

1944-11

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Heavy Water Reactors 2. R&D Activities for Design and Safety Analysis

B.P. Bromley AECL, Chalk River Laboratories Canada

Heavy Water Reactors 2. R&D Activities for Design and Safety Analysis

Blair P. Bromley Reactor and Radiation Physics Branch AECL – Chalk River Laboratories

> Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Tuesday, May 27, 2008

Outline

- Types of Measurements/Testing
- Heavy Water Research Reactors
 - Critical Facilities (< 1 kW)</p>
 - High-power Facilities
- International Participation
 - Historical
 - Present Day
- Present R&D Efforts and Needs for HWR's
 - Canada (CANDU, ACR)
 - International (Gen-IV, GNEP)

- Low-power (Critical Facility)
 - Critical height measurements
 - Activation foil measurements
 - Fine structure
 - Transient / period measurements
- High-power (Research Reactor)
 - Fuel bundle irradiations / performance
 - Testing of mechanical / material design
 - Post Irradiation Examinations (PIE)
 - Fuel composition, burnup, depletion
 - Spectrum measurements
 - High-power reactivity measurements

- Critical height measurements.
 - Vary one or more parameters in experiment
 - Lattice geometry / material design
 - Pitch, #pins, pin arrangement, size
 - Enrichment, composition, PT/CT size, etc.
 - Coolant density, coolant distribution pattern
 - Fuel / coolant temperature

- Presence / absence of a control device / fuel bundle
- Lattice distortions / eccentricity
- Core size (D, H)
- Use critical height measurements to check core calculations
 - Ideally, calculated k_{eff} = 1.000, or H_{crit-calc} = H_{crit-exp}
 - For substitution experiments, infer bucklings from ΔH_c

- Activation Foil Distributions
 - Global flux distributions $\phi(x,y,z)$
 - Cu-63 (thermal), In-115 (fast)
 - Mn-55, Au-197, etc.
 - Use for checking core code predictions.
 - Curve-fitting in asymptotic region
 - Neutron energy spectrum constant
 - Infer material buckling from curve fit
 - $\phi(\mathbf{r}, \mathbf{z}) = \mathbf{A}_0 \times \cos(\alpha \times (\mathbf{z} \mathbf{z}_{\max})) \mathbf{J}_0(\lambda \times \mathbf{r}) \mathbf{B}^2 = \alpha^2 + \lambda^2$
 - Use B² for direct validation of lattice physics codes

$$k_{effective} = \frac{k_{infinity}}{1 + M^2 B^2}$$

- Fine structure measurements
 - Local flux distributions (radial and axial)
 - Activation foils / wires within lattice cell moderator
 - Cu-63 (thermal), In-115 (fast), Mn-55, Au-197, D
 - Aluminum usually used for wrapping.

- Fine structure measurements
 - Foils within fuel pellets (radial and axial)
 - U-235, U-238, Pu-239, U-nat
 - Cu-63, Mn-55, In-115, Lu-176, Au-197,
 - Dy-164, etc.
 - Cd foil wraps may be used to shield out thermal neutrons for fast activation only.
 - Normalized to foils in a well-thermalized spectrum.
 - Spectrum ratios, conversion ratios
 - Spectral index (r) can be inferred from Au/Cd activation
 - Determine also effective neutron temperature, Tn

Manganese axial reaction rate; Core 5002

- Transient Measurements
 - Ionization chamber for relative flux
 - Absolute flux value depends on core size / design
 - Variation of flux with time, $\phi(t)$
 - Rapid rod insertion / removal
 - Reactor stable period measurements

•
$$\phi(t) = A_0 \times e^{t/7}$$

- Infer the dynamic reactivity or control rod worth
- Works well for fuels with single fissile isotope (eg. U-235 in U)

$$\rho = \frac{l}{Tk_{\rm eff}} + \frac{5.30 \times 10^{-4}}{0.62 + T} + \frac{5.30 \times 10^{-3}}{2.20 + T} + \frac{0.0138}{6.48 + T} + \frac{0.0526}{31.7 + T} + \frac{0.0200}{80.0 + T},$$

- Fuel bundle irradiations / fuel performance
 - Testing of mechanical and material design
 - Post Irradiation Examinations (PIE) for fuel composition
 - Burnup, depletion
- Direct neutron spectrum measurements
 - Velocity selectors / choppers.
- "Pile oscillator" method
 - total absorption cross section measurements

