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Outline

Introduction: Intermittency - presence of coherence
Influence of coherent structures on transport.

Experimental evidences and numerical studies on
the presence and formation of coherent structures.

Comparison and contrast with the strict quantitative
notion of intermittency adopted in the context of
hydrodynamic fluids.

Plasma intermittency: present understanding - some
unique aspects




Turbulence

Seemingly erratic flow
Interspersed with patterns
of various sizes.

Presence of structures
linked with the concept
of intermittency.




Intermittency
(A first glimpse)

Qualitatively:

 |Intermixing of randomness and coherence
In the turbulent state.

e Deviations from Gaussian statistics.

Connection with transport

Structures can lead to particle trapping and/or increased
transport by effectively increasing the de-correlation length.
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Influence of coherent structures
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Transport in Fusion Devices

Long time correlations persist!
Intermittent transport events.

Some evidences of non diffusive scaling
with ‘t’.. Ballistic transport X? ~ t2,

Transport anomalous ‘D’ much greater than
the expected neo-classical values. This can
be viewed as an effective enhancement of
the correlation step size.

Formation of transport barriers.
Structures play an important role!
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FIG. 7. Time signal of the radial particle fluxz I, due to radial E x B drift at the

midplane of ASDEX (normalized to its mean value). Temperature fluctuations were
neglected when calculating I'; from floating potential and ion saturation current fluctu-
ations. The data were taken 1 to 2 cm outside the separatriz. The transport is directed
radially outwards during 75% of the titne, and the integrated transport in the outwards
direction is by a factor of 15 to 20 larger than the integrated transport in the inwards
direction. Of the transport directed outwards 20% (50%) is accomplished within 2.5%
(10%) of the time (intervals for which I'; is above the upper (lower) horizontal line).

BURSTY TRANSPORT
Endler et al. NF 1995
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FIG. 8. Distribution function of the time signal of the radial particle fluz ', shown
in Fig. 7.
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Avalanches

Ballistic tramsport
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FIG. 4. The normalized (87/7) electron temperature fluctuations for dis-
charge 96145 versus time for p=0.24 to 0.97. Each curve is displaced
vertically by an amount proportional to the normalized minor radius for that
channel as indicated by the left ordinate scale. The highlighted bands indi-
cate examples of events moving at — 300 m/s.

Politzer et al. PoP 9 (2002) 1962 |




Coherent Structures

Clearly coherent structures are playing an important
role!

Do we have direct evidences for the presence of
coherent structures ?

YES'!

By carrying out conditional statistics measurements,
ADITYA showed that the non Gaussianity In
edge- SOL turbulence is due to presence of
coherent structures
(IAEA Seville Conf 1994 , Phys Plasmas 4
4292, 1997 ; 4, 2982, 1997 )




Coherent Potential Structures in ADITYA edge plasma.
Joseph et al Phys Plasmas (1997)

22 us

Seen also in ASDEX, Caltech Tok, NSTX, Alc CMOD



Coherent Structures (continued)

separatrix

Blob motion and splitting are observed in structures

outside the separatrix as seen in optical emissions
Zweben et al POP 9, 1981 (2002)



PDF of density and potential fluctuations in ADITYA
Jha et al Phys Rev Letters (1992)

ADITYA
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Also seen in Alcator CMOD, TJ II, TS, ATF, DIIID etc




Experimental evidence for Intermittency

FDF
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Antar et al POP 10, 419 (2003)




Turbulent heat and particle Transport In
Tokamaks

Observation: Transport episodic and bursty!

Evidences:
1. Langmuir Probe data from edge !
® [Intermittent coherent structure observations
ADITYA (Jha et al. 1994, 1997)
ASDEX (Endler et al. 1995)
® Probablity Distribution function (PDF)
(long tails & power laws)
TJ-11,W7-AS etc. (Hidalgo et al. 1994-99)




Turbulent heat and particle Transport In
Tokamaks (Contd.)

