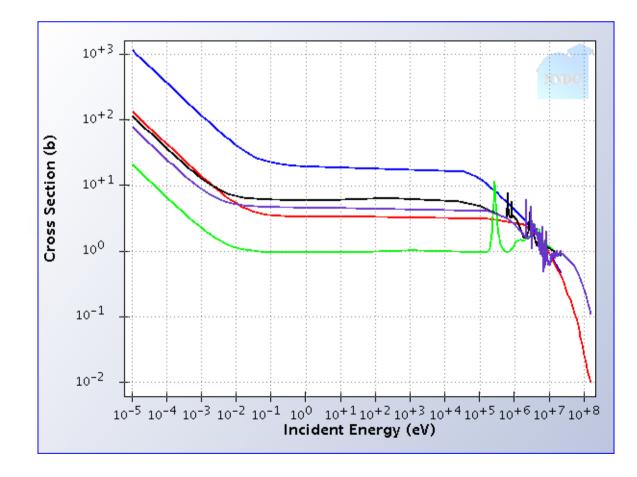
Pu-239/Pu-241 Fission, capture Pu-240 capture



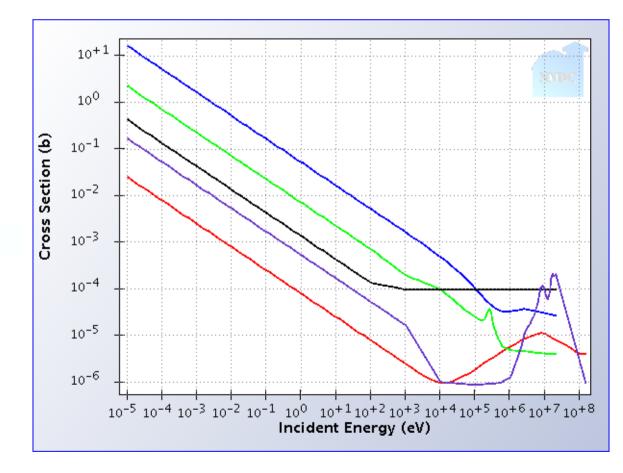
10

A

U-233 / Th-232


• Capture, fission.

A


Isotopes for Moderation

• H, D, ⁷Li, Be, C – Scatter Cross Sections

Isotopes for Moderation

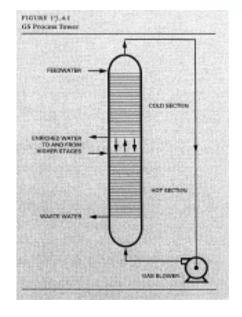
• H, D, ⁷Li, Be, C – Capture Cross Sections

Options for Moderator

- Hydrogen-based moderator
 - shortest neutron slowing down distance, but absorption
- Deuterium-based moderator
 - Moderating ratio 30 to 80 times higher than alternatives
 - Excellent neutron economy possible

A	α	ξ	$\rho[g/cm^3]$	from 2 MeV to 1 eV	$\xi \Sigma_{\rm s} [\rm cm^{-1}]$	$\xi \Sigma_{\rm s} / \Sigma_{\rm a}$
1	0	1	gas	14		
2	.111	.725	-	20		
		.920	1.0	16	1.35	71
		.509	1.1	29	0.176	5670
4	.360	.425	gas	43	1.6×10^{-5}	83
9	.640	.209	1.85	69	0.158	143
12	.716	.158	1.60	91	0.060	192
238	.983	.008	19.1	1730	0.003	.0092
	1 2 4 9 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1 gas 2 .111 .725 gas 920 1.0 509 1.1 4 .360 .425 gas 9 .640 .209 1.85 12 .716 .158 1.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

D₂**O Moderator Advantages**


- Excellent moderating ratio, > 5500
- What does this get you?
 - Can use lower enrichment (natural uranium)
 - Higher burnups for a given enrichment.
 - Reduce parasitic neutron absorption in moderator
 - Save neutrons, and spend them elsewhere.
 - Permits use of higher-absorption structural materials
 - High P, High T environments better efficiencies.
 - Materials to withstand corrosive environments.
 - Thermal breeders with U-233 / Th-232 cycle feasible.

D₂O Characteristics

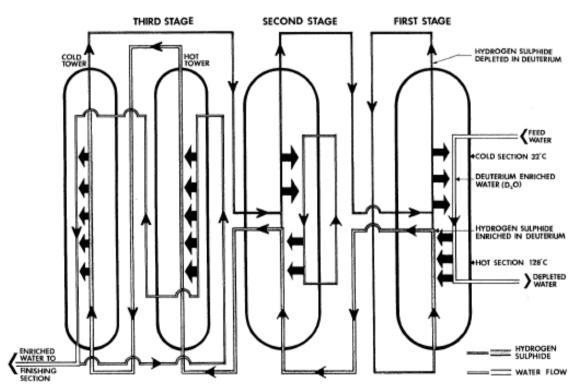
- Thermal-hydraulic properties similar to H₂O.
- Purity Required > 99.5 wt%D₂O
 - $dk_{eff}/dwt\%D_2O \sim +10 \text{ to } +30 \text{ mk/wt}\%D_2O$
 - less sensitive for enriched fuel.
- Cost:
 - -~300 to 500 \$/kg-D₂O; ~200 to 400 \$/kWe
 - New technologies will reduce the cost.
- Quantity Required
 - -~450 tonnes for CANDU-6 (~ 0.65 tonnes/MWe)
 - ~\$150 to \$200 million / reactor
 - Upper limit for D₂O-cooled HWR reactors.
 - Use of lower moderator/fuel ratio (tighter-lattice pitch) and/or
 - Alternative coolants can drastically reduce D₂O requirements.

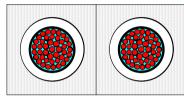
D₂**O Extraction from Water**

- Electrolysis (1930's / 1940's)
 - Norsk Hydro (WWII)
 - Trail, BC (Canada)
- GS (Girdler-Sulfide) Process
 - 1960's to 1980's; industrial scale.
 - Reversible thermal/chemical process
 - $\text{HDO} + \text{H}_2\text{S} \rightarrow \text{H}_2\text{O} + \text{HDS}$
 - Deuterium moves to sulfide form at hot temp. (130° C)
 - Deuterium moves back to oxide form at cool temp.
 - Multiple stages with hot/cold streams.

D₂**O Extraction for Water**

GS Hydrogen Sulfide Separation Process




Fig. 5.7. Production of heavy water by GS hydrogen sulfide process (courtesy of Atomic Energy of Canada Limited).

D₂**O Extraction for Water**

- Alternative and new processes under advanced development and refinement
 - Combined Industrial Reforming and Catalytic Exchange (CIRCE)
 - Combined Electrolysis and Catalytic Exchange (CECE)
 - Bi-thermal Hydrogen-Water (BHW) processes
 - Other physical and chemical processes (ammonia/water, etc.)
- Newer processes more efficient
 - More cost-effective.
- Reference:
 - Heavy Water: A Manufacturer's Guide for the Hydrogen Century, by A.I.
 Miller, Canadian Nuclear Society Bulletin Vol 22, No 1, 2001 February
 - www.cns-snc.ca/Bulletin/A_Miller_Heavy_Water.pdf

Design Options for HWR's

- Pressure tubes (PT)
 - Thick-wall pressure tube is main boundary
 - $-D_2O$ moderator at low T (<100°C), low P (1 atm)
 - PT sits inside calandria tube (CT)
 - PT, CT must be low neutron absorber (Zircaloy)
 - Low-P coolants (organic, liquid metal) may allow thinner PT/CT.
- Pressure vessel (PV)
 - Thin-walled PT/CT used to isolate fuel channels.
 - Moderator at higher P (10 to 15 MPa), T (~300°C).
 - Thick pressure vessel (~20 cm to 30 cm).
 - Pre-stressed reinforced concrete is an option.

Coolant Options (Current)

- D₂O at 10 to 15 MPa (CANDU, Atucha)
- H₂O at 10 to 15 MPa (ACR-1000)
- Boiling H₂O at 5 to 7 MPa (AHWR)
- Supercritical H₂O at 25 MPa (Gen-IV)
 - SCOTT-R (Westinghouse study, 1960's)
 - CANDU-SCR (AECL, Gen-IV)

Coolant Features – D₂O

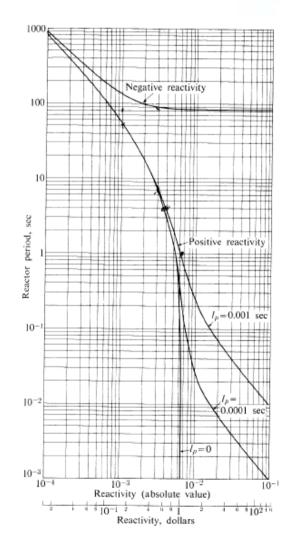
- D₂O at 10 to 15 MPa (CANDU, Atucha)
 - Low absorption cross section; neutron economy.
 - Conventional steam-cycle technology.
 - Void reactivity
 - Depending on fuel / lattice design.
 - May be slightly positive, or negative.
 - Higher capital costs; minimizing leakage.
 - Tritium production and handling, but useful by-product.
 - Water chemistry / corrosion for long-term operation.
 - Hydriding of Zircaloy-PT.
 - Efficiencies usually limited to < 34% (30% to 31% typical).

