<u>Conversion of MNSR (PARR-2)</u> <u>from HEU to LEU Fuel</u>

Malik Tayyab Mahmood

Nuclear Engineering Division Pakistan Institute of Nuclear Science & Technology, Islamabad PAKISTAN

Pakistan Institute of Nuclear Science and Technology (PINSTECH)

Pakistan Research Reactor-2 (PARR-2)

Core Configuration

- HEU fuel pins with 90.2% enriched in ²³⁵U
- Number of fuel pins 344
- Fuel material UAI₄-AI
- Number of dummy pins 6
- Number of tie rods 4
- Central Control Rod 1
- Each fuel pin contains about 2.9g of ²³⁵U

Data for Neutronic Analyses

Fuel pin dimensions

HEU Fuel

4.3 mm diameter of fuel meat and 0.6mm Al clad thickness, 5.5mm outer diameter of fuel pin

LEU Fuel

- 4.3 mm diameter of fuel meat and 0.6mm Zircalloy-4 clad thickness, 5.5mm outer diameter of fuel pin
- 4.2 mm diameter of fuel meat and 0.45mm Zircalloy-4 clad thickness, 5.1mm outer diameter of fuel pin
- HEU and LEU fuel pins have 248 mm height with 230mm active height
- Control Rod Dimensions
- One centrally located Cadmium control rod with 3.9 mm diameter and 0.5 mm SS clad
- Beryllium Reflector
- 102 mm thick annular beryllium and 50 mm thick bottom beryllium reflector

Fig. 1: Reactor Vessel Cross section

Methodology for Neutronic Analysis

- Lattice Calculations were performed employing WIMSD code
- WIMSD uses 69 groups, multi region integral transport theory to solve the neutron transport equation for the lattice cells
- Unit fuel cell of PARR-2 core for HEU and LEU fuel was modeled in WIMS

Similar unit cells were developed for Cross-section calculations of beryllium reflector, grid plate, reflecting water, irradiation positions, shim tray, control rod follower and control rod absorber material.

Methodology (Continued)

- 3-Dimensional Core modeling was performed in CITATION code using XYZ geometry
- Same reactor model was used for the analysis of HEU and proposed LEU cores of PARR-2

Modeling in CITATION was achieved by conserving the total area of core and beryllium reflector

Fig. 2: Top View of Core

Fig. 3: Core Modeling in CITATION

Results

Table 1: Core Characteristics

Fuel Material	U- Density	U ²³⁵ (g) in Core	Criticality Position (Rod cm out)	Excess Reactivity (mk)	Shut Down Margin (mk)	Control Rod Worth (mk)
HEU (U-Al alloy) 90.2% enriched Pin dia 5.5mm	0.92g/cm ³	995	9.0	4.046	-2.344	-6.39
LEU (Uo ₂ fuel) 12.6% enriched Pin dia 5.5mm	9.35g/cm ³	1353	7.0	4.007	-1.43	-5.437
LEU (Uo ₂ fuel) 12.3% enriched Pin dia 5.1mm	9.35g/cm ³	1264	7.0	4.160	-1.498	-5.658

Table 2: Average Values of Reactivity Coefficients

Fuel	Parameter	Temp. Range (ºC)	Average Value	
HEU (U-AI) Pin dia 5.5mm 90.2 % Enriched	Moderator Temp.Coeff. (pcm/ ^o C)	0-100	-6.5291	
	Doppler Coeff. (pcm/ ⁰ C)	0-400	-0.1397	
	Void Coeff. (pcm/%void)	0-100	-337.67	
LEU (UO2) Pin dia 5.5mm 12.6 % Enriched	Moderator Temp.Coeff. (pcm/ ^o C)	0-100	-3.9659	
	Doppler Coeff. (pcm/ ⁰ C)	0-400	-1.3951	
	Void Coeff. (pcm/%void)	0-100	-356.22	
1 FU (UO2)	Moderator Temp.Coeff. (pcm/ ⁰ C)	0-100	-4.1985	
Pin dia 5.1mm 12.3 %	Doppler Coeff. (pcm/ ⁰ C)	0-400	-1.34239	
Enriched	Void Coeff. (pcm/%void)	0-100	-348.355	