Heavy Water Critical Facilities

- Canada:
 - ZEEP (1945), ZED-2 (1960) Operating today
- U.S.A.:
 - PDP (1 kW, 1953), Pawling (1958)
- France:
 - Aquilon (1956)
- Belgium:
 - VENUS (1964)
- U.K.:
 - DIMPLE (1954), DAPHNE (1962), JUNO (1964)
- Norway:
 - NORA (1961)
- Sweden:
 - R-O (1959)

HW Critical Facilities

- Italy:
 - ECO (1965), RB-3 (1971) support for HWOCR
- Czech Republic:
 - TR-0 (1972)
- Yugoslavia:
 - RB (1958) Operating today
- Japan:
 - DCA (1969) support for FUGEN design

HW Critical Facilities

- India:
 - Zerlina (1961)
 - BARC (2003) new for PHWR, AHWR work
- Iran:
 - ENTC HWZPR (1995)
- South Africa:
 - Pelinduna Zero (1967)

ZEEP (Canada, 1945)

- Canada 2nd country to build critical facility
 - Lattice Physics tests to support NRX, NRU, NPD-2, CANDU

PDP (U.S.A, 1953)

- Process
 Development Pile
 - Lattice physics studies for heavy water reactors

DIMPLE (U.K., 1954)

 Critical experiments supported SGHWR program, and others.

Aquilon (France, 1956)

• Supported work on EL-1, EL-2, EL-3 and EL-4

A

RB (Yugoslavia, 1958)

- Bare critical lattices
 - Teaching, training and basic research
 - In operation today.

ZED-2 (Canada, 1960)

- Critical Facility, operating today.
 - Lattice experiments support CANDU and ACR
 - Heated channel experiments operate up to 300°C

VERTICAL SECTION REACTOR ZED-2

ZED-2 Critical Facility

- Tank-type critical facility, 3.3 m diameter & depth
 - Moderator height adjusted to control criticality and power
 - Power level ~ 100 Watts

Dimensions in cm, Reactor Vessel Approximately to Scale 100 cm

Example: Full-Core Flux Map

Buckling determined from curve fits
 of Cu-foil flux maps

20

Drawing is to scale

Buckling = $(2.405/R_{EX})^2 + (\pi/H_{EX})^2$

ORGEL (Italy, 1965)

1 kW, lattice studies with organic coolant

VERTICAL SECTION REACTOR ECO

DCA (Japan, 1969)

Deuterium Critical Assembly

- Bare lattice experiments to support FUGEN project

- Canada:
 - NRX (40 MW, 1947)
 - NRU (110 MW,1957)
 - First to demonstrate on-line re-fuelling.
 - Operating today >60% World's supplier of radioisotopes
 - WR-1 (40 MW, 1961) organically cooled.
- Australia:
 - HIFAR (10 MW, 1958)
- U.K.:
 - DIDO (15 MW, 1956), PLUTO (22 MW, 1957)
 - Dounreay MTR (22 MW, 1958)

- U.S.A.: Strong interest in HW for research
 - CP-3 (300 kW, 1944) World's first HW reactor.
 - CP-5 (5 MW, 1954)
 - MITR (5 MW, 1958) Operating today.
 - PRTR (85 MW, 1960) demonstrate Pu recycling.
 - HWCTR (61 MW, 1962)
 - GTRR (1 MW, 1964)
 - Ames Laboratory (5 MW, 1965)
 - HFBR (BNL 40 MW, 1965)
 - NBSR (10 MW, 1967) Operating today

- Belgium
 - BR-1 (4 MW, 1956)
 - BR-3/VN (41 MW, 1962) spectral shift reactor
- France:
 - ZOE/EL-1 (150 kW, 1948)
 - EL-2 (2 MW, 1952), EL-3 (20 MW, 1957)
 - EOLE (10 kW, 1965)
 - HFR (58 MW, 1971) Operating today
- Germany:
 - FR-2 (44 MW, 1961), FRM-II (20 MW, 2004)
 - DIDO-JULICH (23 MW, 1962) Operating today
- Switzerland:
 - DIORIT (30 MW, 1960)

- Denmark:
 - DR-3 (10 MW, 1960)
- Norway:
 - JEEP-1 (450 kW, 1951), JEEP-2 (2 MW, 1966)
 - Halden (BHWR, 20 MW, 1959) Operating today
- Sweden:
 - R-1 (1 MW, 1964)

- Algeria:
 - ES-SALAM (15 MW, 1992) Operating today
- Italy
 - ISPRA-1 (5 MW, 1959), ESSOR (43 MW, 1967)
- Israel:
 - IRR-2 (26 MW, 1963) Operating today
- Yugoslavia:
 - RA (6.5 MW, 1959)

