

1944-1

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

19 - 30 May 2008

Gas-Cooled Reactors – International Reactor Physics Experimental Benchmark Analysis.

> J.M. Kendall Global Virtual LLC Prescott USA

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

ICTP - Trieste, Italy, 18-30 May 2008

Gas-Cooled Reactors – International Reactor Physics Experimental Benchmark Analysis

> J. M. Kendall Global Virtual LLC

Benchmark Activities

IAEA-TECDOC-1249

- PROTEUS (Pebble Bed) Critical Facility
- VHTRC (Prismatic Block) Critical Facility

IAEA-TECDOC-1382

- HTR-10 (Pebble Bed) Core Physics
- HTTR (Prismatic Block) Core Physics

http://www.iaea.org/inisnkm/nkm/aws/htgr/abstracts/index.html

12:54 PM (<)

- Critical Balances
- Reaction rate ratios and distributions
- Control rod worths
- Water ingress effects
- Reactivity of small samples
- Kinetic parameter (β/Λ)

-6- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

CORE	DATES	F:M	PACKING	COMMENTS
Gl	3/92-5/92	-	-	ONLY PNS MEASUREMENTS , NO FUEL IN CAVITY, WITH AND WITHOUT MODERATOR PEBBLES. ZEBRA RODS IN-SITU
1	7/92-6/93	2:1	HCP	ONLY CORE WITH ZEBRA RODS
1A	6/93-8/93, 2/94-3/94	2:1	НСР	CORE 1 WITH ZEBRA RODS REPLACED BY CONVENTIONAL CONTROL RODS
2	8/93-10/93	2:1	HCP	CORE 1A WITH FIVE FUELED LAYERS REPLACED BY MODERATOR PEBBLES - "CAVITY EFFECT"
G2	10/93	-	-	PNS MEASUREMENTS WITHOUT FUEL IN CAVITY, ZEBRA RODS COMPLETELY REMOVED
3	10/93-2/94	2:1	HCP	CORE 1A WITH SIMULATED WATER INGRESS - EVERY AVAILABLE VERTICAL CHANNEL CONTAINED A 9mm CH2 ROD
4(1,2,3)	3/94-6/94	1:1	RANDOM	THIS CONFIGURATION REPEATED THREE TIMES
5	7/94-4/95, 11/95-1/96	2:1	P-O-P	FIRST COLUMN HEX LOADING
6	4/95-5/95	2:1	P-O-P	CORE 5 WITH MAXIMUM CH2 LOADING, COMPENSATED WITH COPPER WIRE
7	5/95-10/95	2:1	P-O-P	CORE 5 WITH MAXIMUM CH2 LOADING, COMPENSATED BY REDUCING CORE HEIGHT
8	1/96-2/96	2:1	P-O-P	CORE 5 WITH EVERY VERTICAL CHANNEL CONTAINING A 15cm LONG TRIANGULAR CH2 ROD
9	2/96-5/96	1:1	P-O-P	CORE 5 REPEATED WITH F:M OF 1:1
10	5/96-6/96	1:1	P-O-P	CORE 9 WITH MAXIMUM CH2 LOADING, COMPENSATED BY REDUCING CORE HEIGHT

HCP = hexagonal close packed

P-O-P = point-on-point (column hexagonal),

F:M = fuel-to-moderator ratio indicates simulated water ingress in this core

-7- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

	CRITICAL LOADING	Σ _a	SUBCRIT CORE	SHUTI RO	DOWN DS	CON RO	TROL DS	UPPER REFL.	β/A	MEAS. RODS	CENT. CONT. ROD	TEMP. COEFF	COM- PONENT WORTHS	MISC.
METHOD CORE	PEBBLE COUNT	PNS	PNS	PNS	IK	SP	PNS	PNS (SP)	PNS	PNS	PNS	COMP	COMP	-
G1		\checkmark												
1	\checkmark		~	~	~	~	~		~	~			~	
1A	\checkmark				\checkmark	✓								
2	\checkmark			~	~	~	~	~	~					
G2		\checkmark												
3	\checkmark		~	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					
1A	\checkmark			\checkmark		✓								
4(1)	\checkmark					\checkmark								
4(2)	\checkmark			\checkmark	\checkmark	\checkmark								
4(3)	~			\checkmark		\checkmark								
5	\checkmark			~	~	~	~	~	~	~	~	\checkmark	~	water/ CH ₂ CH ₂ in lower axial reflector
6	\checkmark					\checkmark								
7	~			~	~	~	~	~	~	~	~	~		water/ CH ₂ CH ₂ in lower axial reflector
8	\checkmark						\checkmark							
9	\checkmark				\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark				
10	~		~		~	~	~	~	~	✓				subcriticalit y with CH ₂ removed