Evidences:

2. ECE measurements from large Tokamaks
show radial propagation of avalanche like
events with speeds few hundred meters/

SEC.



Present understanding of formation
coherent structures and their influence on
transport

P. H. Diamond, S. Itoh, K. Itohand T. S.
Hahm PPCF 47 R35 - R161(2005).

e Transport inhibiting zonal patterns
e Transport enhancing streamer structures.

 Numerical evidences through gyrokinetic
simulations as well as simple fluid models




Large Scale Computer Simulations

® Gyrokinetic and Gyrofluid Simulations
* (Linetal., Hammet et al.)
* (Dorland et al.)

® Resistive fluid Simulations (Edge/ SOL)
(Carreras et al., Sarazin et al. 2000, Drake et al.)

Have shown transport features associated with the
distinct structures
The underlying Physics very complex and nonlinear



Turbulent Fluctuations Suppressed When
Flow Shearing Rate Exceeds Maximum
Linear Growth Rate of Instabilities

Simulations show turbulent  Turbulent fluctuations are suppressed
eddies disrupted by strongly when shearing rate exceeds growth

sheared plasma flow
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Self regulation of turbulence

Ind

Importance

uced transport

has been realized in magnetic

confinement fusion devices.

Geometry o

complicated.

f fusion devices pretty

Added com
effects.

plexity due to magnetic shear

Difficulty in appreciating the physics of self
regulation for such a complex system.



Minimal Physics for generation for
such flow patterns ?

Two distinct flow patterns
* Poloidally symmetric shear flow patterns (Zonal Flows)

 Radially extended shear flows (Streamers)

Zonal Flows Streamer Flows
(transport inhibiting (transport enhancing
structures) structures)

9 &

It is of interest to seek the possibilities of self consistent
generation of these flow patterns in the context of a
minimal model!!




MCDRT: Magnetic curvature driven RT turbulence

=

Magnetic field
lines are toroidal

\

Good curvature

region Bad curvature region

Tokamak
Centrifugal force
(effective ‘Q")

Currentless toroidal devices



Spatial Domain for
model representation.
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Equilibrium and ordering scheme

B.q= Bo(1-X/R)e, Electron diamagnetic drift
Neg = NooeXP(-X/L,)) |  produces equilibrium current J.,

Have retained terms upto order 2 where the
ordering scheme Is:

P~ P~ P~ ~ —~

Perpendicular drifts considered N
lons: E x B and polarization Vg =2pd/R
. : | VA2 - 1/B Vn: ps/Ln

Electrons: E x B and diamagnetic



3 dimensional electromagnetic

e Governing equations obtained from electron
continuity, quasi-neutrality condition and
the inertia-less parallel momentum equation
for electrons.

 Variations along the parallel direction is
Incorporated.

e Electromagnetic effects due to field line
bending considered.




Governing equations

Slab approximation L
Normalizations:

Radial — x N
Poloidal — y Magnetic flleld. B,
Toroidal - z Time : o, length: p,

on . on ¢ O
+Vay (Vo — V)aerszaD Vn — VA{aEVJ_ersz’w VVJ_%L‘}—DVR

d
EVQ‘P + 1’;@ +3xVp:VVip -V} {

9 N
020+ 2x¥y vviw} =V

o — —
%—}—%(n—@)—l—vﬂr% —ﬁXV’l}"V(ﬁP—ﬂ) ??SV Vilﬁ‘




Invariances

The equations remain invariant under the following
scaling transformations

V2
a°

Z—)E; 77—>a775, y—ay;, Vi
a

Thus note that combinations such as

2 . _ >] remain invariant under
NVas KVai 71K;|  the transformation.

Scalings help is establishing equivalence in a wide
class of phenomena.



2d limit
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Linearly growing modes with growth rate




3d electrostatic limit

Perpendicular drift produces charging of the field lines.

Finite k, implies differential charging and promotes
parallel currents.
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Objective

2 dim 3 dim 3 dim
Electrostatic Electrostatic Electromagnetic
Role of V,, m Additional m Additional
V,, D, p, box pararmeter : pararneter:
size Kpars M plasma beta

o Seek possibility of self regulation in the various
models.