Coolant Features – H₂O

- H₂O at 10 to 15 MPa (ACR-1000)
 - Cheaper, lower capital costs
 - Conventional steam-cycle technology.
 - Higher neutron absorption; reduced neutron economy.
 - Must design lattice carefully to ensure negative CVR.
 - Water chemistry / corrosion for long-term operation.
 - Hydriding of Zircaloy-PT
 - Net efficiencies usually limited to ~ 34%.

Coolant Features – Boiling H₂O

Boiling H₂O at 5 to 7 MPa


- Cheaper, lower capital costs
- Thinner PT's feasible.
- Direct steam cycle
 - Eliminate steam generator; slightly higher efficiencies.
- Neutron absorption in H_2O
- Must design lattice carefully to ensure negative CVR.
 - Smaller lattice pitch; enriched and/or MOX fuel.
 - More complicated reactivity control system.
- Water chemistry / corrosion; hydriding of Zircaloy-PT
- Radioactivity in steam turbine.

Coolant Features – Supercritical H₂O

- Supercritical H₂O at 25 MPa
 - Similarities to boiling H_2O .
 - Higher efficiencies possible, ~45%.
 - Thicker PT's required; reduced neutron economy.
 - Severe conditions; corrosive environment
 - T~550°C to 600°C.
 - High-temp. materials required reduced neutron economy.
 - Use of ZrO₂, MgO, or graphite liner for PT
 - Careful design for postulated accidents
 - Depressurization from 25 MPa.
 - More challenging to design for on-line refuelling.

- Moderator isolated from fuel/coolant
 - Keep at lower temp (< 100°C, for PT reactors)</p>
- Physics properties depend on:
 - Moderator / fuel ratio
 - Fuel pin size (resonance self shielding)
 - Composition / enrichment (U, Pu, Th)
 - Coolant type (D_2O , H_2O , gas, organic, liquid metal, etc.)
- Reactivity Coefficients
 - Fuel temperature comparable to LWR.
 - Void reactivity (+ or), depending on design.
 - Power coefficient (+ or), depending on design.

- Longer neutron lifetime.
 - -~1 ms vs. LWR (~0.1 ms)
 - $-\Delta \rho$ = +6 mk \rightarrow Period ~ 1 sec
 - Slower transient (easier to control)
- Extra delayed neutron group
 - Photo-neutrons from γ + D \rightarrow n + H reaction.
 - Half-life of photo-neutron precursors > longest lived delayed neutron precursor (~55 seconds).

- Conversion Ratio
 - C = 0.7 to 0.9 (depends on enrichment, parasitic losses)
 - U-metal ideal, but UO₂, UC more practical
 - C > 1.0 possible for U-233 / Th-232 thermal breeder
 - Careful design of lattice required to maximize economy.
- Burnup of fuel
 - Natural U \rightarrow ~ 5 GWd/t to 10 GWd/t (CANDU ~8 GWd/t)
 - Slightly enriched U \rightarrow ~ 10 GWd/t to 30 GWd/t
 - Feasible to use recovered uranium / spent LWR fuel
 - Work in tandem with LWR's to maximize energy extraction.
 - Potential role for HWR's in GNEP

- PT D₂O reactors, some unique safety features
 - Multiple, independent shutdown systems feasible
 - Shutdown rods
 - Moderator poison injection (B10, Gd, etc.)
 - Low-pressure environment for moderator.
 - Longer reactor period gives time for shutdown to work
 - Multiple barriers
 - Fuel clad
 - Pressure Tube
 - Calandria Tube
 - Large heat sink to dissipate heat

- Power Density in Core
 - Factor in size/cost of reactor
 - How much concrete are you going to use?
 - Depends on enrichment, lattice pitch, coolant.
 - $-D_2O/H_2O$ cooled: ~9 to 12 kW/litre
 - (LWR ~ 50 to 100 kW/litre)
 - Is to 20 kW/litre feasible with tighter lattice pitch (ACR)
 - Gas-cooled: ~ 1 to 4 kW/litre
 - It to 15 kW/litre feasible with high pressures (10 MPa)
 - Organics, Liquid Metal ~ 4 to 10 kW/litre
 - 10 to 15 kW/litre feasible

HWR Operational Characteristics

- Heat load to moderator
 - 5% to 6% of fission energy deposited
 - Gamma-heating, neutron slowing down.
- Thermal efficiencies (net)
 - Depends on choice of coolant, secondary cycle.
 - Typical: 28% to 31% for CANDU-type reactors.
 - Improved for larger, more modern plants.
 - Improvements in steam turbines, balance of plant.
 - 32% to 34% feasible for HWBLW-type reactors.
 - Gas, organic, liquid metal: 35% to 50% (stretch).
 - Economies of scale with larger plants.

Design Components (CANDU)

Fuel / Bundles

- UO₂ clad in Zircaloy-4; collapsed cladding.
- Graphite interlayer (CANLUB) to improve durability.
- Brazed spacers, bearing pads, appendages
 - Maintain element separation; enhance cooling
- Alternatives
 - Fuel: UC, U₃Si
 - Clad: SAP (organics) or stainless steel (gas, liquid metal, SC H₂O)
- Pressure Tubes
 - Zr-2.5%Nb alloy (corrosion, toughness, strength)
- Calandria Tubes
 - Zircaloy-2
- Feeders/Headers
 - Stainless steel (special mechanical joints with PT)

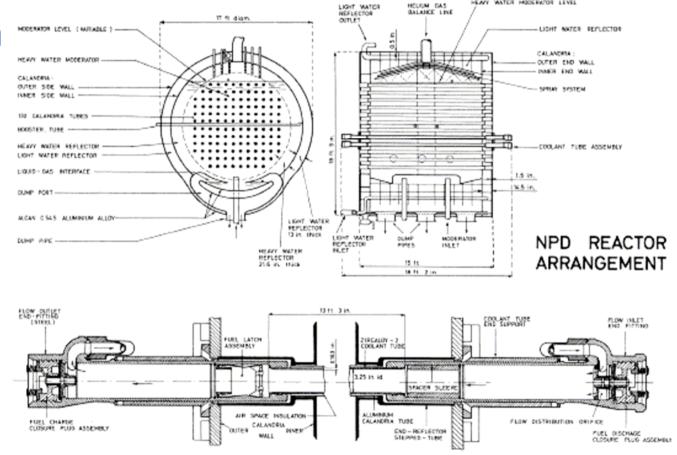
Control Devices

- Control rods (stainless steel SS, etc.)
- Shutdown rods (B₄C, Cd/Ag/In, SS/Cd, etc.)
- Adjusters (flatten flux shape) Cobalt, SS
- Zone controllers
 - Tubes with liquid H₂O used to adjust local reactivity.
- Moderator poison options
 - Boric acid for long-term reactivity changes
 - Gadolinium nitrate injection for fast shutdown
 - CdSO₄
- Moderator level
 - Additional means for reactivity control
- Moderator dump tank
 - Initial designs; not used in later

HWR (CANDU) Features

- Excellent neutron economy.
 - High conversion ratios.
 - Operate on natural uranium
 - High fuel utilization; conservation of resources.
- On-line refuelling.
 - Low excess reactivity.
 - Higher fuel burnup for a given enrichment.
 - High capacity factors (0.8 to 0.95)
- Modular construction
 - Pressure tubes; replaceable
 - Local fabrication

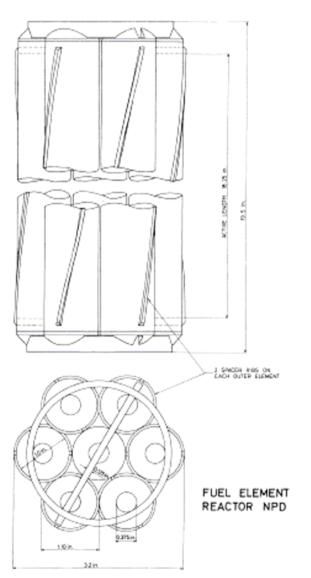
NPD-2 (Canada)


- Operated 1962-1985; shutdown 1987.
- 89 MW_{th} / 19 MW_e (21.7% efficiency)
- World's first HWR to produce electricity.
- Pressure tubes, on-line refuelling.
- Short (0.5-m) natural-uranium fuel bundles.
- Test bed for CANDU technologies.
 - Demonstration of feasibility of PHWR concept.
 - Debugging D₂O leakage, trips, reactivity control
 - Fuel performance, alternative designs.
- Training center for operations.
 - Experience for later CANDU designs

