Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack

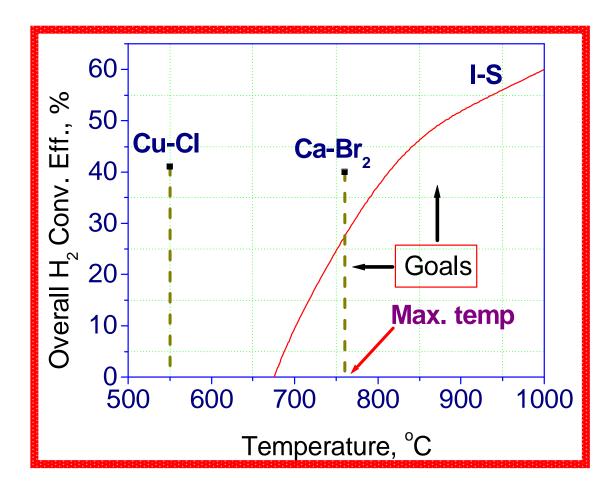
Brahmananda Chakraborty Bhabha Atomic Research Centre, India

Indian High Temperature

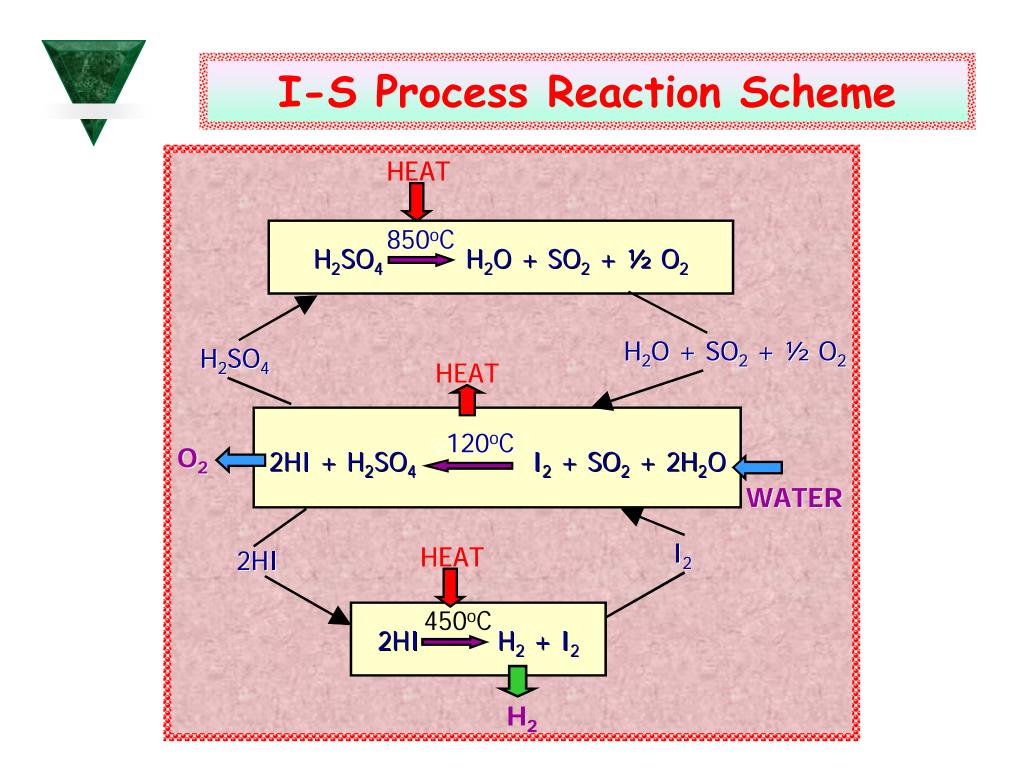
Reactors Programme

Compact High Temperature Reactor (CHTR) A technology demonstration facility

> High Temperature Reactor (HTR) For hydrogen generation


Nuclear Power Pack (NPP)

To supply electricity in remote areas not connected to grid



Ref: High Efficiency Generation of Hydrogen Fuels Using Nuclear Power, G.E. Besenbruch, L.C. Brown, J.F. Funk, S.K. Showalter, Report GA-A23510 and ANL reports

