

Advanced Heavy Water Reactor

Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Design objectives of AHWR

The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed in India for the large scale commercial utilisation of thorium and integrated technological demonstration of the thorium cycle

Design objectives / Challenges

- Maximise the power from thorium
 - Maximise the in-situ burning of ²³³U
- Negative power coefficient
- Heat removal through Natural Circulation
 - Uniform coolant flow ; flat radial power distribution , short active core height
 - Low power density
 - Bottom peaked axial power/flux distribution
- Fuel cycle aspects
 - Self-sustainance in ²³³U
 - Plutonium as make-up fuel ; minimise the Pu inventory and consumption
 - Maximise the burnup

Physics design criteria

- Maximize power from thorium
- Core averaged negative void coefficient of reactivity at operating conditions.
- The discharge burnup of the fuel should be greater than 30 GWd/Te.
- Minimize consumption of plutonium.
- Initial plutonium inventory should be as low as possible.
- The system should be self-sustaining in ²³³U.
- The total thermal power to the coolant should be 920 MW.

Thermal hydraulic considerations of uniform coolant flow

- Local peaking factor has to kept within the TH margins
- Suitable enrichments

• Better TH margins - Higher MCHFR

Relatively bottom peaked power distribution

• Axially graded fuel pins (Outer pins)

Properties of thorium

Major Advantages

- Availability
- Improved nuclear characteristics
- Improved technological performance compared to UO₂
 - Stable crystal structure
 - Higher thermal conductivity
 - High melting point
 - lower thermal expansion coeff.
 - Improved fuel behaviour
 - Dimensional stability at high burn-up
- Reduced generation of actinides in Th-U-233 cycle

Major disadvantages

- Reactor safety
 - Low delayed neutron fraction β_{eff}
- Reactor operation
 - Photoneutron production (start-up)
- Radiation problem
 - --Association of U²³² with U²³³
 - Reactor control problem due to Pa²³³
- Reprocessing issues
 - Dissolution of thorium fuel is more difficult than uranium fuel, due to its high material stability

Thorium decay chain

Comparison of fertile species ²³⁸U and ²³²Th

Neutronic properties of some fissile and fertile isotopes

		²³³ Pa	²³³ U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U	²³⁹ Np	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
Thermal Data												
σa b (0.025 eV)	7.4	41.46	571.01	95.77	678.40	6.00	2.73	80.0	1013.04	290.08	1375.3 7	30.00
σ	7.4	41.46	45.99	95.77	101.30	6.00	2.73	80.0	271.19	290.02	367.81	30.00
σf b (0.025 eV)	0.0	0.0	525.11	0.0	577.10	0.0	0.0	0.0	741.85	0.0	1007.5 6	0.00
α			0.0874		0.1755				0.3656		0.3651	
ν			2.498		2.442				2.880		2.936	
η			2.300		2.077				2.109		2.151	
Resonance Integral (0.625 eV – 10 MeV)												
Absorption (barns)	85.78	858.83	883.73	632.16	380.13	348.82	273.57	0.0	445.15	8494.02	686.76	1118.65
Capture (barns)	85.20	857.0	135.10	627.96	130.22	346.55	272.37	0.0	168.58	8486.17	112.41	1115.00
Fission (barns)	0.58	1.83	748.63	4.20	249.91	2.27	1.20	0.0	276.57	7.85	574.35	3.65
α			0.1805		0.5210				0.6096		0.1957	

Comparison of eta for different fissile isotopes ²³³U, ²³⁵U and ²³⁹Pu

AHWR D5 lattice

D5 lattice consisting of 54 fuel pins placed in three arrays of 12, 18 and 24 pins in each array and a central displacer region

Fuel composition :

Displacer region – (Zircalloy-2 rod)

Pu composition :

Discharge composition of Pu from PHWR at 6700 MWd/T

Core average discharge burnup : 34000 MWd/T

Cross section of AHWR D5 cluster

Plutonium burning in AHWR

• Placing the Pu pins in the outer ring where it sees a significant thermal flux is responsible of Pu burning

 Initially the plutonium isotopes contribute about 46 % of the total absorptions and this reduces to 15 % at the end of the cycle.

 ²³⁹Pu absorptions reduces by about 90 % at discharge due to its depletion.

• In the initial core cluster, the burnups achievable are relatively low and hence lower burning

Discharge composition of the Pu fuel

19	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
Initial (PHWR)		68.79	24.6	5.26	1.35
Composite cluster	1.84	2.28	37.33	22.31	36.24

Uranium : In-situ generation and burning

- (Th,Pu) MOX pins placed in well thermalised spectrum to maximise
 ²³³U production
- Self-sustenance in ²³³U can be achieved by proper neutron spectrum
- Fuel utilisation has to be traded off with TH parameters and safety parameters like negative void reactivity
- At core average burnup, the power from Th-²³³U is about 65- 70 %

Cluster averaged U compositions

	²³² U	²³ U	²³⁴ U	²³⁵ U	²³⁶ U
Composite cluster	0.16	81.61	14.80	2.68	0.35

Salient features of the core design

- Boiling light water cooled
- Heavy water moderated
- Fuel cycle based on (Th,U) and (Th,Pu)
- Axially graded fuel for bottom peaked flux distribution for better TH characteristics
- on power fuelling
- Two independent fast acting S/D systems
- Total No. of channels
- No. of fuel channels
- Fuelling rate (annual)
- Average dis. burnup
- 82 (ch) - 34000 MWd/t

- 513

- 452

Core layout of AHWR equilibrium core

Optimised core power distribution

	13	12 14	11 15	10 16	9 17	8 18	7 19	6 20	5 21	4 22	3 23	2 24	1 25
Α	1.86	1.72	1.65	1.6	1.52	1.52		_					
В	SOR	1.87	1.77	1.9	1.71	1.62	1.8		_				
С	1.9	1.83	2.08	SOR	2.07	1.89	2.01	2.07					
D	AR	1.82	1.99	2.16	2.04	2.12	SOR	2.1	2.08		_		
E	1.92	2.02	2.25	2.12	RR	2.06	2.24	2.24	1.97	2.07		_	
F	2.36	2.42	SOR	2.27	2.02	1.94	2.2	SOR	2.23	2.09	2.06		
G	SR	2.37	2.27	2.12	1.92	1.83	1.95	2.2	2.24	SOR	2.01	1.8	
н	2.34	2.17	2.08	2.1	1.91	AR	1.83	1.94	2.06	2.12	1.88	1.61	1.5
I	2.38	2.19	2.16	2.39	2.08	1.91	1.91	2.02	RR	2.03	2.06	1.7	1.5
J	SOR	2.39	2.37	SR	2.39	2.1	2.12	2.26	2.11	2.15	SOR	1.89	1.58
К	2.4	2.23	2.21	2.37	2.16	2.08	2.27	SOR	2.24	1.98	2.07	1.75	1.62
L	2.42	2.24	2.23	2.39	2.19	2.17	2.36	2.41	2.02	1.81	1.82	1.86	1.69
М	SOR	2.42	2.4	SOR	2.36	2.34	SR	2.36	1.92	AR	1.88	SOR	1.84

z	one	Exit burnup MWd/ T
1		43500
2		33000
3		30500

SAFETY FEATURES OF AHWR

- The main aim of AHWR design is to make the void reactivity –ve (in order to gain extra degree of safety)
- To achieve this it is a nightmare for the designer but a delight for the operator.
- Different approaches for making the void reactivity negative.
 - 1) Addition of some slowly burnable absorber in the displacer region of the fuel cluster.
 - 2) Decrease the lattice pitch.