HEAVY WATER HODERATOR LEVEL

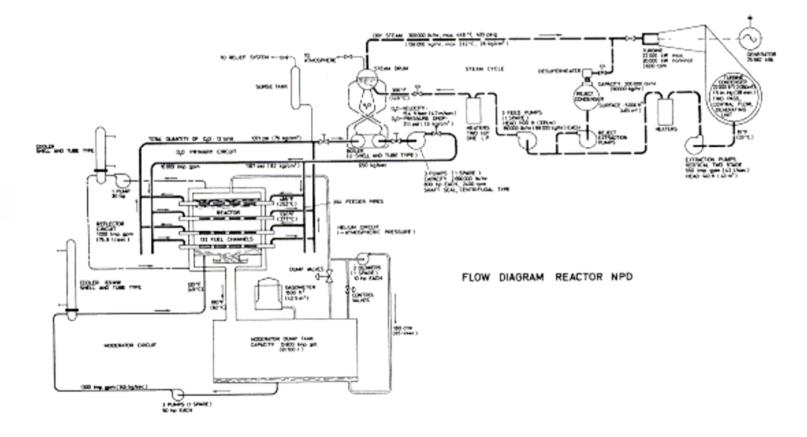
NPD-2 (Canada)

- 132 PT's Zr-2
- 26-cm pitch
- Control
 - Mod. Level
 - Mod. Dump
 - Booster rod


COOLANT TUBE ASSEMBLY

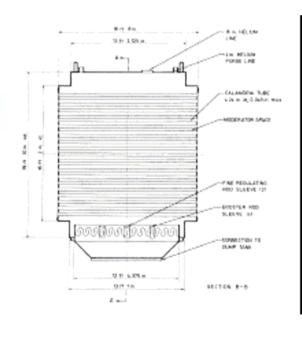
A

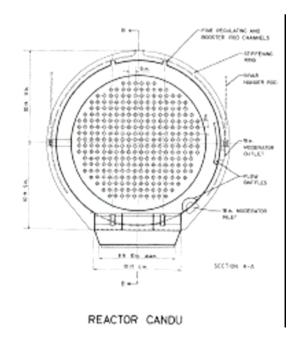
NPD-2 (Canada)


- 0.5-metre bundles
- 7 elements, wire-wrap
- Natural UO₂, Zr-2 clad
- C=0.8
- 7,300 MWd/t burnup

NPD-2 (Canada)

- 2.6 kW/litre, 7.9 MPa, 277°C
- Steam at 2.7 MPa, 232°C

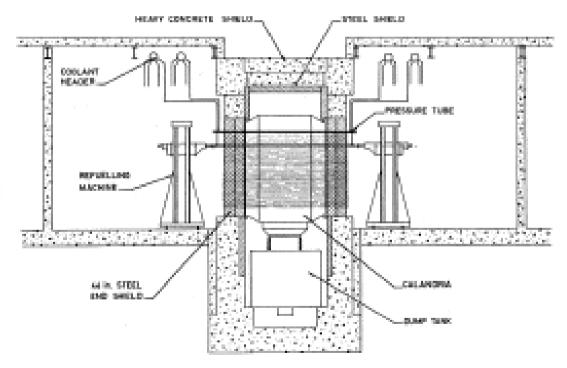



Douglas Point (Canada)

- Prototype for commercial PHWR
 - CANadian Deuterium Uranium (CANDU)
 - Lessons learned from NPD-2.
 - Construction/commissioning (1961-1967)
 - Operated 1968-1984
 - Larger-scale test bed for equipment and operations.
 - Debugging HW leaks.
- 693 MW_{th} / 200 MW_e, 29%, 4.77 kW/litre
- D₂O Coolant at 9.9 MPa, 293°C
- Steam generators / drums
 - Steam at 4.1 MPa, 250°C

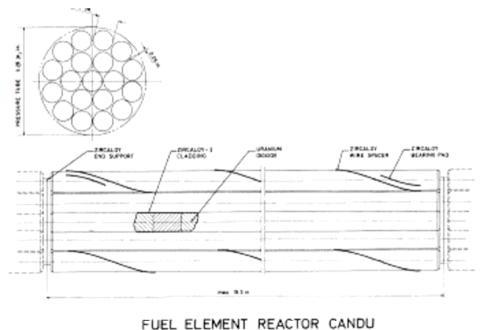
Douglas Point

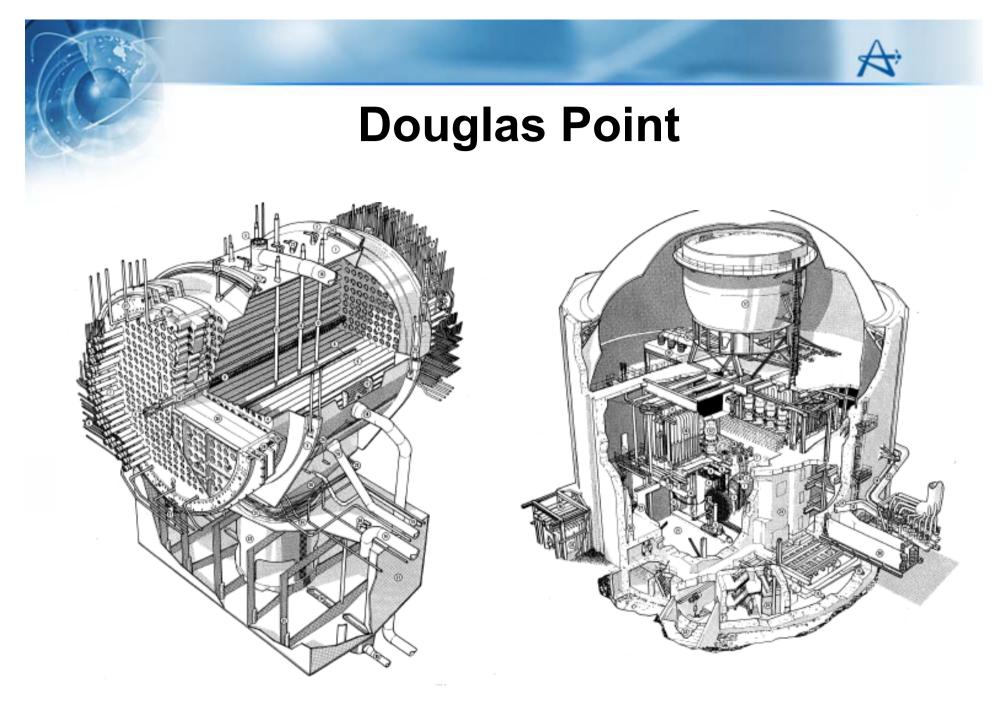
- 306 Pressure Tubes, Zr-2, 8.3 cm id
- 22.86-cm lattice pitch
- Control
 - CdSO₄; mod. level, dump; booster rods, adjusters



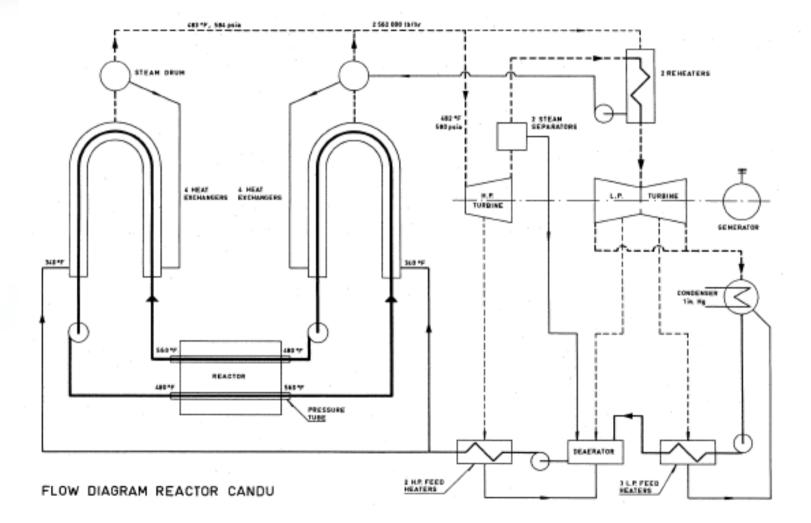
Douglas Point (Canada)