- -8- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Methods - Critical Balances Including Streaming

- At PSI: The TWODANT [8.1] transport theory code with cross sections obtained from the MICROX-2 [8.2] cell calculation code, using JEF-1 based nuclear data, as well as the MCNP-4B [8.3] Monte Carlo code using an ENDF/B-V based continuous cross-section data library.
- At IRI: The DORT [8.4] transport theory and the BOLD-VENTURE [8.5] diffusion theory codes with inputs processed by the INAS code system (IRI-NJOY-AMPX-SCALE) [8.6] using JEF-2.2 basic nuclear data files, as well as the multigroup Monte Carlo code KENO-Va.
- At JAERI: The SRAC95 [8.7] code system with its library based on both ENDF/B-IV and JENDL-3.2.
- At KFA: The CITATION diffusion calculation code, part of the VSOP [8.8] code system using JEF-1 and ENDF/B-V based libraries.
- At INET: The VSOP computer code system.

 -9- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Experimental and Calculated Critical Balances Cores 1A, 2, 3 and 4.3

	Core 1A	Core 2	Core 3	Core 4.3
experimental	1.0147±0.0006	1.0106±0.0006	1.0033±0.0004	1.0132±0.001
VSOP (INET)	1.01299	1.00389	1.01333	1.00512
C/E	0.9983±0.0006	0.9934±0.0006	1.0100 ± 0.0004	0.992 ± 0.001
VSOP (KFA)	-	-	-	1.0246
C/E	-	-	-	1.011 ± 0.001
SRAC-ENDF/B-IV (JAERI)*	1.0384	1.0376	-	-
C/E	1.0234 ± 0.0006	1.0267 ± 0.0006	-	-
SRAC-JENDL-3.2 (JAERI)	1.0427	1.0412	-	-
C/E	1.0276±0.0006	1.0303 ± 0.0006	-	-

Not corrected for streaming effect

⁻¹⁰⁻ IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Experimental and Calculated Critical Balances Cores 5, 7, 9 and 10

	Core 5	Core 7	Core 9	Core 10
experimental	1.0112±0.0005	1.0067±0.0004	1.0142±0.0007	1.0075±0.0001
TWODANT (PSI)	1.0218	1.0384	1.0262	1.0330
C/E	1.0105 ± 0.0005	1.00315 ± 0.0004	1.0118 ± 0.0007	1.0253 ± 0.0001
DORT (IRI)	1.03126	1.03962	1.03017	1.03395
C/E	1.0198±0.0005	1.0327 ± 0.0004	1.0157 ± 0.0007	1.0263 ± 0.0001
BOLD-VENTURE (IRI)	1.03147	1.03600	1.03018	1.03138
C/E	1.0200 ± 0.0005	1.0291 ± 0.0004	1.0158 ± 0.0007	1.0237 ± 0.0001
SRAC-ENDF/B-IV (JAERI)	1.0358	1.0515	-	-
C/E	1.0243±0.0005	1.0445 ± 0.0004	-	-
SRAC-JENDL-3.2 (JAERI)	1.0394	1.0545	-	-
C/E	1.0289 ± 0.0005	1.0475 ± 0.0004	-	-
VSOP (KFA)	1.0379	1.0446	-	-
C/E	1.0264±0.0005	1.0376 ± 0.0004	-	-
KENO (IRI)	1.03125±0.0007	1.03881±0.0006	1.02933±0.0005	1.03222±0.0005
C/E	1.0198±0.0009	1.0319 ± 0.0007	1.0149 ± 0.0009	1.0245 ± 0.0005

-11- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Reactivity vs. Percentage of Polyethylene Rods in Core 10

⁻¹²⁻ IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

-13- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Circles in core and reflector indicate graphite rods. The rods in core can be replaced with fuel rods, while those in reflector can be replaced with heater rods.

