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Neutron cross sections and related topics.



 Part I : Neutron cross sections and related topics 

Exercise I.1  
The velocity vn of a neutron can be determined from the time-of-flight tn over a given flight distance L by: 
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The relativistic relation between the kinetic energy En and the velocity vn of the neutron is: 
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where mn is the rest mass of the neutron and c is the velocity of light. The first term of a series expansion gives 
the classical expression : 
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(a) Calculate the value of the constant α when the energy En is given in eV, the distance L in m and the time 

tn in μs 
(b) Calculate the kinetic energy exactly and in the classical approximation for neutrons with a time of flight of 

2μs and 2000μs for a flight path length of 30 m and 200m. 
 
 
 
 
Solution: 
 
(a) The neutron energy in classical approximation is: 
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(b) See table 

 
tn / μs L / m 

 
En,clas / eV 

 
En,rel / eV En,rel / En,clas 

2 30 1176083.8 1178296.5 1.00188 
2000 30 1.1760838 1.1760838 1.00000 

2 200 52270387.5 57080491.6 1.09202 
2000 200 52.2703875 52.2703920 1.00000 

 



Exercise I.2  
At a measurement station with a nominal flight path length of 30m the following observations were made: the 
signal from the gamma-flash was observed at a time-of-flight tγ,exp = 298.4 ns and the time-of-flight of the 20.864 
eV resonance of 238U at a time-of-flight tn,exp= 467129.2 ns. The observed time-of-flight texp is related to the real 
time-of-flight t by the relation : texp = to + t 

(a) Determine the to value 
(b) Determine a more precise value of the flight path length. 
 

 
 
 
Solution: 
 
The distance L and time-offset to can be determined by an iterative procedure (without applying a least-square 
fit). 
 
Step 1: Determine to from the gamma flash 
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Step 2: Determine L from the observed resonance (En = 20.864 eV⇒ classical approximation) 
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Step 3: (repeat step 1 and 2)  
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Parameter  

Flight path length, L  29.500 m 

Time offset, to  200.0 ns 

 
 



Exercise I.3  
The vertical displacement Δs of a body subject to the gravitational force is given by: 
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with gn the standard acceleration of free fall and tn the time. 
 
Calculate the vertical displacement of a 25 meV and 1 eV and 100 eV neutron for flight path lengths L = 30 m 
and 200 m.  
(Assume that the start velocity has only a horizontal component and only the gravitational force has on impact 
on the kinematics) 
 
 
 
Solution: 
 
 
 
For neutron energies below 100 eV the time can be deduced from the classical approximation: 
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This results in a displacement 
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Neutron energy /eV L = 30 m  L = 200 m 

 tn / μs Δs / mm  tn / μs Δs / mm 

0.025 13718 0.92  91451 41.01 

1 2170 0.02  14460 1.03 

100 217 0.00  1446 0.01 

 
 



Exercise I.4  
The Maxwell-Boltzmann distribution of the velocity v of a particle with mass m in equilibrium at a temperature T 
is: 
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where k is the Boltzmann constant and C is a normalization constant of the distribution : 
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(a) Show that the maximum of the distribution P(v)dv occurs at a velocity vmax corresponding to a kinetic 

energy Emax = kT 
(b) What is the energy Emax if the temperature is 300 K? 
(c) Thermal cross sections σth are often given at a standard energy, e.g. corresponding to a neutron velocity 

v = 2200 m/s. What is the corresponding neutron energy and temperature. 
 
 
Solution: 
 
(a) The value vmax which maximizes P(v)dv is the value for which: 
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or the value vmax for which: 
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This condition is fulfilled for: 

 
m
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The corresponding kinetic energy is: 
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(b) The energy Emax for T = 300 K is: 
 J10x141974.4J300x10x380658.1E 2123

max
−− ==  

For most application the energy is expressed in eV. The energy corresponding to the maximum becomes: 
 eV02585.0Emax =  
 
To get the energy directly in eV the Boltzman constant expressed in eV K-1: 
 k = 8.617386 10-5 eV K-1 
can be used. 
 