On-line refuelling


- 5 bundles per day, 2 per shift, 9-hour intervals

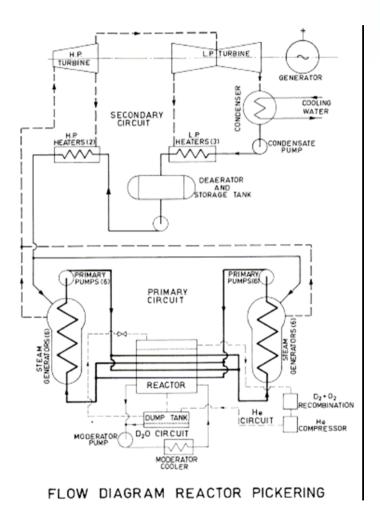

REACTOR VAULT

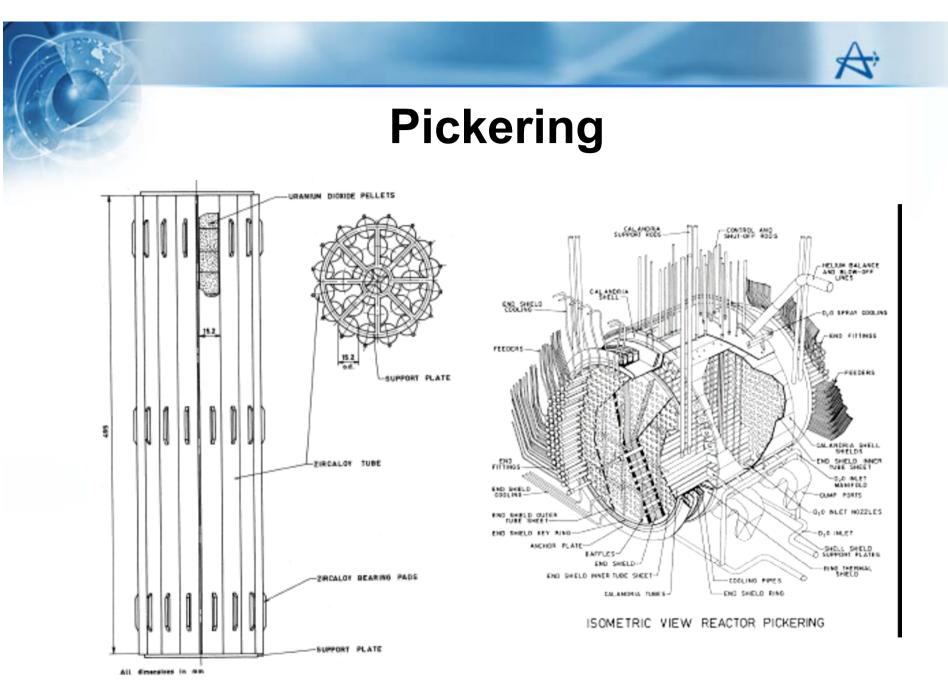
Douglas Point


- 19-element bundles (12 per channel)
 - Natural UO₂, Zr-2 clad, wire-wraps, 0.5-m long
- ~9,750 MWd/t burnup
 - Larger fuel pins, C=0.72

UNRESTRICTED

Douglas Point (Canada)


UNRESTRICTED


44

Pickering

- Multi-unit station
 - Scale up Douglas Point
- 390 pressure tubes
- 28-element fuel
 - Natural uranium; larger pins.
 - C~0.82
 - 8,000 to 9,000 MWd/t burnup
- Pickering A (1971-1973)
 - -4x515 MW_e
 - First commercial reactors.
- Pickering B (1982-1986)
 - 4x516 MW_e (1982-1986)

FUEL BUNDLE REACTOR PICKERING

UNRESTRICTED

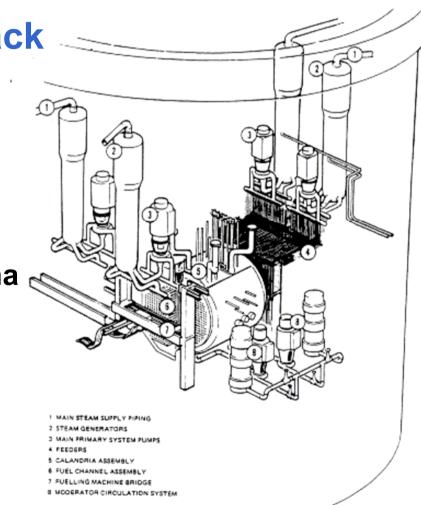
46

Bruce / Darlington CANDU's

Multi-unit stations

- Single vacuum building; shared equipment.
- Bruce A (1976-1979): $4 \times 740 \text{ MW}_{e}$ (upped to 840 MW_e)
- Bruce B (1984-1987): $4 \times 750 \text{ MW}_{e}$ (upped to 860 MW_e)
- Darlington (1990-1993): 4 x 881 MW_e (net)
- 480 Pressure Tubes, 12-13 bundles / channel
- 37-element natural uranium fuel bundles (0.5-m)
 - Fuel pins smaller than
 - 7-rod (NPD-2), 19-rod (Douglas Point), 28-rod (Pickering)
 - Enhanced heat transfer; higher bundle powers
 - -~7,500 MWd/t to 9,000 MWd/t burnup
 - Reduced resonance shielding with smaller pins, but,
 - Larger core with reduced neutron leakage.

Bruce / Darlington CANDU's

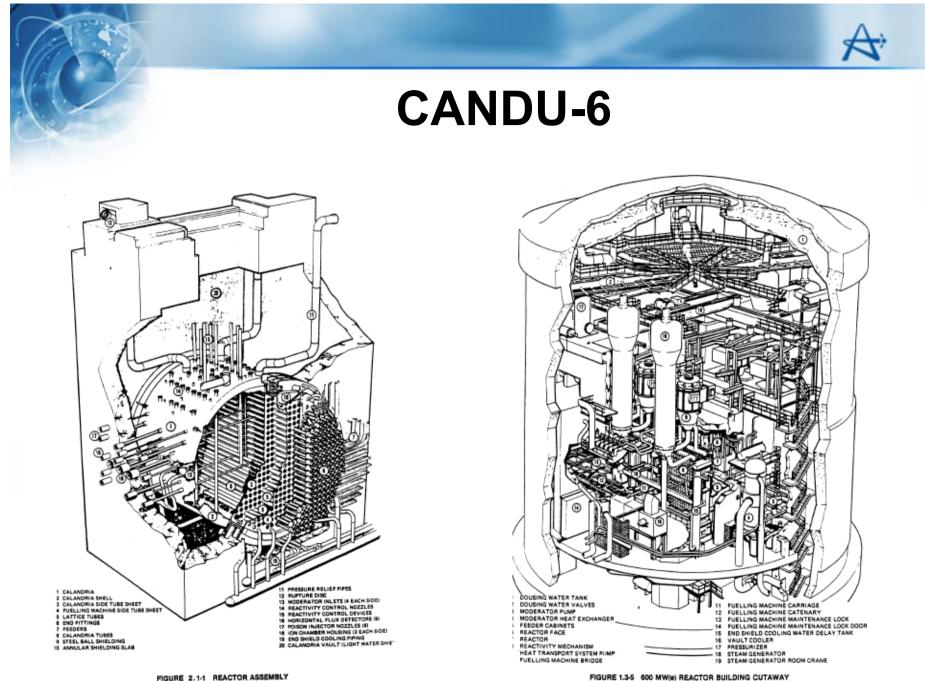
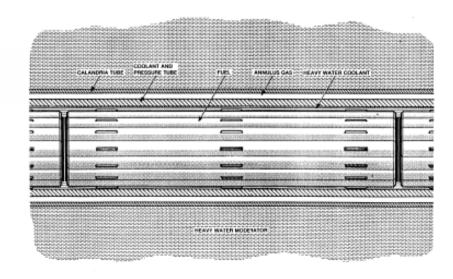

• 840 MW_e to 881 MW_e

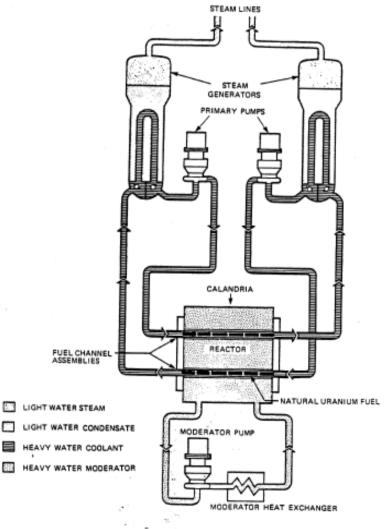
A comparison of principal CANDU		Heat Transport System Conditions				Heat Transport Pumps			Steam Generators				
Heat Transport System Parameters CANDU 6 Operating stations or under construction	Electrical Output (MW) Gross/Net	Number of Fuel Channels	Elements in Fuel Bundle	Number of Loops	Outlet header Pressure (MPa)	Maximum Channel Flow (kg/s)	Outlet Header Quality (%)	Total	Operating	Motor Rating (kW)	Area (m ²) per Steam Generator	Preheater	Steam Pressure (MPa)
Point Lepreau,	680/633	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Gentilly 2	675/638	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Wolsong 1	678/638	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Embalse	648/600	380	37	2	10.0	24	4	4	4	6700	2800	Yes	4.7
Cernavoda 1, 2	710/665	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Wolsong 2, 3, 4	715/668	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Qinshan 1, 2	728/668	380	37	2	10.0	24	4	4	4	6700	3200	Yes	4.7
Other CANDU operating st	tations												
Pickering A 4 Units	542/515	390	28	2	8.7	23		16	12	1420	1850	Yes	4.1
Bruce A 4 Units	904/840	480	37	1	9.1	24	<1	4	4	8200	2400	No	4.4
Pickering B 4 Units	540/516	390	28	2	8.7	23		16	12	1420	1850	Yes	4.1
Bruce B 4 Units	915/860	480	37	1	9.1	24	<1	4	4	8200	2400	No	4.7
Darlington 4 Units	936/881	480	37	2	10.0	25	2	4	4	9600	4900	Yes	5.1

UNRESTRICTED

- Single-unit Stations
- Operations / Design Feedback
 - Pickering, Bruce
- Domestic
 - Point Lepreau, Gentilly-2
- International
 - Korea, Argentina, Romania, China