Table 3: Flux at Inner Irradiation Sites andFission Chambers

Fuel Material	Reactor Power (kw)	Flux at In	ner Sites (#/o	cm²-sec)	Flux at Fission Chambers (#/cm ² - sec)		
		Fast (0.821Mev -10Mev)	Epithermal (0.625ev- 0.821Mev)	Thermal (0ev- 0.625ev)	Fast (0.821Mev -10Mev)	Epithermal (0.625ev- 0.821Mev)	Thermal (0ev- 0.625ev)
(U-Al alloy) Pin dia 5.5mm 90.2% enriched	30	1.40E+11	5.72E+11	1.02E+12	1.46E+11	6.67E+11	1.09E+12
(Uo₂ fuel) Pin dia 5.5mm 12.6% enriched	30	1.35E+11	5.58E+11	9.36E+11	1.40E+11	6.50E+11	9.96E+11
	32	1.44E+11	5.95E+11	9.98E+11	1.49E+11	6.93E+11	1.06E+12
	33	1.48E+11	6.14E+11	1.03E+12	1.54E+11	7.15E+11	1.10E+12
(Uo ₂ fuel) Pin dia 5.1mm 12.3% enriched	30	1.33E+11	5.49E+11	9.41E+11	1.39E+11	6.40E+11	1.00E+12
	32	1.42E+11	5.86E+11	1.00E+12	1.48E+11	6.82E+11	1.07E+12
	33	1.47E+11	6.04E+11	1.04E+12	1.52E+11	7.04E+11	1.10E+12

Table 4: Flux at Outer Irradiation Sites

	Reactor Power (kw)	Flux at Th	hree Small Ou (#/cm²-sec)	ter Sites	Flux at Two large Outer Sites (#/cm ² -sec)		
Fuel Material		Fast (0.821Mev -10Mev)	Epithermal (0.625ev- 0.821Mev)	Thermal (0ev- 0.625ev)	Fast (0.821Me v-10Mev)	Epithermal (0.625ev- 0.821Mev)	Thermal (0ev- 0.625ev)
(U-AI alloy) Pin dia 5.5mm 90.2% enriched	30	3.20E+10	1.22E+11	5.30E+11	2.88E+10	1.08E+11	4.75E+11
(Uo ₂ fuel) Pin dia 5.5mm 12.6% enriched	30	3.08E+10	1.18E+11	4.98E+11	2.77E+10	1.05E+11	4.47E+11
	32	3.28E+10	1.26E+11	5.32E+11	2.95E+10	1.12E+11	4.77E+11
	33	3.38E+10	1.30E+11	5.48E+11	3.05E+10	1.16E+11	4.92E+11
(Uo ₂ fuel) Pin dia 5.1mm 12.3% enriched	30	3.05E+10	1.17E+11	4.96E+11	2.74E+10	1.04E+11	4.45E+11
	32	3.25E+10	1.25E+11	5.29E+11	2.93E+10	1.11E+11	4.75E+11
	33	3.35E+10	1.28E+11	5.46E+11	3.02E+10	1.14E+11	4.90E+11

Fig.4: Axial Thermal Flux Profile at Inner Irradiation Sites at 30kW

Fig.5: Axial Thermal Flux Profile at outer Irradiation Sites at 30kW

Conclusions

- Neutronic analyses of HEU (90.2% enriched) core through WIMS and CITATION gives results that are comparable to the experimental values. This validates the reactor model
- Analysis of LEU (UO₂ fuel pin dia 5.5mm with 12.6% enrichment and UO₂ fuel pin dia 5.1mm with 12.3% enrichment) core gives results, which qualify both LEU UO₂ fuel for future LEU core of MNSR
- Keeping in view the criterion of 4mk excess reactivity, LEU fuel with reduced pin dimensions should be 12.3% enriched while LEU fuel having consistent dimensions with HEU fuel should be 12.6% enriched

Neutron flux for LEU fuel at irradiation sites is slightly lower for the reactor operating at 30 kW power. However 33kW operation of LEU fuelled reactor gives desired results.

Acknowledgement

This study is the outcome of part of the IAEA Coordinated Research Project (CRP) entitled "Conversion of Miniature Neutron Research Reactors (MNSR) to Low Enrichment Uranium (LEU)"