 Study the role of various parameters in the
detailed process of self regulation. (e.g. pattern
formation, its characteristics and the resultant
saturation levels etc.).



Nonlinear Simulations

e 2d simulation.
*3d electrostatic simulation.
*3d electromagnetic simulation

1. A. Das, S. Mahajan, P. Kaw, A. Sen, S. Benkedda and A. Verga Phys.
Plasma, 4 1018 (1997).

2. A. Das, A. Sen, S. Mahajan and P. Kaw. Phys. Plasma, 8 5104 (2001).
3. A. Das, A. Sen, P. Kaw, S. Benkedda and P. Beyer. Phys. Plasma 12

032302 (2005).




2d results (contd.)

Density Potential
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FIG. 3. Contour plot of density and potential at various times.




2d results (contd.)

FI(i. 2. The iso-contour plots of density and potential at
t= 100 for three different sets of dissipation parameters
Doand g (D,p)=(0.1,0.1) in (a),(b); =(4.0,0.1} in
(c)(d) and =(0.1,4.0) in (e),(f).




Pattern selection

No Initial and/or boundary related anisotropies.
Dynamics governs the asymmetry of the final state.

Dynamics in linear regime prefers formation of patterns
having structure in ‘y’ (poloidal) direction. Yet final
saturated state comprises of poloidally symmetric shear
flow patterns!

For low values of dissipation saturated states with zonal
symmetry are obtained, whereas for high values growing
radially extended patterns are observed!



2d results (contd.)

Pattern selection
by dynamics
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FIG. 3. A consolidated phase diagram in £, g space delineating regions
corresponding to the predominance of zonal and streamers structures in the
final state. The circles and asterisks represent the values of D and g where
the numerical simulation was actually carried out leading to the formation of




Physics of bifurcation

Cascade towards long scale governed by properties
of polarization drift nonlinearity.

7xV ¢ oVV 2¢ — Polariz_ation drift nonlinearity.
Potential evolution

5%V ¢ oeVn. Advective nonlinearity
Density evolution

Density gets slaved to potential; cascade towards
long scale due to polarization drift in potential
equation dominates.

Low D and p small scale RT fluctuations grow.
Power cascade towards long scales in nonlinear
regime generates streamer and zonal patterns.



Physics of bifurcation (contd.)

e The form of the nonlinearity is such that a
short scale spectrum biased at high k, leads
to larger nonlinear growth of zonals'

 The shear In zonal flow then stabilizes the
growing streamers.

e For large D and p the short scale
fluctuations are damped. No nonlinear
growth of zonal flow. Linear growth of
streamers cannot be contained.



2 — dim scatter plots of ‘n” vs. @
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Evidence of slaving!!



(electrostatic model)
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1.26 x 1078)

density (t =90, n

5

density (t = 150, 1_ = 107°)

Density shows dominance of short scale

structures In both cases. No slaving to potential

field.



Evidence for non slaving
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3 dim Electromagnetic

Plasma B = c2/v,? = 1/V ?; is an additional parameter

10'
In electromagnetic _
case saturation “
occurs at a higher 0l
value of the total | S
] - magnefic snergy(em
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107" | | ' :
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Novel state with identical zonal and streamer
Intensity!

Electromagnetic effects inhibit zonal formation and
hence stabilization becomes difficult in this case.



potential {t = 30) potential (t = 150)

Linear regime Nonlinear regime

Shows no predominance of zonal power.
Significant structure along ‘2’



density (t=30) density (t=150)

20~ -

154 "

N 104 B
g2e

5. - Press

20 =

20
y 0 0 X
Linear regime Nonlinear regime

Similar to 3-dim electrostatic simulations density has
significant spectral power in short scales. No slaving to
potential.
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Minimal Physics

 Polarization nonlinearity (Reynolds stress) -
long scale structure formation.

e Anisotropy of short scale spectrum
(characteristic of the instability) decides the
pattern symmetry.

e Electromagnetic effects weaken the
formation of long structures.