-14- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

Unit : mm

-15- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

		Resonance c	alculation	Ce	il calculati	ion	Whole re-	actor cale	ulation
Institute	Nuclear data	Code	Group	Code	Group	Geometry	Code	Group	Geometry
GA	ENDF / B-V	GAR	9k-15k	GAM GATHER MICROX	92 101 92+101	Coaxial cylinders	DIF3D	9	3D(T-Z)
INET	ENDF / B-IV	ZUT		GAM THERMOS		Cylinder	CITATION	4	2D(R-Z)
JAERI	ENDF / B-IV ENDF / B-III	PEACO	4.6k	[SRAC] PIJ	21+41	Hexagonal cylinder	[SRAC] CITATION	25	3D(T-Z)
KFA	ENDF / B-V JEF-1	ZUT-DGL		[VSOP] GAM THERMOS		Cylinder	[VSOP] CITATION	5	2D(R-Z)
KI	Domestic	Experiment correlated		FI.Y	26+77	Cylinder	CONSUL (Diffusion)	4	3D(T-Z)
оквм	Domestic UKNDL	NEKTAR (plane)		WIMS-D4 THERMOS	67	Cylinder	JAR (Diffusion)	2	3D
ORNL	ENDF/B-V	[MCNP] V 4.X	Conti	[MCNP] V 4.X	Cont.	Hexagonal cylinder	[MCNP] V 4 X	Cont.	3D(xyz)

Cont. : Continuous energy

-16- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

OKBM* - Macroscopic cross sections by WIMS-D4/UKNDL

-17- IAEA-TECDOC-1249, Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors, October 2001.

-18- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Core physics calculation Geometric model

-19- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

	HTR-10 Benchmark Problems					
B1	Initial Criticality	Pebble loading height for k _{eff} = 1.0 with no control rods inserted				
B2	Temperature Coefficient	k _{eff} of the full core (5 m ³) at 20°C (B21), 120°C (B22), and 250°C (B23) with no control rods inserted				
B3	Control Rod Worth, Full Core	Δk_{eff} for ten (B31) and one (B32) fully inserted control rods, with other rods in withdrawn position, full core (5 m ³) at 20°C				
B4	Control Rod Worth, Initial Core	Δk_{eff} for ten (B31) and one (B32) fully inserted control rods, with other rods in withdrawn position, core loading height of 126 cm at 20°C				
All c	ases to assume helium	atmosphere				

Post-Test Adjustment to Benchmark Problem Assumptions/Conditions

- Density of dummy balls: $1.73 \rightarrow 1.84$ g/cm3
- Boron equivalent of impurities in dummy balls: $1.3 \rightarrow 0.125 \text{ ppm}$
- Core atmosphere: Helium \rightarrow Air
- Temperature: $20^{\circ}C \rightarrow 15^{\circ}C$

-20- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Example Results – Initial Criticality (B1)

	Original	1	Revised (Dev	iated)	
	Benchmark Pro	oblems	Benchmark Problems		
	Diffusion/Transport	Monte Carlo	Diffusion/Transport	Monte Carlo	
China	125.8	126.1	122.558	122.874	
France ¹	-	-	-	115.36	
				117.37	
Germany ²	124.2	-	121.0	-	
-	126.8		123.3		
Indonesia ³	107	-	-	-	
	120				
Japan	113	-	-	-	
Netherlands	125.3	-	122.1	-	
Russia	136	137.3	-	-	
South Africa	-	-	122.537	-	
Turkey ⁴	119.27	129.7	-	-	
		135.3			
USA ⁵	-	127.5	-	-	
		128			

Experimental result of critical loading height: 123.06cm. It is noted that the experimental conditions are those conditions for the revised (deviated) benchmarks except the temperature is 15°C instead of 20°C (or 27°C).

- The first row of data is obtained with simplified PB modeling, and the second row of data with improved PB modeling.
- The first row of data is obtained with 2-dimensional VSOP, and the second row of data with 3dimensional VSOP.
- The first row of data is obtained with the DELIGHT code, and the second row of data with SRAC code.
- 4. The first row of data in the Monte Carlo approach is obtained with the ENDF/B-IV nuclear data set, and the second row of data with ENDF/B-V nuclear data set.
- 5. The first row of data is obtained with the UTXS nuclear data set, and the second row of data with ENDF/B-VI nuclear data set.
 - -21- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Reasons for Differences in Results

- Some control rod cross section cell calculations more appropriate for rod array than single rod worth evaluations
- Uncertainty in the modeling of neutron streaming
- Choice of selected cross section library (JEFF, ENDF, JENDL, etc.)
- Water content of graphite pores
- Library dependent cross-sections for temperature coefficients
- Effective fuel homogenization methods
- Modeling of fuel with Monte Carlo Calculations
 - Explicit geometry (particle distribution in pebble, pebble distribution in core)