4

- China:
 - HWRR-II (15 MW, 1958) Operating today
- India:
 - CIRUS (40 MW, 1960) Operating today.
 - DHRUVA (100 MW, 1985) Operating today.
- Japan:
 - JRR-2 (10 MW, 1960), JRR-3 (10 MW, 1962)
- Russia:
 - TR (2.5 MW, 1949)
- Taiwan:
 - TRR (40 MW, 1973)

CP-3 (U.S.A., 1944)

Chicago Pile 3 (300 kW)

- World's first critical heavy water reactor
- Absorption measurements; oscillator techniques

VERTICAL SECTION REACTOR CP-3

A

CP-3' (U.S.A, 1950)

- CP-3 modified to operated with enriched uranium
- 275 kW

HORIZONTAL SECTION REACTOR CP 3'

NRX (Canada, 1947)

• 40 MW, Operated until early 1990's

UNRESTRICTED

VERTICAL SECTION REACTOR NRX

NRU (Canada, 1957)

110 MW, operating today

MITR (U.S.A, 1958)

• 1 MW, Multiple neutron beam experiments.

(11

H.O. SHIELDING TANK

ALLEY BUTTE OCA

MITR HORIZONTAL SECTION

PLIT LEAL

HBWR (Norway, 1959)

- 20 MW, boiling heavy water reactor
 - still operating today

ISPRA-1 (Italy, 1959)

5 MW, Research in neutron physics, isotope production, reactor engineering.

CIRUS (India, 1960)

- 40 MW, Multi-purpose research facility
 - Support for India's heavy water reactor program
 - Design based on NRX

CIR HORIZONTAL SECTION

UNRESTRICTED

CIR VERTICAL SECTION

PRTR (U.S.A, 1960)

Plutonium Recycle Test Reactor, 70 MW

- Irradiation testing of Pu-fuels, Pu-recycling.

VERTICAL SECTION PRTR

HORIZONTAL SECTION PRTR

HWCTR (U.S.A., 1962)

Heavy Water Components Test Reactor

– 61 MW, Savannah River

UNRESTRICTED

38

BR-3 Vulcain (Belgium, 1965)

41 MW, PWR, Spectral Shift (D₂O/H₂O)

- Physics and engineering tests

WR-1 (Canada, 1965)

• 40 MW, testing organic coolant

- Operation successful.

HORIZONTAL SECTION REACTOR WR-1

REMOVABLE PLUG

ESSOR (Italy, 1967) • 37 MW, tests for organically-cooled HWR's

VERTICAL SECTION REACTOR ESSOR

A

Present R&D Efforts and Needs

- Engineering Issues
 - Mechanical components
 - Wear and erosion
 - Creep and sag
 - Pumps and fluid seals
 - Lifetime in radiation environment
 - Material degradation
 - eg. Hydrogen embrittlement of Zircaloy
 - Exposure to high temperature, high pressure environments
 - Chemistry / Materials Science
 - Corrosion
 - Compatibility of materials
 - Insulators / liners for PT's
 - Feeders / Header connections to PT's.

Present R&D Efforts and Needs

Physics Issues

- Biases and uncertainties in reactivity coefficients
- Scaling from critical experiments to power reactors
- Modelling approximations / development
 - Deterministic vs. Stochastic (Monte Carlo)
 - Heterogeneous vs. Homogenous
 - Size of homogenization regions.
 - Multi-cell modeling
 - Discontinuity factors
 - Transport vs. Diffusion
 - 2-group vs. multi-group
 - 2-D lattice cell vs. 3-D lattice cells
 - Reactivity devices (orthogonal to lattice)

Present R&D Efforts and Needs

- Physics Issues
 - Lattice Physics Calculations
 - Critical spectrum / leakage models
 - Resonance self-shielding for key isotopes / elements
 - Actinides
 - Zirconium
 - Absorbers / burnable poisons (Gd, Dy, etc.)
 - Single cell vs. multi-cell
 - Consistency with core calculations.
 - Burnup with representative environment
 - Tmod, Tcool, Tfuel, flux spectrum, power density
 - 3-D effects
 - Axial variation of fuel / coolant
 - Endplates / structural materials
 - Reactivity devices

Present R&D Efforts and Needs

- Physics Issues
 - Nuclear Data
 - Accuracy and uncertainty estimates
 - Co-variance data
 - Thermal scattering data , $\textbf{S}(\alpha,\beta)$
 - D₂O, H₂O, O in UO₂, C (graphite), Be, ⁷Li
 - Temperature corrections
 - Absorption / Resonance data
 - U-238, U-235, Pu-239, higher actinides
 - Th-232, U-233 (for thorium cycle)
 - Zr, Hf (impurity)
 - Gd, Dy, other neutron absorbers
 - Structural materials
 - Fission product yields
 - Delayed neutron precursors