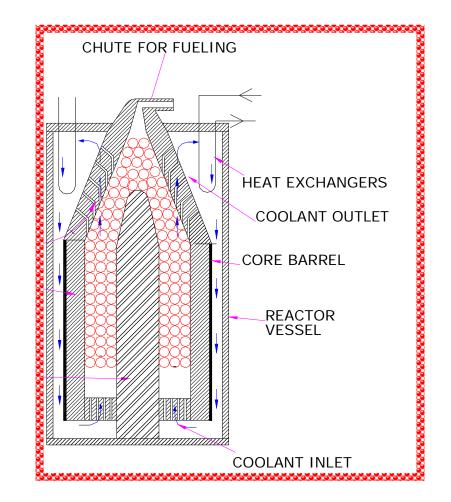
600 MW(Th) HTR

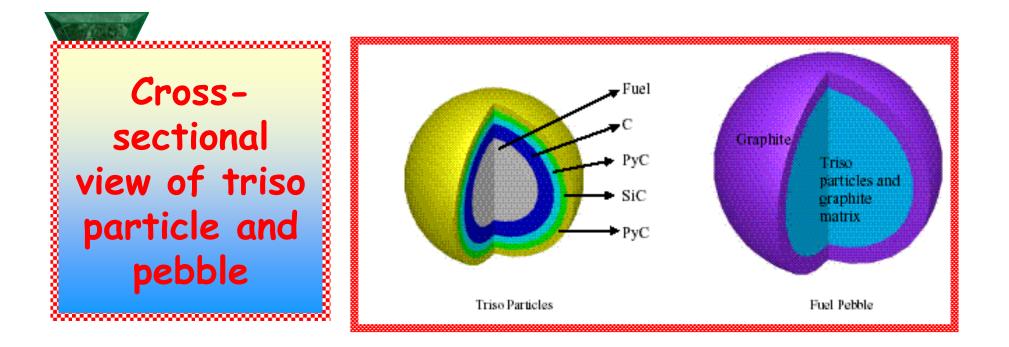
Objective

To provide high temperature heat required for thermochemical processes for hydrogen production

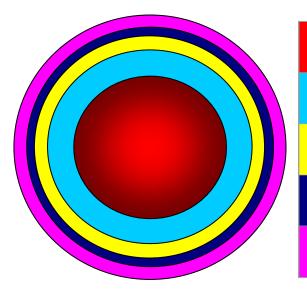
Pebble bed reactor

It is a Pebble Bed Reactor moderated and reflected by graphite & loaded with randomly packed spherical fuel elements called Pebble and cooled by molten Pb/Bi.


Key features


Use of triso particles

Its an advanced design with a higher level of safety and efficiency



Core configuration for pebble bed design

(U+Th)O ₂ Kernel (250 µm)			
Pyrolitic Graphite (90 µm)			
Inner Dense Carbon (30 µm)			
Outer Dense Carbon (50 μ m)			

Advantages of Pebbles

٢	On line refueling
\bigcirc	Homogeneous core (less power peaking)
٢	Simple fuel management
	One way of control by replacing dummy pebbles

***** Proposed Broad Specifications

00000

0000000

Reactor power	 600 MWth for following deliverables (Optimized for hydrogen Production) 1.Hydrogen: 80,000 m³/hr 2.Electricity: 18 MWe Drinking water: 375 m³/hr
Coolant outlet/inlet temperature	1000°C / 600°C
Moderator	Graphite
Coolant	Molten lead
Reflector	Graphite
Mode of cooling	Natural circulation of coolant
Fuel	²³³ UO ₂ & ThO ₂ based high burn-up TRISO coated particle fuel
Energy transfer systems	Intermediate heat exchangers for heat transfer for hydrogen production + High efficiency turbo- machinery based electricity generating system + Water desalination system for potable water
Hydrogen production	High efficiency thermo-chemical processes

Pebble diameter (fuelled 63 portion): 90 mm Outer pebble diameter: 100 mm 2 Number of pebbles: 150000 2 Packing density (Volume %) ≈ R 59%

Pebble Configuration

Challenges in the design

To design optimum pebble and core configuration to get maximum energy per gm inventory of fissile isotopes.