UNRESTRICTED


FIGURE 2.1-1 REACTOR ASSEMBLY

50

- 37-element fuel
 - 28.58-cm square pitch
 - same as Bruce/Darlington
- ~7,500 MWd/t burnup



UNRESTRICTED

FIGURE 2.2.1 CANDU NUCLEAR STEAM SUPPLY SYSTEM

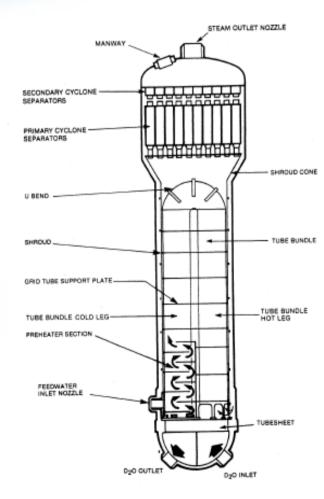
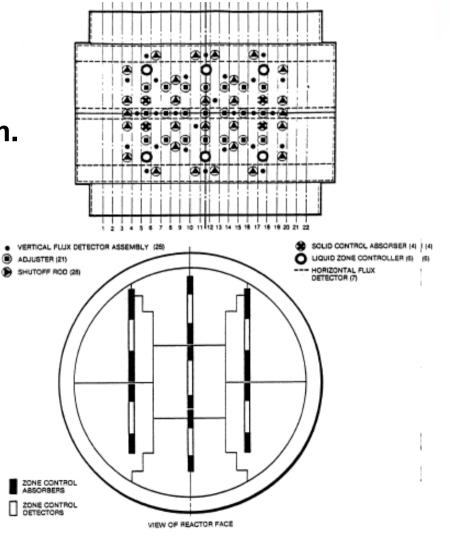


FIGURE 2.2-8 CANDU STEAM GENERATOR


FIGURE 2.2-7 FEEDER AND HEADER ARRANGEMENT

A

CANDU-6

- Flux Detectors
 - Vertical / Horizontal
 - Vanadium, Inconel / platinum.
- Adjuster Rods
- Shutoff Rods
- Solid Control Absorber
- Liquid Zone Controller – H₂O

- Shutdown System (SDS1 and SDS2)
- Shutoff Rods
- Poison Injection
- Gd, Boron
- Redundancy
- Independent

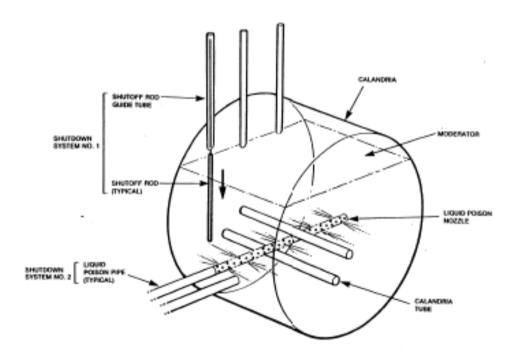
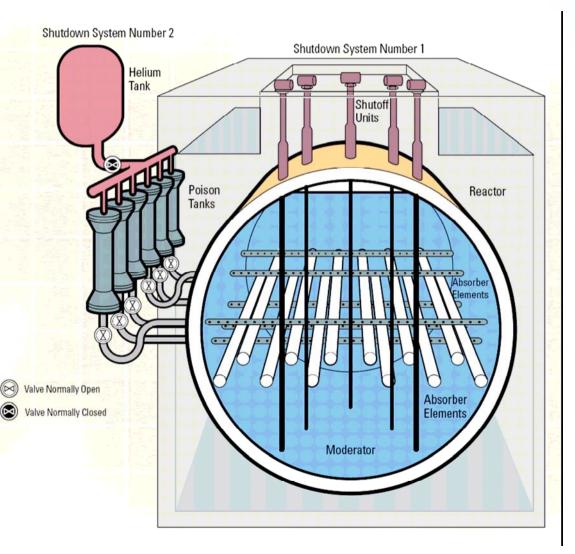



FIGURE 4.3-5 SHUTDOWN SYSTEMS: SHUTOFF RODS AND LIQUID "POISON" INJECTION

- SDS1
 - Mechanical Rods
- SDS2
 - Poison injection.
 - Gadolinium
 - Boron

- 2 fuelling machines
- charge/discharge
- 8-bundle shift
- 12 bundle string
- 8 new bundles
- 4 old bundles moved
- end plugs replaced

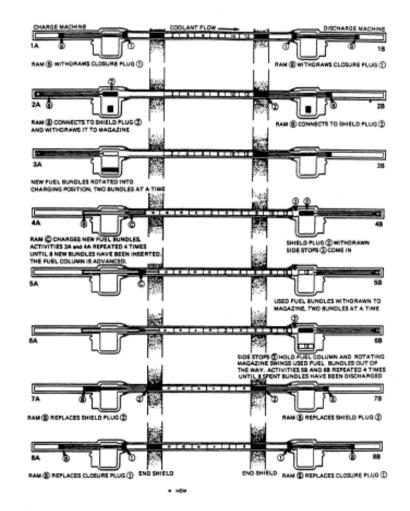
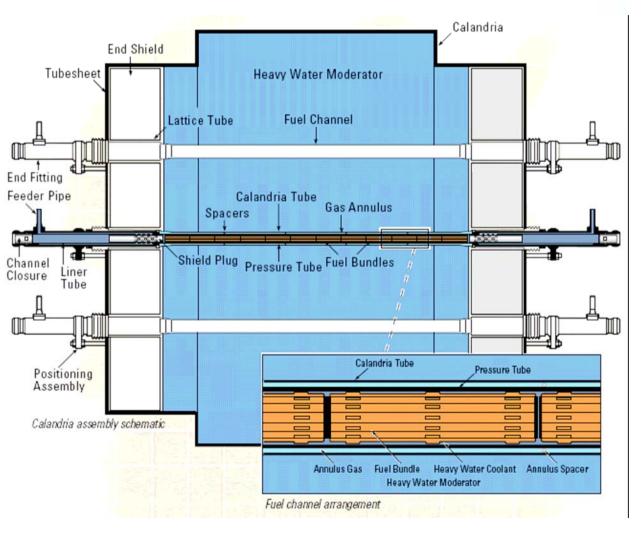



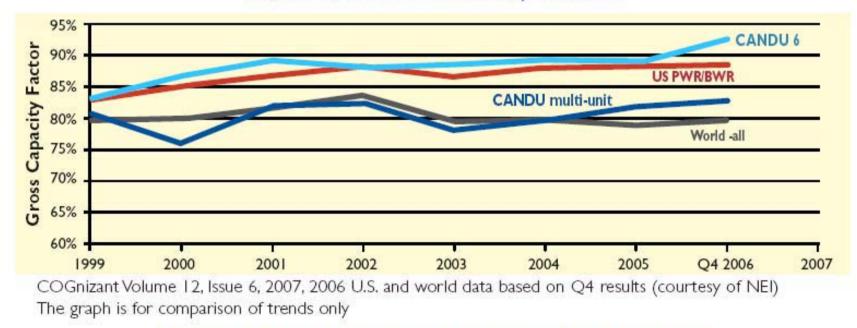
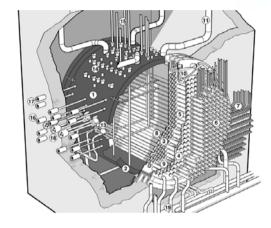
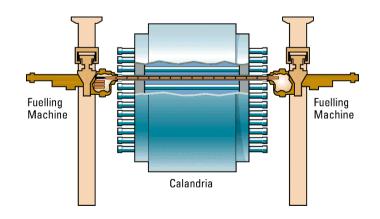
FIGURE 5.0-2 8-BUNDLE CHANGING SEQUENCE IN A CANDU 600 MW(e) PHWR

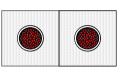
• Core fuelling.

CANDU-6 Performance

High capacity factors (up to 93% average)

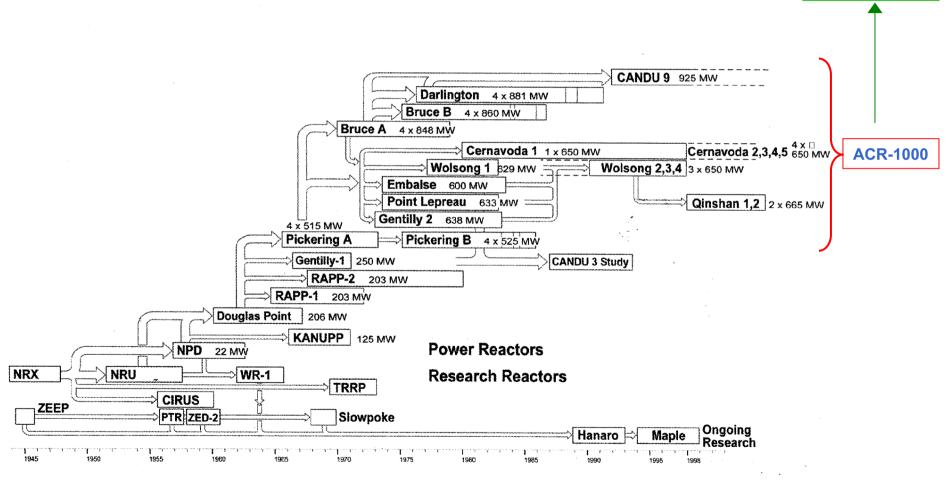
CANDU 6/PHWR Performance Trends (1999 - 2006) Reference: CANDU Owners Group Newsletter


Figure 5-1 Comparison of Gross Capacity Factors

CANDU Reactor Technology

- D₂O Moderator (~70°C, low pressure) in calandria.
- D₂O Coolant (~10 MPa, 250°C 310°C)
- Pressure Tubes, Calandria Tubes
- 28.58-cm square lattice pitch
- Natural uranium fuel (UO₂) in bundles
 - 37-element (CANDU-6, Bruce, Darlington)
 - 28-element (Pickering)
- Burnup ~ 7,500 MWd/t (nominal).
 - 8,000 to 9,000 MWd/t for larger cores.
- On-Line Refueling (8 to 12 bundles per day)
- Two independent shutdown systems.
 - SDS1 (shutoff rods), SDS2 (poison injection).