 
(c)  The neutron energy corresponding to a velocity v = 2200 m/s is: 
 eV025299.0eV)10x2200(x039.5227E 26 == −  
The corresponding temperature is: 

 K581.293
k
ET ==  

 



Exercise I.5  
The Maxwell-Boltzmann distribution can be used to describe the neutron flux in a thermal reactor : 
 dv)v(vPCdv)v( '=ϕ  
where C’ is a normalization constant. 
 
In the thermal energy region most of the absorption cross sections are directly proportional to 1/v. For 1/v cross 
sections, the cross section σ(E) at an energy E relates to a reference cross section σR at an energy ER as: 
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(a) Show that the energy distribution of the neutron flux becomes: 
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where k is the Boltzman constant and C’’ is a normalization constant. 
 

(b) Show that for a 1/v cross section the average cross section <σ(T)> in a flux with a Maxwellian 
distribution, which is characterized by a temperature T, can be expressed as a function of the cross 
section σR at a given temperature TR by: 
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(c) How much does the average cross section <σ(T)> deviates from the cross section σ(kT) at the energy 
kT. 

 
 
Solution : 
 

a) After a transformation of variables, with  2mv
2
1E =  and dE = mv dv, the neutron flux as a function of neutron 

energy becomes: 
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b) For a 1/v cross section the average becomes: 
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c) The ratio between the average cross section in a Maxwellian distribution with temperature T to the cross 
section at energy E = kT is: 
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Exercise I.6  
A disc-shaped sample of natural metallic gold has a diameter of (40.00 ± 0.10) mm and a mass of (5.0000 ± 
0.0002)g. The molar mass of 197Au is (MAu=196.966543 ± 0.000004) g mol-1 
 

(a) Calculate the mass per unit area or the thickness of the sample in g/cm2  
 
(b) Calculate the number of atoms per unit area in atoms per barn (at/b)  

 
 

Isotope Mx / (g mol-1) isotopic abundance, ai thickness / (g/cm2) thickness / (at/b) m / g 

197Au 196.966543 1 0.39789 1.2165 x 10-3 5.0000 

 
 
 
Solution: 
 
 
 
a) The area S is: 
 22 cm566.12RS =π=  
 
The mass per unit area is: 0.39789 g/cm2 
  
 
 
b) The total number of atoms, denoted by NX, of an element X with molar mass MX is: 
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where NA is the Avogadro constant. 
 
 
For a metallic sample the total number of atoms are: 
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The total number of atoms per unit area becomes (1 b = 10-24 cm2): 
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Exercise I.7  

A metallic sample is made out of a pure element X containing the isotopes n,...,1iXiA
Z = . The isotopic 

abundance xi of the isotope XiA
Z  in the element ZX is defined as the fraction of the number of nuclei XiA

Z  in 

element ZX. The mass fraction wi corresponds to the ratio of the mass (m(Xi)) of isotope XiA
Z  to the total mass 

m(X) of element X.  
(a) Determine the molar mass (MX) of element ZX in case the isotopic abundance xi and molar mass MXi of 

the isotopes are given 

(b) Determine the relation between the isotopic abundance xi and the weight fraction wi of the isotopes XiA
Z  

of element ZX. 

 

 

 
Solution : 
 
a) The molar mass of the element  X is: 
 ∑=
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b) The total number of atoms NX of element ZX  in a sample with mass m(X) is: 
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The total number of atoms 

iXN of isotope  XiA
Z   with molar mass  

iXM  is: 
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Using these relations the mass fraction wi becomes: 
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Exercise I.8  
A disc-shaped sample of natural silver (natAg) has a diameter of 80 mm and a mass of 50g. Natural silver 
consists of 107Ag and 109Ag. The natural isotopic abundance and molar mass of 107Ag and 109Ag are given in the 
table.  
 