Control initial excess reactivity

Computational Technique

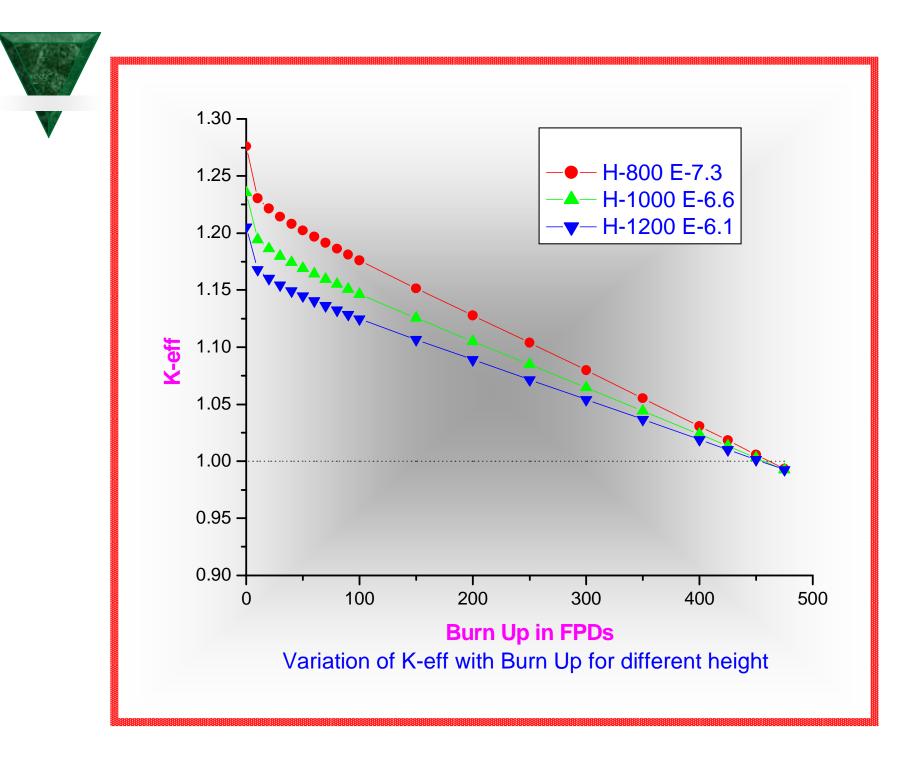
Multi-group Integral Transport theory code "ITRAN" & Diffusion theory code "Tri-htr" used for simulations.

Triso particles homogenized

Comparison of fuel inventory

Packing	Enrichment	Amount of	Burn up	Initial	Remark
Percentage	Percentage	U ²³³ in gm per pebble	(FPDs)	k-eff	S
8.6	7.3	3.4	450	1.2701	Car T
5.0	8.0	2.2	190	1.2415	
5.0	10.0	2.7	330	1.3372	
4.5	7.0	1.7	80	1.1559	Sa Pala Pa
4.5	8.0	2.0	150	1.2169	10 and a street
4.5	10.0	2.4	270	1.1559	
4.0	8.0	1.7	100	1.1879	1994
4.0	10.0	2.2	210	1.2902	
4.0	12.0	2.6	320	1.3686	1116 年
4.0	14.5	3.2	450	1.4456	
3.5	8.0	1.5	60	1.1507	and the second
3.5	10.0	1.9	160	1.2576	
3.5	12.0	2.3	250	1.3402	Anne de
3.5	16.3	3.1	450	1.468	建 构。1443

Optimized Pebble Configuration


Packing fraction 8.6% Enrichment 7.3% (H=800 cm, 900FPDs)

Биннинининининини

Comparison between different height

Parameters	H=8 m	H=10 m	H=12 m
Enrichment (%)	7.3	6.6	6.1
Initial K-eff	1.2701	1.23556	1.20545
Amount of heavy	U ²³³ =3.4	U ²³³ =3.1	U ²³³ =2.8
metal Per pebble (gm)	$Th^{232} = 43.2$	$Th^{232} = 43.5$	$Th^{232} = 43.7$
No. of Pebbles	150,000	187,000	225,000
Amount of fuel	U ²³³ =510	U ²³³ =581	U ²³³ =630
In the core (Kg)	$Th^{232} = 6480$	$Th^{232} = 8156$	Th ²³² = 9832
U ²³³ +U ²³⁵) out (Kg)	219.3	284.8	353.53
MWD/gm fissile elements	1.85	1.90	1.95
Burn up (FPDs)	900	900	900

Estimation of Fuel Temperature Coefficient (H=1200, P=8.6%, E=6.1%)