CANDU Evolution

Research, prototypes, commercial.

UNRESTRICTED

CANDU-SCWR

ACR-1000 (Gen III+)

- Advanced CANDU Reactor
 - Base on CANDU-6 design features
 - Pressure tubes
 - Heavy water moderator
 - Short fuel bundles online refueling.
 - Multiple shutdown systems.
 - Balance-of-plant similar, but higher steam P, T.
 - $-3187 \text{ MW}_{\text{th}}$ / 1085 MW_e (net)
 - Higher coolant pressure/temperatures
 - 34% net efficiency.

Special features

- Light water coolant (11 MPa, 319°C)
 - Reduced capital costs.
- CANFLEX-ACR Fuel Bundle
 - 43-element design; enhanced heat transfer.
 - Enriched fuel (2 wt% to 3 wt%), central absorbing pin (Dy).
 - 20,000 MWd/t burnup (nominal), extend with experience.
- Tighter lattice pitch; larger calandria tubes.
 - More compact core; smaller reactor.
 - Negative coolant void reactivity.
- Modular construction, competitive design
 - Lower capital costs.
 - Local fabrication of components.
 - Economical electricity.

Plant Layout

Figure 2-2 Reactor Building

Figure 2-11 Reactor Assembly

UNRESTRICTED

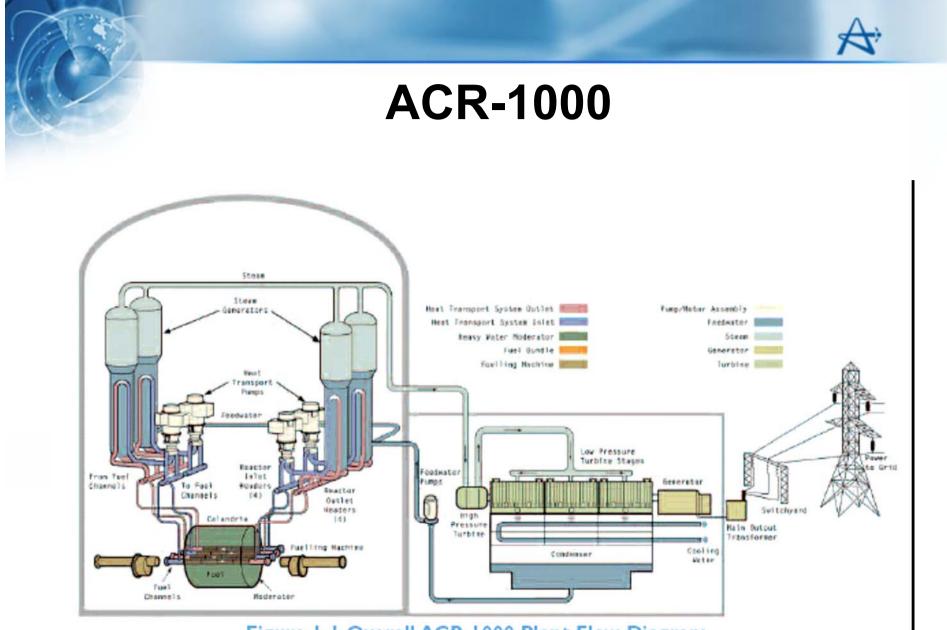


Figure 1-1 Overall ACR-1000 Plant Flow Diagram

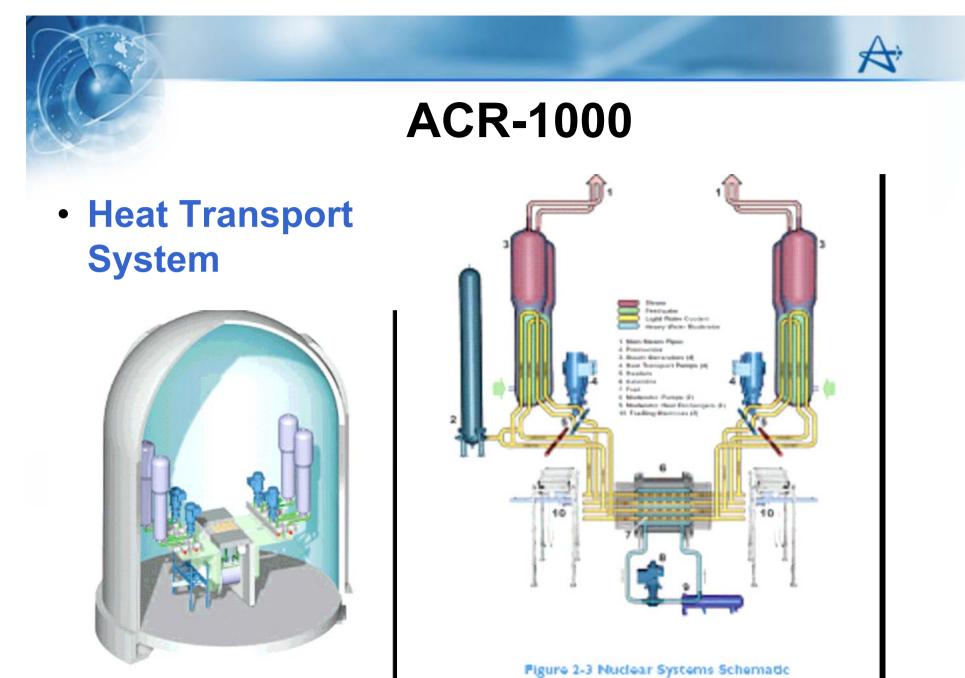


Figure 2-6 3D New of Heat Transport System in Reactor Building

UNRESTRICTED

Comparison with CANDU-6, Darlington

	CANDU 6	Darlington	ACR-1000
Reactor			
Output [MWth]	2064	2657	3187
Coolant	Pressurized D_2O	Pressurized D_2O	Pressurized Light Water
Moderator	D ₂ O	D_2O	D ₂ O
Calandria diameter [m]	7.6	8.5	7.5
Fuel channel	Horizontal Zr 2.5wt%Nb	Horizontal Zr 2.5wt%Nb	Horizontal Zr 2.5wt%Nb
	alloy pressure tubes with	alloy pressure tubes with	alloy pressure tubes with
	modified 403 SS end-fittings	modified 403 SS end-fittings	modified 403 SS end-fittings
Fuel channels	380	480	520
Lattice pitch (mm)	286	286	240
Pressure tube wall thickn	ess (mm) 4	4	6.5

Table 2- 5 Reactor Core Design Data

UNRESTRICTED

Comparison with CANDU-6, Darlington

	CANDU 6	Darlington	ACR-1000
Reactor outlet header			
pressure [MPa (g)]	9.9	9.9	11.1
Reactor outlet header			
temperature [°C]	310	310	319
Reactor inlet header			
pressure [MPa (g)]	11.2	11.3	12.5
Reactor inlet header			
temperature [°C]	260	267	275
Single channel flow			
(maximum) [kg/s]	28	27.4	28

Table 2-1 Heat Transport System Design Data

Comparison with CANDU-6, Darlington

Steam Generators	CANDU 6	Darlington	ACR-1000		
Number	4	4	4		
Туре	Vertical U-tube /	Vertical U-tube /	Vertical U-tube /		
	integral pre-heater	integral pre-heater	integral pre-heater		
Nominal tube diameter [mm]	15.9 (5/8")	15.9 (5/8'')	17.5 (11/16")		
Steam temperature (nominal) [°C]	260	265	275.5		
Steam quality	0.9975	0.9975	0.999		
Steam pressure [MPa (g)]	4.6	5.0	5.9		