Isotope MX / g mol-1 isotopic abundance thickness / (at/b) mass fraction mass /g 

107Ag 106.905093 0.51839 2.8788 x 10-3 0.513762 25.688 
109Ag 108.904756 0.48161 2.6746 x 10-3 0.486238 24.312 

Ag 107.868151 1 5.5534  x 10-3 1 50 

 
(a) Calculate the molar mass of natAg 
(b) Calculate the number of  natAg atoms per unit area (in at/b) 
(c) Calculate the number of atoms for each isotope per unit area (in at/b) 
(d) Calculate the mass fraction and mass of each isotope 

 
Solution : see Table 
 
 
a) Calculate the molar mass of natAg  :  ∑=

i
XiX i

MxM  

 

b) Calculate the number of atoms of element natAg : )X(m
M
N

N
X

A
X =  and divide by the area 

 

c) Multiply the number of atoms per unit area for  natAg with the isotopic abundance 

 

d) Use the formulae: 
X
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Exercise I.9  
A disc-shaped sample of ZrO2 has a diameter of 2.54 cm and a mass of 6.595 g. The isotopic abundance of Zr 
and O are given in the table together with the molar mass of the Zr- and O-isotopes present in the sample..  
 

Element Isotope molar mass / g mol-1 isotopic 
abundance

fraction, fXi thickness / (at/b) weight 
fraction 

mass 
(g) 

Zr 90Zr 89.90470 0.0229 0.0229 1.4351 x 10-4 0.01646 0.10856

 91Zr 90.90564 0.1861 0.1861 1.1663 x 10-3 0.13527 0.89208

 92Zr 91.90504 0.1895 0.1895 1.1876 x 10-3 0.13925 0.91837

 93Zr 92.9 0.1998 0.1998 1.2521 x 10-3 0.14841 0.97877

 94Zr 93.90632 0.2050 0.2050 1.2847 x10-3 0.15392 1.01512

 96Zr 95.90828 0.1967 0.1967 1.2327 x 10-3 0.15084 0.99478

        

O 16O 15.99491463 0.99762 1.99524 1.2504 x 10-2 0.25517 1.68285

 17O 16.9991312 0.00038 0.00076 4.7629 x 10-2 0.00010 0.00068

 18O 17.9991603 0.00200 0.00400 2.5068 x 10-2 0.00058 0.00380

total    3  6.595 

 
(a) Calculate the molar mass of Zr and O for the isotopic abundance given in the table. 
(b) Calculate the molar mass of ZrO2 
(c) Calculate the number of ZrO2 molecules in the target 
(d) Calculate the number of Zr- and O-isotopes per unit area (in at/b) 
(e) Calculate the weight fractions and mass of the Zr- and O-isotopes 

 
Solution : see Table 
 
a) Calculate the molar mass of Zr and O  :  ∑=

i
XiX i

MxM , with xi the isotopic abundance and 
iXM  the molar 

mass of the nuclide Xi 
 
 - MZr = 93.0697 g mol-1 
 - MO = 15.9994 g mol-1 
 
b) Calculate the molar mass of ZrO2 using the stoichiometric number for Zr (ν =1) and O (ν =2):i 
 OZrZrO M2MM

2
+=  = 125.0684 g mol-1 

c) Calculate the number of ZrO2 molecules in the target  
d) Calculate the fraction of each nuclide in one molecule (fX) 
e) Multiply the total number of ZrO2 molecules in the target with this fraction and divide by the area 
f) The weight fraction is given by: 
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where 
iXM is the molar mass of nuclide Xi. 



Exercise I.10  
For a neutron induced reaction on a target nucleus with spin Ι and parity πo, the angular momentum J of a 
resonance is given by the vector sum of the angular momenta: 
 ++Ι= iJ  
with i the spin of the neutron and  the angular momentum of the incident neutron. A neutron with angular 

momentum quantum number  = 0, 1 and 2 is denoted as a s-, p-and d-wave neutron, respectively. 
 