Plasma Turbulence : problem of
many scales

Structures and fluctuations with a
wide range of scales are present

How do we describe such a system ?

Successful in the context of critical
phenomena of phase transition.

o Self similarity of scales.

* Rules connecting various scales.can be
constructed.




Many scales still ...

e Simple mathematical rules connect them.
* No special scale. (Scale invariant system)

«SOC system : Self similar M”M\/

Intermittency implies
lack of this self
similarity.

Fluid turbulence is
Intermittent !
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o 2., Numerical evidence
2 In turbulence (contd.)
8|
g
‘ (c) I—!lgh pass
' filtered solution.
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! 8" | mode in (a).
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Intermittency: increased flatness of PDF

Observation of quiescent period. Activity gets
restricted over limited time regime.

Let v be the fraction time for which the signal is on.

V)= |
V= [ e

Clearly |[F, > F




Kolmogorov’s similarity hypothesis

Navier Stokes Equation for fluids:

~—+VeVV =-VP+v V¥ +F

Characterized in terms of dimensionless Reynold’s number
Re=VL/v; large Re==> implies nonlinear turbulent
state.

K41:
e Energy input at large length scales L.
« Energy dissipation at small length scales |,.

e Energy cascade in the intermediate inertial range due to
nonlinear terms.




K41 (Contd.)

 |nertial range: energy transfer through local
Interaction of wavenumbers with a rate that
IS same for all scales.

e g =g =V, 2/t =external forcing rate =energy
transfer rate In each scale. (¢ homogeneous
In space and time)

E=[E(k)dk;| [E~L2T2E(K)~ LT 26~ 12T

g=dE/dt| |[E(k)=g"k”| ==, _2.

wiN




K41 (Contd.)

e QObservations indicate deviations from 5/3™

law. E(k) ~ k™>2*#, . is known as the
Intermittency coefficient.

e Deviations prominent in higher order
structure functions.

Structure functions are defined as

Sp(r)=<[5v(7<,t,r)]p>

V(X t,r)=[V(X,t)-V(X+T,t)]er /1




Structure functions and

Intermittency
Note that

o) -

[(ov, ) d®x
[d>x

= (8, ) ~ ik ~ Bk ~ k7%~ r?8

= v, ['k2dk = [ E(k )k

<(5\:r)p> N <[(5Vr)2]pf2> ~pP/3

|
Structure fn of order p

Thus any deviation from linear p/3 scaling of pt" order
structure function is a measure of Intermittency



Relationship between bivariate
gaussian and scaling of S,

Let ¢,= ¢(X) and ¢,= ¢p(x+r); their joint bivariate gaussian
PDF is given by: (here < ¢,>> =< ¢,>> =qand < ¢, ¢,> =h)

alg’ +4,°)-2bg

P(4, ) ~expg’ 2 4|= exp{—

[a” -b°)

|

<(5¢)> <(¢1 ¢z)> Aa-b) =f(r)=ré— Selt

similarity

I
Homogeneity



Gaussianity and scaling of S

P(6¢)=[P(¢y ¢ — 5¢ A, = exp{— 2((i¢_)2b)}

w

L= (0)") = (@) ~ (7 )"

Complete solution specification of a multivariate PDF
and the study of deviations from multivariate
gaussianity. Structure functions captures the essence.




from p/3

Quantitatively

Intermittency: Is quantified by deviation of ¢,
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Intermittency
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Physical Mechanism of Intermittency

In reality the dissipation ¢ Is a statistical quantity

FIG. 5. {(Color) Demonstration that vorticity at large amplitudes, say greater than 3 standard deviations, organizes itself in the
form of tubes (shown in yvellow), even though the turbulence is globally homogeneous and isotropic. Large-amplitude dissipation
{shown in red} is not as organized. and seems to surround regions of high vorticity. Smaller amplitudes do not possess such
structure even for vorticity. In principle. the multifractal description of the spiky signals of Fig. 4 is capable of discerning geometric
structures such as sheets and tubes, but no particular shape plays a central role in that description. The dynamical reason for this
organization of large-amplitude vorticity is unclear. The ubiquitous presence of vortex tubes raises a number of interesting
questions, some of which are mentioned in the text. At present, elementary properties of these tubes. such as their mean length
and scaling of their thickness with Reynolds number. have not been quantified satisfactorily; nor has their dynamical significance.