Table 2-3 Steam Generator Design Data

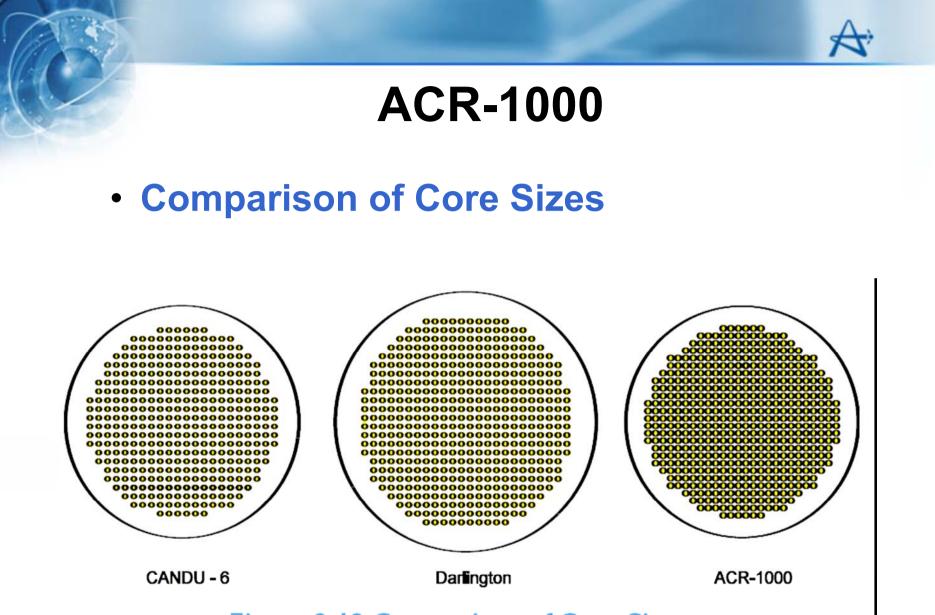


Figure 2-12 Comparison of Core Sizes

• Fueling Machine at Reactor Face

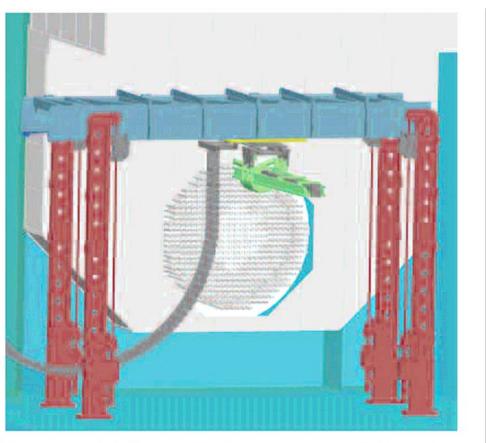


Figure 2-16 Fuelling Machine and Carriage

UNRESTRICTED

CANFLEX-ACR Fuel Bundle

Figure 2-19 CANFLEX®-ACR Fuel Bundle

UNRESTRICTED

 \mathbf{A}

ACR-1000

• Multiple barriers – defense in depth

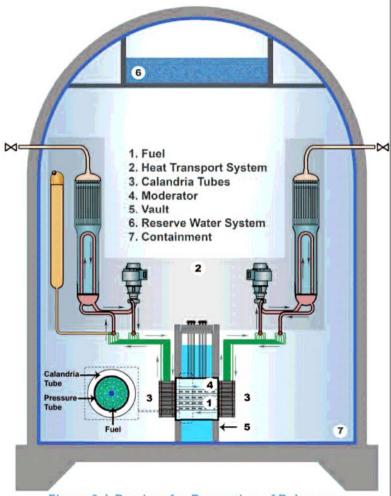


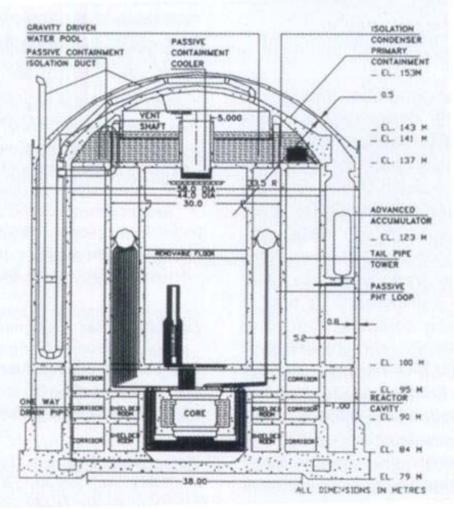

Figure 3-1 Barriers for Prevention of Releases

ACR-1000

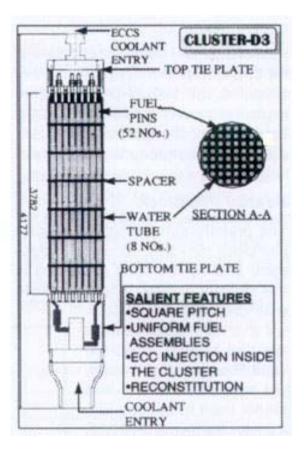
• Twin-unit stations

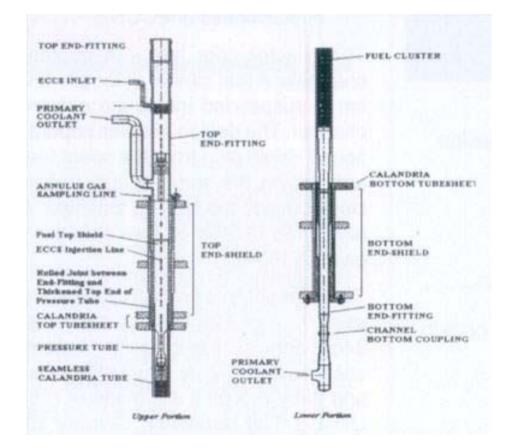
UNRESTRICTED

A

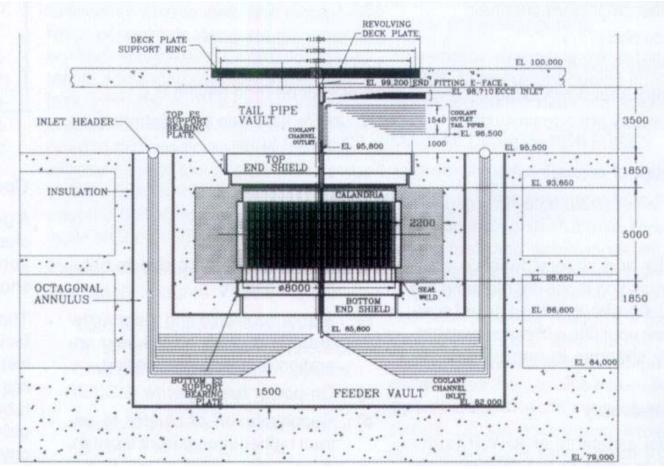

Other Gen III+ HWR Projects

- Advanced Heavy Water Reactor (AHWR)
 - Under current development in India.
 - Boiling light water coolant, thorium-based fuels
- TR-1000 (Russia)
 - 1989 concept proposal.
 - $-CO_2$ coolant, 9.8 MPa, 400°C to 450°C outlet.
 - Metallic Natural U, or U/Pu, CR>0.80, 10 GWd/t
 - Pre-stressed concrete pressure vessel

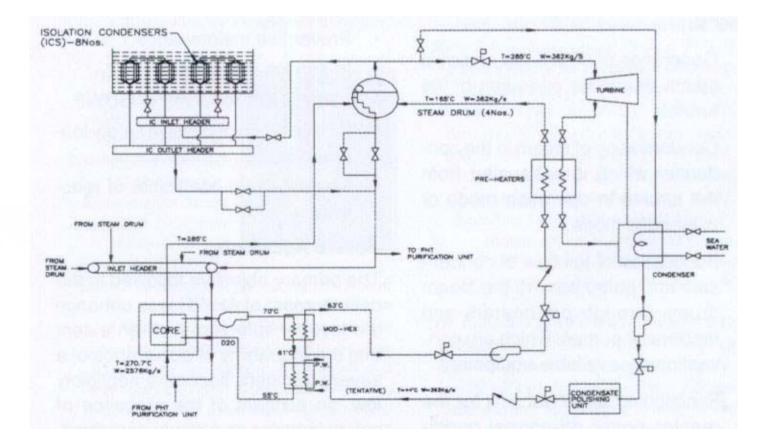

AHWR (India, 2008)


- 750 MW_{th} / 235 MW_e (net)
- Boiling light water, 424 Vertical channels
- 29.4-cm pitch, 52-element assemblies
- (Th,Pu-3%)O₂ and (Th,²³³U)O₂ fuel pins.
- ²³³U production self-sustaining.
- Approx. 2/3 of energy coming from Thorium
- 20,000 MWd/t burnup
- 6.8 MPa, 284°C steam
- B₄C rods, Lithium Pentaborate poison for shutdown

Reactor Building



• 52 fuel pins, (Th,Pu)O₂ and (Th²³³,U)O₂

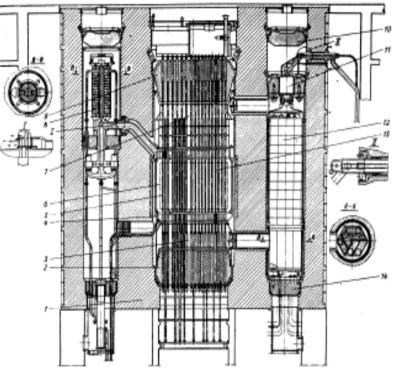


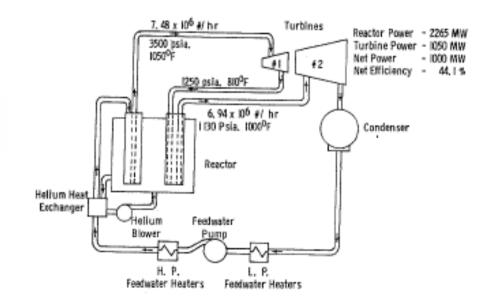
Core layout

• Flow diagram

TR-1000 (Russia, 1989)

- Based on KS-150 / A1 Bohunice technology.
- 3200 MW_{th} / 1000 MW_e
- Net efficiency ~31%.
- Pre-stressed concrete.
- CO₂ at 420°C to 450°C.
- Steam at 400°C.
- Design for recycling Pu.