Defining with s the channel spin, the momenta satisfy the relations: 
 sJ +=   sJs +≤≤−  

 is +Ι=   isi +Ι≤≤−Ι  
 
Since the neutron has a positive parity, the resonance parity π is defined by: 
 )1(o −π=π  

 
(a) Calculate the possible spin and parity combinations Jπ of resonances induced by a s-, p-and d-wave 

neutron on a target nucleus with spin and parity Ιπo = 0+, 1/2+ and 1+ 
(b) Determine also the spin factor gJ, which is defined by: 

 
)12(2

1J2gJ +Ι
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Solution : see table 
 
 

Target 
nucleus 

Incident 
neutron 

Channel  
spin 

 Resonance   

Ιπ i  s   Jπ      gJ   Σ gJ 

0+ 1/2 0 1/2  1/2+     1     1 
  1 1/2  1/2- 3/2-    1 2    3 
  2 1/2   3/2+ 5/2+    2 3   5 
                

1/2+ 1/2 0 0  0+     1/4     1 
   1   1+     3/4     
  1 0   1-     3/4    3 
   1  0- 1- 2-   1/4 3/4 5/4    
  2 0    2+     5/4   5 
   1   1+ 2+ 3+   3/4 5/4 7/4   
                

1+ 1/2 0 1/2  1/2+     1/3     1 
   3/2   3/2+     2/3     
  1 1/2  1/2- 3/2-    1/3 2/3    3 
   3/2  1/2- 3/2- 5/2-   1/3 2/3 3/3    
  2 1/2   3/2+ 5/2+    2/3 3/3   5 
   3/2  1/2+ 3/2+ 5/2+ 7/2+  1/3 2/3 3/3 4/3   

 
 



Exercise I.11  
Neutron induced cross sections in the resonance region are determined by resonance parameters 
corresponding to the properties of excited nuclear levels. The cross section for a reaction (n,r) of an isolated 
resonance with spin J for a non-fissile nucleus can in first approximation be described by the Single Level Breit-
Wigner (SLBW) form: 
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where ER is the resonance energy, Γn is the neutron width, Γr is the reaction width, gJ is the statistical factor and 
k is the angular wave number of the neutron.  
 
The reaction cross section at thermal (En = Eth = 0.025 eV) is composed out of a contribution from unbound and 
bound (“negative resonances”) states.  Based on the SLBW expression (assuming | ER | > En and Γn+Γr << ER) 
the cross section (in units of a barn) at thermal is a sum over all contributions: 
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with A nucleus-neutron mass ratio In this expression the resonance energy, reduced neutron and radiation width 
are expressed in eV.  
 

(a) Calculate the contribution of the positive s-wave resonances for 197Au(n,γ) with Ιπ = 3/2+, which are given 
in the table.  

(b) Adjust the neutron width of a negative resonance (or bound state) to match the capture cross section at 
thermal (Eth = 0.025 eV), which is σ(Eth,γ) = 98.66 b. (Assume that the direct capture component can be 
neglected) 
- for a negative resonance at -60 eV with spin J= 2 and radiation width Γγ = 0.125 eV 
- for a negative resonance at -120 eV with spin J=2 and radiation width Γγ = 0.125 eV  

 
 
Solution : see table 
 
 

ER / eV J Γn / eV Γγ  / eV Contribution to the thermal cross section 
    σγ (Eth) / b Relative 
4.890 2 0.01520 0.124 92.246 0.9346 

57.921 1 0.00435 0.112 0.030 0.0003 
60.099 2 0.06640 0.110 0.675 0.0068 
78.271 1 0.01667 0.120 0.573 0.0058 

107.000 2 0.00760 0.110 0.018 0.0002 
    93.543  

 
 
The missing part of the cross section can be attributed to negative resonances. The parameters are adjusted to 
the cross section at thermal. 
 

ER / eV J Γn / eV Γγ  / eV σγ (Eth) / b 
(eV)  (eV) (eV)  
-60.00 2 0.441 0.125 5.117 

-120.00 2 2.495 0.125 5.117 

 
 



Exercise I.12  
The total cross section for an s-wave in the SLBW-formalism is given by: 
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The last term in this equation is the contribution due to the potential scattering (σpot). 
In the SLBW-formalism the peak cross section σo, which reflects the maximum of the resonance part of the total 
cross section, is:  
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where in the last expression the peak cross section is given in barn and the resonance energy in eV. This peak 
cross section can be used to estimate the maximum total (σmax,tot), capture (σmax,γ) and elastic (σmax,n) cross 
section becomes: 
 potototmax, σ+σ=σ  