Fuel temperature (°C)	Value of K-eff	Fuel Temperature Coefficient (per ^o C)
1000	1.20545	Reference
1100	1.20361	-1.268×10-5
1200	1.20193	-1.214x 10-5
900	1.20745	-1.374 × 10-5
800	1.20965	-1.440x 10-5

Major Problem

CR Initial K-eff is too high

1.276 for 8m height 7.3% Enrichment

1.205 for 12m height 6.1Enrichment

Study to reduce initial k-eff

OPTIONS

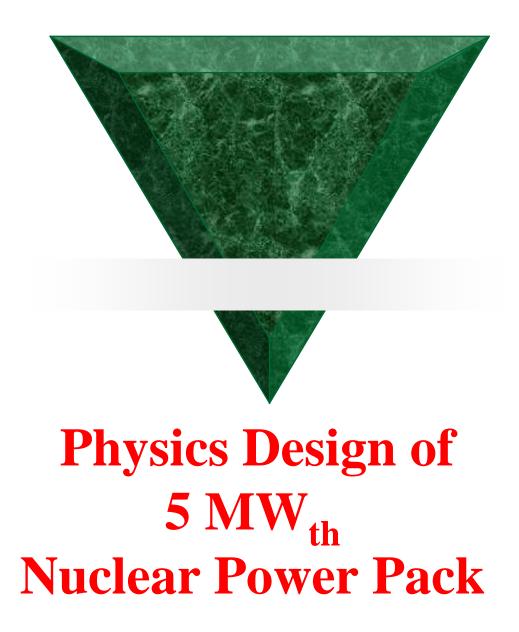
Reduce number of fuel balls & keep (fuel balls + dummy balls = constant)

Initial power will be reduced

OReduce enrichment

Available burn up will be less

Comparison of different cases


H (M)	P (%)	E (%)	FUEL BALL	DUMMY BALL	INITIAL K-EFF	REMARK
12	8.6	6.1	1/2	1/2	1.1588008	Little improvement
8	8.6	7.3	1/2	1/2	1.2356665	Not much improvement
8	8.6	6	1/2	1/2	1.1440712	Beneficial
8	8.6	6	All fuel	Ξ	1.1899716	Beneficial
12	8.6	5	2/3	1/3	1.1086059	Initial K-eff reduces sufficiently

○ For the same burn up fuel inventory is less for lower packing fraction. But as packing fraction decreases initial K-eff increases.

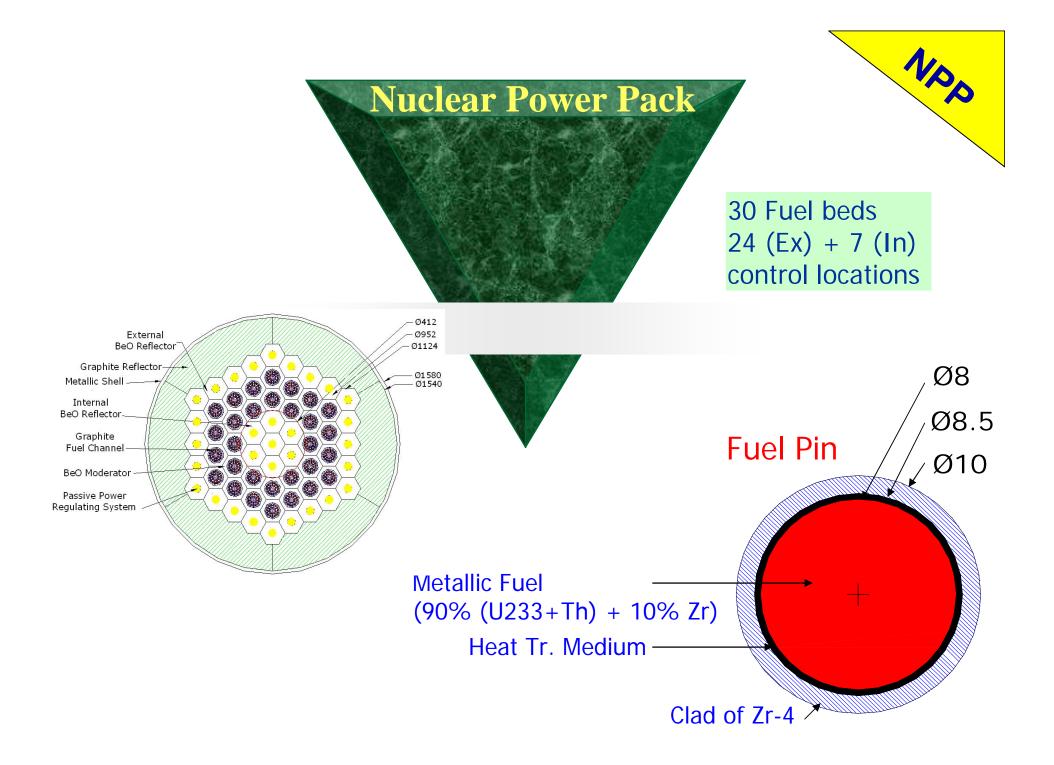
- Energy production in terms of MWD/gm of fissile inventory is more for 12m core height compared to 8m core height.
- Initial reactivity can be controlled by reducing enrichment as well using control rods. But burn up reduces.
- Further study to control initial reactivity by using ThO2 ball is in progress.
- Real temperature coefficient is satisfactory
- System can be controlled using control rods & burnable absorber.