-22-

• Modeling of fuel/dummy ball ratio

-23- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Core Cross Section with Fuel Block Loading Order

-24- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

-25- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

	Narrot	Number
\odot	Fuel compact	14
0	Graphite sleeve	1
3	Buffer plate	2
(Oraphite plug	2
6	Spacer	9

Note-We recommend to regard buffer plates as word region

Fuel Rod

Fuel Compacts & Burnable

Poison Pellets

-26-

IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Analysis Methods – Diffusion Calculations

Items	Germany	Russia	Japan	Nethe	rlands
nems	FZJ	OKBM	HTTR	NRG	IRI
Nuc. Data File	JEF-2.2	ENDF/B6	ENDF/B-4	JEF2.2	JEF2.2
Fuel Cell Code	TOTMOS	WIMS-D/4	DELIGHT	WIMS	SCALE4
Theory	Col.	S4	Col.	Col.	Transport
Model	Cyl.	Cyl.	Cyl.	Cyl.	Cyl.
No. of Groups	123	69	40	69	172
BP Cell Code	TOTMOS DORT	WIMS-D/4	TWOTRAN	WIMS	SCALE4
Theory	Transport	S4	Transport	Col.	Transport
Model	Cyl.	Cyl.	Cyl.	Hex.	Cył.
No. of Groups	123	69	6	16	172
Core Cal. Code	CITATION	JAR-3D	CITATION- 1000VP	PANTHER	BOLD- VENTURE
Model	Tri. (24mesh)	Tri. (6 mesh)	Tri. (24mesh)	Hex.	
No. of Groups (Fast +Thermal)	26	1 + 1	6 (3+3)	2	13
Cut-off Energy (eV)	1.86	0.625	2.38	2.1	2.1

Col. = Collision Probability

Cyl. = Cylindrical

-27- IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Analysis Methods – Monte Carlo Calculations

_	Rus	ssia	Japan	Netherlands	
Items					
	RRC KI	IBRAE	HTTR	NRG	IRI
Nuc. Data File	DLC/MCUDAT- 1.0	ENDF/B6	JENDL-3.2		JEF2.2
Energy Struct.	Continuous	Continuous	Continuous		Group
Code	MCU	MCNP 4A	MVP		KENO V.a
History	200	2000 (up to 16000)	20000		10000
Batches	5000	1000	150		200
Skipped- Batches	1	10	5		1

	HTTR Benchmark Problems				
FC	Initial Criticality	Number of fuel blocks in sequenced loading			
CR	Control Rod Position at Criticality	Control rod insertion depth at criticality for 18, 24 and 30 column core			
EX	Excess Reactivity	Excess reactivity for an unrodded 18, 24 and 30 core			
SC	Scram Reactivity	Scram reactivity for 1) all reflector CRs, 2) all CRs in reflector and core (30 column core)			
тс	Isothermal Temperature Coefficient	Isothermal temperature coefficients at 290, 320, 360, 400, 440 and 470°C for 30 column core with control rod position for criticality at 480°C			

FC - Initial Criticality

Diffusion Calculations

Member state	Number of fuel columns	Keff	Excess(%dk/k)
Japan	17	1.0005	0.05
France	17	1.0061	0.61
Germany	18	1.008	0.79
Indonesia	18	1.0058	0.577
Russia (OKBM)	16	1.005	0.498
Experimenta1	19		
results			

Monte Carlo Calculations

Member state	Number of fuel columns	Keff	Excess(%dk/k)
Japan	18	1.0061	0.61
France	18	1.0085	0.85
Netherlands(IRI)	17	1.0062	0.62
Russia(IBRAE)	16	1.006	0.596
Russia(RRCKI)	17	1.004	0.398
Turkey	15	1.005	0.50
Experimental	19		
results			

-30-

IAEA-TECDOC-1382, Evaluation of HTGR performance: Benchmark analysis related to initial testing of the HTTR and HTR-10, November 2003.

Reasons for Differences in Results

- Uncertainties in levels of impurities in dummy blocks, and in water and air or nitrogen in graphite pores
- Monte Carlo model geometry representation
- Choice of selected cross section data library and version (JEF, ENDF, JENDL, etc.)
- Uncertainties in modeling neutron streaming with diffusion methods
- Difficulties in modeling harmonics in thin annular cores with diffusion methods