Concept of Intermittency In short

 In reality ¢ Is a statistical quantity. Can be
diagnosed by the presence of patchy, bursty
dissipation and transport. == “Intermittency”

e Departure from maximal randomness ===» Non
Gaussian statistics and presence of structures.
Extreme events are more probable than gaussian.

e Presence of structures === strong self interaction,
local in physical space and non- local in k space.

| eads to deviation from Kolmogorov’s scaling.
Deviations are more pronounced for higher order
structure functions.




Some Exact Results

From symmetry considerations of Navier Stokes
equation it has been possible to obtain the exact
value for ;=1.

The scaling exponents £, of the structure functions
Sp of a passive scalar acfvected by a velocity field
which is self similar, gaussian white in time (6
correlated) has been obtained exactly for all ‘p’ for
space dimension d of 2 and above and for velocity
scaling exponent & lying between 0 and 2.

<(§u (r,t))2>~ =




Models for intermittency

Incorporate statistical fluctuations of ¢.

e Log normal distribution.
Kolmogorov, JFM 13, 82 (1962).

Geometrical structure of dissipation region

e Beta model.
Novikov and Stewart; U Frisch JFM 87, 719 (1978).
e Multifractal model.
Meneveau and Sreenivasan, JFM, 224, 429 (1991).
Both features and curently the most favoured

e Log Poisson process.
She and Levegue, PRL 72, 336 (1994)




Lognormal Model

Kolmogorov and Obukhov assumed that € being a
statistical positive definite quantity has a log

normal distribution with

AX)elx+r))~r

p  p(p-3)

N T

Note the value of ¢; as
unity has been obtained
exactly from the
equations.

Any model ought to
satisfy this constraint !!

A good fit to observed numerical and experimental
data was obtained upto p = 10 for a value of p = 0.2




Beta Model

Each level of cascade an eddy of scale | splits into
2P eddies of scale | ,,=|.. Here D diemsionality
of space and B lies in between 0 and unity defining
the fraction of space which is filled at each
subsequent scale by the turbulent activity.

Sp

P o

3

3(|o—3)

Here B =29 ; and so D-9 is
the fractal dimension of the
region of activity

Greatest drawback :Linear scaling does not agree
with observations.




Multifractal Model

More than one fractal dimensions for the

active region.

¢, =(§—1ij r1

1

D, =log [np +(1—n)° [a-p)

Agreement with experimental data pretty good for n = 0.7




She Levegue Log Poisson Model

 |Involves hierarchy of fluctuating structures.
e Requires no adjustable parameter

e \Wide acceptance




Transport behaviour in tokamaks :
Intermittency or self similarity as in
SOC?

SOC : scale similarity

Intermittency: Lack of strict scale
Invariance.

Opinion divided, experimental evidences
‘for’ and ‘against’ both seem to exist.

More work necessary.




Turbulent heat and particle Transport In
Tokamaks (Contd)

Aspects in favour of SOC:
® Scaling character of frequency spectra
(Pedrosa et al. 1999)

®  Strong profile resilience shown by Thomson scattering
measurements.

®  Submarginal profiles
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of Mantica and Hogeweij for RTP, Jacchia for FTU, Angioni for TCV, Hoang for Tore Supra and

Suttrop for JET.)

| F.Ryter et al. PPCF43(2001) A323-336




Turbulent heat and particle Transport In
Tokamaks (Contd)

Aspects in favour of Intermittency:

® PDF of transport does not collapse to a universal scale
similar form.