Fig. 1. TR-1000 reactor arrangement: 1) prestressed reinforced concrete shell; 2) lower central vessel plug; 3) inlet (hot) chamber; 4) heavy water tank; 5) fuel channel; 6) core; 7) discharge (cold) chamber; 8) moderator heat exchanger and presurizer; 9) central vessel upper cover; 10) steam generator vessel cover; 11) main circulator (turbocompressor); 12) steam generator module; 13) fuel assembly; 14) steam generator support plug.

Supercritical Reactors (Gen-IV)

- Supercritical coolant, not reactivity !
 - 25 MPa, 530°C to 625°C.
 - Not quite liquid, not quite vapor
 - 40% to 45% thermal efficiencies
- Early Concept:
 - SCOTT-R Reactor (1962), Westinghouse USA
 - Super Critical Once Through Tube Reactor
- Today / Tomorrow:
 - CANDU-SCWR
 - Combine CANDU technology with supercritical H₂O.

SCOTT-R (1962, Westinghouse)

- Supercritical, with nuclear re-heat
- η_{th} > 44%

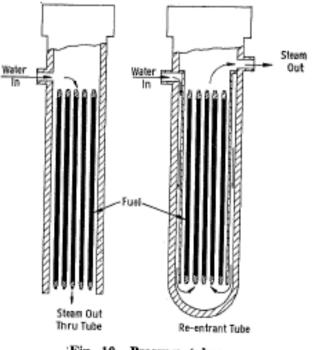
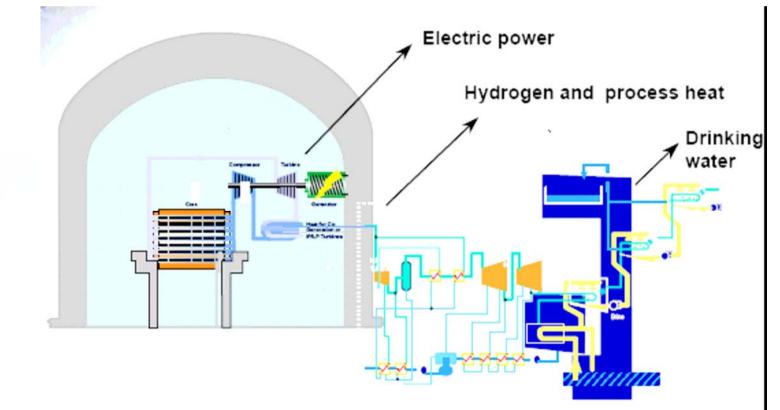



Fig. 10-Pressure tubes.

CANDU-SCWR (Gen-IV)

- 25 MPa, 500°C to 625°C, >1000 MWe
- Direct Cycle, Efficiency ~ 45%

Additional Future Roles for HWR's

- Advanced Fuel Cycles
 - Synergism with LWR's and fast reactors
 - Integrated nuclear energy system
 - Extending nuclear fuel utilization
 - Minimizing waste management issues
 - Burning of Pu and higher actinides
- Water Desalination
 - Fresh water is short supply world wide.
 - Power for reverse-osmosis plants.
 - Waste heat for low-temperature distillation.

Additional Future Roles for HWR's

- Hydrogen Production
 - High-temperature electrolysis
 - Thermal/chemical processes
 - Direct use in fuel cells for transportation, or,
 - Upgrading of low-grade hydro-carbon fuels
 - Coal, bitumen, biomass, peat
 - Synthetic gasoline, diesel, methanol, ethanol, etc.
- High-temperature Steam
 - Enhanced recovery and upgrading of hydrocarbons
 - Oilsands, coal

International Penetration of HWR's

- World installed nuclear capacity (2006):
 - 444 Reactors, ~372 GWe net
- World installed HWR capacity (2006):
 - 46 Reactors, ~24 GWe net
 - 22 Reactors in Canada, ~15 GWe net
 - 24 HWR abroad
 - India (13), South Korea (4), China (2), Romania (2), Argentina (2), Pakistan (1)
- HWR's: ~10% of reactors, ~6% of net power

Why are HWR's not the Dominant Technology Today?

- Partly Historical / Competing Technologies
 - Cost of producing D_2O .
 - Graphite much cheaper, although not as good.
- Weapons and Naval programs
 - Development of industrial infrastructure for uranium enrichment.
 - U.S.A, Russia, U.K., France
 - Use of PWR's for naval submarines.
 - More compact cores, simple reactor design.
 - Large investment in LWR technology.
 - Major head start on alternatives.

Why are HWR's not the Dominant Technology Today?

- Uranium supplies available and cheap (for now) – Canada, Australia, U.S.A., Kazakhstan, Africa, etc.
- Enriched uranium supplies assured (for now) – Important for Europe, Japan, Korea
- Competing Technologies
 - Financial resources to support more than one or two technologies limited
 - Many countries switched / focused on LWR technology
 - France, Germany, Sweden, Switzerland, Belgium, etc.
 - Japan, Korea; others have followed suit
 - Knowledge and experience base is large (U.S.A., Russia)
 - U.K.: Magnox and AGR's were performing well in 1970's.

Motivating Factors to Use more HWR's in the Future

Fuel Costs

- As uranium demand increases and cost goes up.
- High conversion ratios become important.
- HWR design variants will be advanced converters
 - Possibly more cost effective than using Fast Breeders alone
- Integrated Reactor Systems
 - HWR's complementary to LWR's and Fast Reactors
 - Extending fissile and fertile fuel resources with high CR.
 - Burning of Pu and Actinides from spent fuel of LWR's and FR.
 - Minimizing spent fuel and waste for long-term storage.

Motivating Factors to Use more HWR's in the Future

- Next-generation Designs
 - Issues for large pressure vessels
 - Manufacturing challenges, availability, local fabrication.
 - Modular design with pressure tubes more feasible.
 - Particularly for supercritical-water coolant designs.
 - Renewed motivation to use supercritical water, organic, gas, liquid metal, or molten salt coolants.
 - To achieve high efficiencies → ~50%
 - PT design with maximum neutron economy possible.

Conclusions

- Heavy Water Reactor Advantages
 - Excellent neutron economy, better utilization of resources.
 - Special safety features
 - Heat sink, multiple shutdown, longer neutron lifetime
 - Modular construction (pressure tubes)
 - Local manufacturing.
 - On-line refuelling \rightarrow high capacity factors.
 - Flexibility for fuel and coolant types.
- Technology Improvements
 - Reducing cost of D₂O using advanced separation technologies
 - Better materials, sealing, less corrosion, easier maintenance.
 - Similar goals for other technologies.
 - Improving thermal efficiencies.

Conclusions

- International Interest in Heavy Water Reactors
 - Canada main focus: mature technology / commercialized
 - Technology development since 1945.
 - CANDU design development; CANDU-6 exported abroad.
 - ACR-1000 is next-generation product with reduced capital costs.
 - India long-term interest with large supplies of thorium
 - PHWR's patterned after / similar to Canada.
 - Independent / domestic technology development.
 - AHWR is India's next-generation design.
 - Germany, U.K., Japan, France, Sweden, U.S.A, etc.
 - Prototypes developed and tested.
 - Resources to develop and sustain alternative technologies limited.
 - Secured supply of cheap uranium has put focus on LWR technology, but this could change.

Conclusions

Future for HWR Technology

- Reducing capital costs; improving efficiencies.
- Use of enriched fuel; alternative coolants.
- Complement other technologies (faster breeders, LWR's, etc.)
 - Spent fuel from LWR's could be used in HWR's.
- Increasing cost of fuel favors HWR technology.
- Increasing role for HWR's in nuclear energy supply
 - World demand for nuclear energy growing.
 - Keeping all options available is prudent.
 - HWR's are an important part of the nuclear energy mix
 - Today, and even more so in the future.
 - Plenty of business for everyone.

Acknowledgements

- Gary Dyck (Advanced Fuels and Fuel Cycles)
- Jim Sullivan, Michele Kubota (AECL)
- Peter Boczar, Diane Heideman (AECL)
- Library Staff (AECL)

November 3, 2007 50th Anniversary of NRU

- 50 years of science and technology.
- Millions of patients treated from medical radioisotopes.
- Test bed for CANDU technology.
- Neutron scattering experiments.
- Materials testing
 - Space Shuttle Challenger SRB casing / welds.
- Thousands of visiting researchers.
- www.aecl.ca/nru50