 
Γ

Γ
σ=σ γ

γ omax,  

 
Γ
Γ

σ=σ n
onmax,  

(a) Calculate the peak cross sections σo, σoγ and σon for the resonances of 238U given in the table. 
(b) Compare the peak cross section σo with the maximum of the cross sections given in the figure. 
(c) Can the parity of the resonances at 66.02 eV and 80.73 eV be determined from the shape of the total 

cross sections? 
(d) What about the resonances at 83.68 eV and 89.24 eV? 
(e) How much does the potential scattering contribute to the total cross section for the resonance at 66.02 

eV ? (the effective scattering radius for 238U: R= 9.6 fm).  
Solution:  
(a) See Table 
(b)  
(c) Yes, the interference pattern for these resonances indicate that these are s-wave resonances 
(d) The small neutron width suggest that these resonances are probably p-wave resonances  
(e) The potential scattering is about 11.6 b 

238U:  Ιπ = 0+ R = 9.6 fm 
ER J gJ Γn Γγ σo σmax,γ σmax,n 

(eV)   meV meV barn barn barn 
66.02 1/2 1 24.6 24.0 20198.95 9974.79 10224.16 
80.73 1/2 1 1.8 25.0 2191.84 2044.62 147.21 
83.68 1/2 1 0.01 25.0 12.59 12.58 0.01 
89.24 1/2 1 0.09 25.0 105.90 105.52 0.38 

60 65 70 75 80 85 90
100

101

102
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104
 T = 0K

σ
to

t

 

Energy / eV  
 

Figure : The neutron induced total cross section for 238U in the energy region between 60 eV and 90 eV. 



Exercise I.13  
To calculate reaction probabilities the thermal motion of the target nucleus has to be taken into account. 
Therefore, for practical applications resonance cross sections are mostly needed in Doppler broadened form. In 
the most simple approximation, the classical ideal gas model, it is assumed that the target nuclei have the same 
velocity distribution as an ideal gas at an effective temperature Teff. The thermal motion of the target nuclei gives 
rise to a broadening ΔD: 

 
A

EkT4 Reff
D =Δ  

with A the nucleus-neutron mass ratio en k the Boltzman constant. 
 

(a) Calculate the Doppler broadening for the resonances in the table 13.1 
 
(b) Compare the Doppler broadening with the total natural line width of the resonance 

 
 
 
 
Solution : 
 
 
 
(a & b) See table 

 
 238U:  Ιπ = 0+ R = 9.6 fm 
ER J gJ Γn Γγ Γγ + Γn ΔD 

(eV)   meV meV meV meV 
66.02 1/2 1 24.6 24.0 48.60 166.5 
80.73 1/2 1 1.8 25.0 26.80 184.2 
83.68 1/2 1 0.01 25.0 25.01 187.5 
89.24 1/2 1 0.09 25.0 25.09 193.6 

 
 
 



Exercise I.14  
The self-shielding factor for a parallel neutron beam on a target with target thickness n (in at/b) is defined by: 
 )e1(f totnσ−−=  
For practical application the calculation of the self-shielding factor requires the Doppler broadened cross 
sections. In figure 14.1 the total nuclear cross for 238U+n is compared with the Doppler broadened cross section. 
In the figure the peak cross sections are indicated. 
 

(a) Calculate the self-shielding factor for a parallel neutron beam on a 0.5 cm thick UO2 sample for the 
resonances at 66.02, 80.73 and 89.24 eV in 238U. Perform the calculations for the nuclear and Doppler 
broadened total cross sections. The sample is made of natural uranium and has a density of 10 g/cm3.  

 
(b) Discuss the impact of an increase in temperature on the self-shielding factor around the resonance at 66 

eV. (see figure) 
 
Solution : 
 
(a) See table  
 
(b) The energy region around the 66 eV resonance where all neutrons will be absorbed by 238U increases. 
 
