International Workshop on the Frontiers of Modern Plasma Physics

14 - 25 July 2008

QFT nonlinearities in vacuum and plasmas.

M. Marklund
University of Umea
Dept. of Physics
Sweden
QFT nonlinearities in vacuum and plasmas

Supported by

Symposium on Nonlinear Plasma Science, Abdus Salam ICTP, Trieste, 2008
Collaborators

▷ L. Stenflo, G. Brodin, B. Eliasson, J. Lundin (Umeå U.)
▷ P. K. Shukla (Ruhr-U. Bochum)
▷ R. Bingham, J. Collier, R. Evans, P. Norreys (Rutherford Appleton Lab.)
▷ J. T. Mendonça (IST)
Overview

- Why are we interested in the low energy quantum vacuum and high field physics?
- Plasmas and the quantum vacuum topically connected.
- How can we probe the vacuum?
- Quantum effects in plasmas.
- Examples.
- What might the future bring?
Developments

- Current divide: relativistic optics & nonlinear QED. (Mourou et al., RMP, 2006; Marklund & Shukla, RMP, 2006; Salamin et al. Phys. Rep., 2006)

- New developments in numerical and experimental tools. (e.g. Fonseca, Proc. HPCPAST 2002; Trines et al., PRL, 2005)

- Near future importance: laboratory astrophysics, e.g. hydro, nuclear astro. (Remington et el., RMP, 2006)

- Questions in fundamental physics:
 - ... etc.
Soluble models

Exact solutions:

In eighteen-century Newtonian mechanics, the three-body problem was insoluble. With the birth of general relativity around 1910 and quantum electrodynamics in 1930, the two- and one-body problems became insoluble. And within modern quantum field theory, the problem of zero bodies (vacuum) is insoluble.

R.D. Mattuck

→ We need methods, experimental and theoretical, to deal with such issues.
The quantum vacuum

- Quantum electrodynamics: fundamental theory of photon-matter interactions.

- 1930’s: Weisskopf, Heisenberg, Euler etc. + Dirac discovers nonlinear quantum vacuum.

- 1950’s: Schwinger shows vacuum polarization from QED.

- Special relativity + Heisenberg’s uncertainty principle → vacuum acts as virtual pair plasma [e.g. RMP, 2006].

- Quantum vacuum: from NEMS to QG.
Signs of QFT vacuum on photons

a) Nonlinear electrodynamics.
 • QED vacuum polarization (Schwinger field).
 • String theory Born–Infeld electrodynamics (string tension) (Tseytlin, hep-th/9908105).
 • Minicharge particles?

b) Phase- and polarization effects.
 • Axion-like particles.

c) Vacuum dispersion
 • Derivative QED corrections.
 • Spacetime coarsening:
 - Loop QG.
 - Non-commutative ST.
 - Double special relativity.
 Nonlinearities + dispersion?
 Hawking effect, BH entropy.
Nonlinear vacuum effects

Delbrück scattering

Casimir effect

Photon splitting

Elastic photon scattering
High field generation

- Many high phenomena directly tractable with next generation laser systems.
- Some phenomena require intensities above current experimental limits.

Opportunity to reach the Schwinger field
\[\sim 10^{29} \text{ W/cm}^2 \]
Probing new regimes

Accelerators vs. laser systems:
Probing new regimes

▷ New possibilities to probe low-energy domains.

▷ In particular, light pseudo-scalar particles (e.g. PVLAS, Fermi Lab, DESY...).

▷ Is it possible to probe Lorentz invariance properties (dispersion)?

▷ Parametrized theory to restrain models.
Why?

Astrophysics

Giga-gauss field in laser-plasmas.

A touch of gravity

Thermodynamics

Quantum fields

Spacetime structure

Modify the Standard Model?

\[g \phi \mathbf{E} \cdot \mathbf{B} \Rightarrow \]

New physics

High precision intense optical experiments

Example: photon–photon scattering

\[\sigma_{\gamma\gamma} \approx 0.7 \times 10^{-29} \left(\frac{\hbar \omega}{1 \text{ MeV}} \right)^6 \text{cm}^2 \]

\[\mathcal{L} = \mathcal{L}_0 + \frac{\varepsilon_0 \alpha}{90\pi E_{\text{crit}}^2} \left[\left(E^2 - c^2 B^2 \right)^2 + 7c^2 (E \cdot B)^2 \right] \]

\[E_{\text{crit}} = m_e^2 c^3 / e \hbar \sim 10^{16} \text{ V/cm} \]

Example: photon–photon scattering

\[\sigma_{\gamma \gamma} \approx 0.7 \times 10^{-29} \left(\frac{\hbar \omega}{1 \text{ MeV}} \right)^6 \text{ cm}^2 \]

\[\mathcal{L} = \mathcal{L}_0 + \frac{\varepsilon_0 \alpha}{90 \pi E_{\text{crit}}^2} \left[(E^2 - c^2 B^2)^2 + 7c^2 (E \cdot B)^2 \right] \]

\[E_{\text{crit}} = m_e^2 c^3 / e \hbar \sim 10^{16} \text{ V/cm} \]

Example: photon–photon scattering

\[\sigma_{\gamma\gamma} \approx 0.7 \times 10^{-29} \left(\frac{\hbar \omega}{1 \text{ MeV}} \right)^6 \text{ cm}^2 \]

\[\mathcal{L} = \mathcal{L}_0 + \frac{\varepsilon_0 \alpha}{90\pi E_{\text{crit}}^2} \left[(E^2 - c^2 B^2)^2 + 7c^2 (E \cdot B)^2 \right] \]

\[E_{\text{crit}} = m_e^2 c^3 / e \hbar \sim 10^{16} \text{ V/cm} \]