Salient Features

It will be compact and can run for around 10 years without any refueling.

The reactor should be able to control and regulate its operation in a perfectly passive manner

The overall reactivity change during core life should be less.

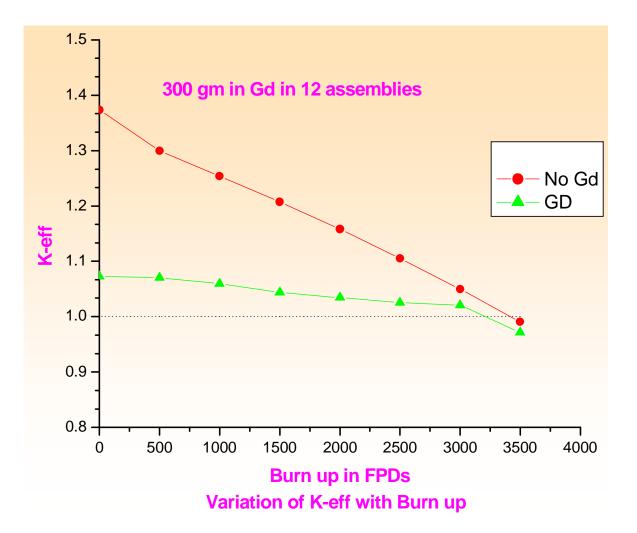


Basic Design Parameters

Reactor Power

: 5 Mw_{th}

Core Life	: Around 10 years
Fuel	: Metallic U ²³³ + Th ²³²
Moderator	: BeO
Reflector Material	: BeO and Graphite
Coolant	: Pb-Bi
Core Height	: 1000 mm
Core Inlet Temperature	: 450°C
Core Outlet Temperature	: 600°C
No. Of Fuel Assemblies	: 30
No. Of Control Locations	: 31



Important Parameters

*	Enrichment	14%
₩	Core life	3000 FPDs
*	Amount of Gd	300gm in each of 12

Total fuel for entire core

Estimation of Control Rods Worth at Hot Condition

(14% enrichment)

Position Of Control Rods	Value of K-eff		
All Control Rods out	1.07280		
All Control Rods in	0.79748		
All Control Rods in except one	0.80661		
having Maximum worth			
Worth of all Control Rods = 321.8 mk			
Max. Worth of a Single Control Rod = 14.19 mk			

Height of Control Rods at Criticality (14% enrichment)

- At criticality control rods will be 39.5 cm in the core plus 15 cm in the bottom reflector.
- In this condition the worth of one control rod having maximum worth is 2.9 mk.

Estimation of Fuel Temperature Coefficient

Fuel temperature coefficient is at 775°C it is -1.6953 x 10⁻⁵ per °C

CONCLUSION

Initial K-eff is very large necessitating the introduction of burnable poison in the core.

14.0 cm pitch is considered adequate.

This can be used as a Nuclear battery which will run around 10 years without any refueling.

ACKNOLEDGEMENT

P.D. Krishnani I.V. Dulera R. Srivenkatesan R. K. Sinha

Indian High Temperature

Reactors Programme

Compact High Temperature Reactor (CHTR) A technology demonstration facility

> High Temperature Reactor (HTR) For hydrogen generation

Nuclear Power Pack (NPP)

To supply electricity in remote areas not connected to grid