CANDU and ACR-1000

• 17 Reactor Physics Phenomena of interest

Identification	Reactor Physics Phenomenon
*PH01	Coolant-Density-Change Induced Reactivity
PH02	Coolant-Temperature-Change Induced Reactivity
PH03	Moderator-Density-Change Induced Reactivity
PH04	Moderator-Temperature-Change Induced Reactivity
PH05	Moderator-Poison-Concentration-Change Induced Reactivity
PH06	Moderator-Purity-Change Induced Reactivity
PH07	Fuel-Temperature-Change Induced Reactivity
PH08	Fuel-Isotopic-Composition-Change Induced Reactivity
PH09	Refuelling-Induced Reactivity
**PH10	Fuel-String-Relocation Induced Reactivity (CANDU only)
PH11	Device-Movement Induced Reactivity
PH12	Prompt/Delayed Neutron Kinetics
PH13	Flux-Detector Response
PH14	Flux Distribution in Space and Time
PH15	Lattice-Geometry-Distortion Reactivity Effects
**PH16	Coolant-Purity-Change Induced Reactivity (CANDU only)
PH17	Core Physics Response to Moderator Level Change

A

CANDU and ACR-1000

- Codes used to predict physics behavior
 - WIMS-AECL (lattice physics multi-group transport)
 - DRAGON (incremental xsec's for reactivity devices)
 - RFSP (core physics, refuelling, transients)
 - MCNP (stochastic / benchmark comparisons)
- Biases, Δ , and uncertainties, $\pm \delta$ are quantified.
 - Prediction of k_{eff} , dk_{eff}/dx (x= ρ_{cool} , T_{fuel}, T_{mod}, etc.)
 - Prediction of flux / power distributions $\phi(x,y,z)$
- Scaling issues
 - Extending results from critical experiments, research reactors to larger power reactors (S/U analyses)

Gen-IV / GNEP

- Supercritical Water
 - Materials, mechanical design
 - Reactor physics
- Advanced Fuel Cycles
 - Recycling Pu and Actinides in HWR's
 - Thorium-based fuel cycles
 - Alternative fuel matrices
 - UC, cermets, Si-based matrices
 - Reactivity and burnup calculations
 - Reactivity coefficients
 - Fuel management

Conclusions

- Critical facilities provide key information for lattice physics
 - Critical height, activation foils, period measurements
- Research reactors provide engineering and fuel burnup data.
 - Test bed for technologies
- Heavy water research reactors in use today
 - Engineering, fuel testing, neutron beams, isotope production

Conclusions

- International participation broad based
 - Use of heavy water reactors for research wide-spread.
 - Many countries today maintain at least one heavy water reactor.
- Present day efforts
 - Critical experiments for code validation
 - Nuclear data being re-evaluated for improved agreement.
 - Code development and validation ongoing.
 - Canada, India are leading the way in HW research
 - Support for CANDU, ACR-1000, AHWR, etc.

A Few References

- More recent:
 - IAEA, Nuclear Research Reactors in the World, reference data series #3, Sept. (2000).
 - <u>http://www.iaea.org/worldatom/rrdb/</u>
 - NEA/NSC/DOC (2006)1 : International Handbook of Evaluated Reactor Physics Benchmark Experiments, March (2006).

• Older, but good:

- IAEA, Heavy Water Lattices: 1st Panel Report, Vienna, 4 Sept., (1959).
- IAEA, Heavy Water Lattices: 2nd Panel Report, Technical Series No. 20, Vienna, 18-22 Feb. (1963).
- IAEA, Exponential and Critical Series, Volume 2, Vienna, (1964).
- IAEA, Directory of Nuclear Reactors, Vols. 2, 3, 5, 6, 8, Vienna, (1959-1970).
- United Nations, Proceedings of International Conference on the Peaceful Uses of Atomic Energy, 2nd and 3rd Conferences, Geneva, (1958, 1964).

Acknowledgements

- Gary Dyck (Advanced Fuels and Fuel Cycles)
- Jim Sullivan, Michele Kubota (AECL)
- Peter Boczar, Diane Heideman (AECL)

November 3, 2007 50th Anniversary of NRU

- 50 years of science and technology.
- Millions of patients treated from medical radioisotopes.
- Test bed for CANDU technology.
- Neutron scattering experiments.
- Materials testing
 - Space Shuttle Challenger SRB casing / welds.
- Thousands of visiting researchers.
- www.aecl.ca/nru50