® Short scale and long scale transport features are distinctly
different.

®  Fluid models are useful as minimal model description for
tokamak transport.



Clearly ...

e Tokamak data is very limited to discern any
quantitative evidence for intermittency.

o Existence of natural length and time scales
results Iin characteristic structures assoclated
with such scales.

e Highly unlikely that a system plagued by
natural length and time scales would be truly
self similar.

What Simulations have to say !



Comparison: Plasma with neutral fluid

* Physics analogies: many scales excited, strong
mixing, cascade..and so on.

e Fluid models of plasma: MHD, EMHD,
Hasegawa Mima etc.

o EXistence of waves in addition to eddy like
motion.

« Additional fields: Electric and magnetic fields,
currents etc.

Strong anisotropy In turbulence.
At times leads to a reduction in dimensionality (3d to 2d).



Intermittency studies in Plasma
(Fluid like Approach)

* Most extensive study on MHD model.
« MHD Model supports Alfven waves.

oV

4+ VeVV =V -Vp+J

ot
8B
ot

+VeVB=BeVV+7nV°B

Controversy: Over
Alfven effect!!!
Modifies the turn
over time from 7, to
T2l T

Change in Kolmogorov scaling k'3 to k32 (IK scaling)?
Difference difficult to gauge numerically.



Generalized SL scaling

P

BE
D / Biskamp et al. claim to have
Sp =—(1—X)+C[1—(1—X/ C)° g] solved the controversy

9 reigning Alfven effect.

Here: g defines the basic scaling of the relevant field 6z, ~r'/9.

X energy transfer time t ¢ ~I
C=3-D; D dimension of dissipative structures.

Neutral Fluids MHD Fluid MHD Fluid
2=V, =3 x =2/3 (w/o Alfven effect) (with Alfven effect)

D=150C = 2 Z = Elsasser fields

g =3, X =2/3, D=2
soC=1




Comparison with simulation

20F 3
[ 4 ’_.T.f-f#"' ]
i AT LT & N
’l 5 :_ - ,.¢‘ - ﬂ. Iy :
o i AR ]
1.0 ]
0.9 &’i..--"' 7
ook~ ]

o 2 4 & &

>

FIG. 4. Scaling exponents ._f,”; for 3D MHD turbulence (dia-
monds) and relative exponents Jr:r;’g‘,’f for 2D MHD turbulence

(triangles). The continuous curve 1s the She-Leveque model ;j’ﬁ'L,
the dashed curve the modified model ¢ (7), and the dotted
line the IK model ,*.



Studies on EMHD model

 Presence of special characteristic scale d. .
e Supports dispersive whistler waves.
e Controversy: presence of Whistler effect on

scaling

Kolmogorov analysis
° Ek: 82/3k-5/3 (kde >>l)
o E, = 23k (kd, << 1)

IK Analysis (whistler effect)
.Ek: 82/3k-5/3 (kde >>1)
e E ~k?(kd, <<1)

 Biskamp et al. rule out whistler effect merely on the
basis of energy spectra scaling!!

e Dastgeer, Das, Kaw and Diamond PoP 7 571 (2000)
show that cascade is influenced by whistlers though it
may not perhaps influence the scaling of spectra directly.




Studies on EMHD model (contd.)

 [ntermittency in 2d EMHD have been studied
recently by Germaschewski et al.

* The structure function index C, for both b and v
fields (upto p = 14) show deviations from
linearity.

 Fitting parameters (in terms of X, g and C)
employed to fit the result with generalized SL
expression.

e The fitting parameters were different for the two
fields.

* No justification as given in the context of MHD.



Other evidence for Intermittency In
EMHD

Boffetta et al.(PRE vol 59 3724(1999)) measured the
scaling exponent of various powers of energy
dissipation function numerically and showed a
nontrivial scaling of the exponent t, with p.