 

ER J σo (0 K) σo (300 K) F (0 K) F (300 K) 
(eV)  barn barn   

66.02 1/2 20245 1900 1.000 1.000 
80.73 1/2 2420 125 1.000 0.794 
89.24 1/2 135 14 0.819 0.162 
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Energy / eV
The nuclear total cross section (T = 0K) compared with 
the Doppler broadened cross section for T = 300 K. 
 

The self-shielding factor for a parallel neutron beam on a 
0.5 cm thick UO2 sample around the 66.02 eV resonance 
for T= 0 and 300 K. 

 
 



Exercise I.15  

Consider a neutron beam with a neutron flux 1014 cm-2 s-1 which hits a target consisting of nuclei XA
Z . The 

nucleus XA
Z  undergoes a (n,γ) reaction; the nucleus formed in this way immediately decays via β - decay. The 

nucleus obtained after this decay undergoes a (n,γ) reaction, leading to an unstable nucleus. This nucleus in turn 
decays via electron capture (EC) with T1/2 = 8 year but it also undergoes a (n,γ) reaction with an averaged cross 
section <σ(n,γ)> = 10 mb. Follow here the most probable path. The next nucleus again undergoes a (n,γ) 
reaction, leading to a short-living nucleus immediately decaying via α-emission. The daughter nucleus 
undergoes a (n,γ) reaction. On the nucleus formed in this way two neutron induced reactions are possible:  
a (n, γ)  reaction with an average cross section <σ(n,γ)> = 2.0 b and a (n,p) reaction with an average cross 
section <σ(n,γ)> = 1.8 mb. Follow the most dominant process.  
 

(a) Draw the most probable path followed in the (N,Z)-diagram 
(b) What is the final nucleus on this path? 
 

 
  (n,γ) γ+→+ + XnX 1A

Z
A
Z  

  (n,p) pXnX A
1Z

A
Z +→+ −  

  β- −
+ +→ eXX A
1Z

A
Z  

  β+ +
− +→ eXX A
1Z

A
Z  

  EC XeX A
1Z

A
Z −

− →+  

  α α+→ −
− XX 4A

2Z
A
Z  

 
Reaction rate (N = number of nuclei per volume)  : ϕσN  
Decay probability (decay constant λ = ln2 / T1/2) : λN  

 

XA
Z

N

Z



Solution : see figure 
 
a) At the first branching point we have to compare the production of 3A

1Z
+
+ due to the (n,γ)  reaction with the 

production of 2A
Z

+  due to EC.  

The ratio of these yields 
12

9

3A
1Z

2A
Z

10x00.1
10x75.2

−

−

+
+

+
≈

σϕ
λ

= >>1, therefore the most probable path is due to EC. 

 
b) The most probable path at the last branching is defined by the ratio of the cross sections 
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Useful constants (SI Units) 
 

Quantity Symbol Value 

Speed of light in vacuum co 299 792 458 m s-1 (defined) 

Planck constant h 6.626 075 5 (40) x 10-34 Js 

Elementary charge e 1.602 177 33 (45 ) x 10-19 C  

Electron rest mass me 9.109 389 7 (54) x 10-31 kg 

Proton rest mass mp 1.672 623 1 (10) x 10-27 kg 

Neutron rest mass mn 1.674 928 6 (10) x 10-27 kg 

Atomic mass constant 
(unified atomic mass unit) 

mu = 1u 1.660 540 2 (10) x 10-27 kg 

Avogadro constant NA 6.022 136 7 (36) x 1023 mol-1 

Boltzmann constant k 1.380 658 (12) x 10-23 J K-1 

Standard acceleration of free fall gn 9.806 65 m s-2 (defined) 
 

SI Prefixes 
 

Submultiple Prefix Symbol  Multiple Prefix Symbol 

10-2 centi c      

10-3 milli m  103 kilo k  

10-6 micro μ  106 mega M 

10-9 nano n  109 giga G 

10-15 femto f     

 
Conversion tables for units 

 
Name Symbol Relation to SI 

ångström Å = 10-10 m  

barn b = 10-28 m2 

gram g = 10-3 kg 

year a ≈ 31 556 952 s 

electronvolt eV = e x V ≈ 1.602 18 x 10-19 J 

watt W = kg m2 s-1 
 