<5(r)p>:< v(r)jd “x&(x) p>~ re




Other fluid models

(Electrostatic models)

e Hasegawa Mima (HM), ITG, ETG etc.
e HM has a characteristic scale ~ larmor radil.
e Waves : Drift waves.

19 2 2 ° 2 %_ 2v7 2
a(¢_v $)-2xVeVV2ih+y, ay—/N Vi

e Supports two Invariants.

 Hence energy (inverse) as well as vorticity
(direct) cascade regimes.

» Two wavevector regimes kp, << 1; and kp, <<'1




Energy cascade: kp,>1

Four Possibilities - Kp,< 1
Vorticity cascade: kp,>1
kp,<1
Forcing wave vector k¢
Energy cascade Vorticity cascade

regime regime

L >

Kps
Location of kp, = 1 with respect to k;



Scalings

kp, >> 1, equations identical to 2d hydrodynamic fluid

E, ~k>7? in energy cascade and E,~k3 in vorticity cascade.
kp << 1, E,~k3 in energy cascade and E,~k™® in
vorticity cascade.

Interesting feature in kp, << 1 regime, reduced eddy turn
over time.

IxVgeVV 2

Novel feature: Reduction in eddy turn over time results in
accumulation of power in the boundary and formation of
quasistationary crystalline structures. Kukharkin et al. PRL
(Oscillatory structure functions). ~ “Intermittency like’




Plasma flow system
Natural length

scales acts as a

Accumulation

T — barrier for
- energy cascade.

E(k)

Slower “

rate of Faster cascade rate

cascade

o K —
0

~(Vig—a’p)rzxVgevvig=0




Numerical studies

e For HM system numerical simulations show a self
consistent spontaneous formation of several distinct
regions of intense vorticity for decaying as well as
randomly driven systems (forcing at scales shorter
than the natural length scale).

e These structures appear as quasi—crystalline pattern
In 2-D spatial domain and were first identified by
Kukharkin et al. PRL 75 2486 (1995).

e Formation of such structures was attributed due to
the existence of a barrier in the inverse energy
cascade rate at the natural length scale.



FIG. 1. The potential vorticity, ¢ = V¢ — A*¢, field at
N, = 400 for the NS and the HM equations: (a) A = 0 (NS),
(b) A = 20, and (c) A = 40.

Ea;{v%b — A2¢) + J(b. V) =D + F.




Influence of wave excitations !!

Study by making V,, finite during the course
of evolution

Ref:
e A. Das, Phys. Plasmas (2007) ;
* A. Das, Phys. Plasmas (2008)



Melting transition in the presence of waves

S & * In the presence of
$ Sf . e Wo ¥ waves with finite V,
Mt - F o the quasi — crystalline
m..’. o8 ed struc_ture undgr_goes a
e o - melting transition
e Transition occurs only
S, when V, exceeds a
P - Yo%n certain threshold.
SR Tl :
Hm; - - J 5
3/5 a® Py vn—¢~2xv¢-vv2¢
. o --J ay
E‘. e 100— 50‘ 200.! =
- An increased cascade thru’ the
barrier in the presence of waves
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No induced transparency for Doppler
shifted translational invariant system

Modified HM equation with

A % -V 8(V2¢ _ 0(2¢)
oy oy

Causes no induced
transparency



Numerical Results

* Nonlinear scaling of the G, with p both for
EMHD and MHD : signature for
Intermittency

e Strong influence of natural length and time
scales on cascade and structure formation:
Clear demonstration in the context of the
Hasegawa Mima system.



Intermittency description : Non
Gaussian PDF

Hydrodynamic fluids: Kraichnan -
Mapping Closures

e Mapping Closures: A. Das and Predhiman
Kaw, Phys. Of Plasmas 2, 1497 (1995).

e |nstanton approach: Kim and Diamond,
Phys. Of Plasmas 9, 71 (2002).



Finally ...

e Plasma turbulence fertile area.

» Standard intermittency studies have been
limited. Maost conclusions derived on the basis
of indirect evidences.

» Presence of natural scales and quasi-
structures: Influence on S, — unknown.