Example: photon–photon scattering

- Why? (See also Tommasini’s talk!)
 - “Clean” vacuum experiment.
 - Benchmark for experimental development.
 - Could new physics be probed?
 - Constraining nonlinear electrodynamics:

$\mathcal{L}_{BI} = \kappa^2 \left[1 - \sqrt{1 + \frac{\kappa^{-2}}{2}(E^2 - B^2)} - \frac{\kappa^{-4}}{16}(E \cdot B)^2 \right]$

- Derivative corrections to HE lagrangian

$\mathcal{L}_D = \sigma \varepsilon_0 \left[(\partial_a F^{ab})(\partial_c F_{cb}) - F_{ab} \Box F^{ab} \right]$

Example: photon–photon scattering

Why? (See also Tommasini’s talk!)
- “Clean” vacuum experiment.
- Benchmark for experimental development.
- Could new physics be probed?
- Constraining nonlinear electrodynamics:

\[
L_{BI} = \kappa^2 \left[1 - \sqrt{1 + \frac{\kappa^{-2}}{2} (E^2 - B^2) - \frac{\kappa^{-4}}{16} (E \cdot B)^2} \right]
\]

> Derivative corrections to HE lagrangian

\[
L_D = \sigma \epsilon_0 \left[(\partial_a F^{ab}) (\partial_c F_{cb}) - F_{ab} \Box F^{ab} \right]
\]

Example: photon–photon scattering

> Why? (See also Tommasini’s talk!)
 - “Clean” vacuum experiment.
 - Benchmark for experimental development.
 - Could new physics be probed?
 - Constraining nonlinear electrodynamics:

\[
\mathcal{L}_{BI} = \kappa^2 \left[1 - \sqrt{1 + \frac{\kappa^{-2}}{2} (E^2 - B^2)} - \frac{\kappa^{-4}}{16} (E \cdot B)^2 \right]
\]

> Derivative corrections to HE lagrangian

\[
\mathcal{L}_D = \sigma \epsilon_0 \left[(\partial_a F^{ab}) (\partial^c F_{cb}) - F_{ab} \Box F^{ab} \right]
\]

Contains string tension

Prop. to Compton wavelength^2
Pair production

\[\hbar \omega_\gamma \gtrsim 2m_e c^2 \]
\[
\begin{align*}
\gamma + \gamma & \rightarrow e^- + e^+ \\
\gamma + B_0 & \rightarrow e^- + e^+ + B_0
\end{align*}
\]

- Positronium interaction with laser: Small scale muon pair collider! (Müller et al. PRD 74, 074017 (2006)).
- Laser-pair plasma interactions give new experimental possibilities.

Burke et al., PRL 79, 1626 (1997)
Pair production

- "Schwinger mechanism" for fields with spatial and temporal variation.
- Temporal compression: increased production rate.
- Spatial compression: lower production rate.
- Laser fields production rate unknown.
- Schwinger limit: more than necessary?
- Need for theory (e.g. world-line instantons, e.g. Gies, Dunne).
- Will experiment come first? Non-perturbative aspect of QED.
Harmonic generation

Vacuum harmonics possible in principle (Di Piazza et al., PRD 72, 085001 (2005); Fedotov & Narozhny, PLA 362, 1 (2007)).

Nonperturbative surprises?
Plasmas in QED vacuum

- Combined effect of ultrarelativistic magnetized plasmas and QED \(\rightarrow \) new electromagnetic modes. Example:

\[
n^2 = \frac{4\alpha}{45\pi} \left[\left(\frac{E}{E_{\text{crit}}} \right)^2 n^2 + \left(\frac{B_0}{E_{\text{crit}}} \right)^2 \right] n^2 \pm \frac{\hbar}{m_e} \frac{\omega_p^2}{\omega} \frac{E_{\text{crit}}}{E}
\]

- New dispersive properties in strong field environments, e.g. pulsar magnetospheres.

- Plasma breaks Lorentz invariance.

- Possible boost for certain plasma parameters (Di Piazza et al.)?
Nonlinear plasma-QED photon splitting.

Linear decay channel: pair plasma suppression in pulsar magnetospheres (Shabad & Usov, Nature (1982))

PRL 98, 125001 (2007)
Colliding photons

Two colliding light pulses. Criteria for vacuum collapse:

\[\left(\frac{\alpha}{90\pi} \right)^{1/2} \frac{|E|}{E_{\text{crit}}} > \frac{r_p}{\lambda_p} \]

Supplemented by

\[\frac{W_p}{\lambda_p r_p^2} > \frac{90\pi}{\alpha} \varepsilon_0 E_{\text{crit}}^2 \]

Sufficiently long pulses for collapse to occur. See also Kharzeev & Tuchin, PRA, 2007. Or pair production before Schwinger limit?
Vacuum dynamics

- Dynamics similar to laser-plasmas
- Catastrophic collapse governed by NLSE and acoustic wave equation
- Evolution determined by the system

\[i \partial_t E + \frac{1}{2} v'_g \nabla^2 \nabla_\perp E + \mu \mathcal{E} E = 0 \]

\[(\partial_t^2 - \frac{1}{3} c^2 \nabla^2) \mathcal{E} = \nu \nabla^2 |E|^2 \]

(PRL 91, 163601 (2003))
Vacuum dynamics

Pulse, \(t=0 (\text{sec})^{-1} \)

Radiation, \(t=0 (\text{sec})^{-1} \)

Energy density, \(k_{ct}=100 \)

Energy density, \(k_{ct}=300 \)

Energy density, \(k_{ct}=350 \)

Energy density, \(k_{ct}=400 \)
Gigagauss laboratory fields

- Currently, gigagauss laboratory fields generated in solid-laser interactions.
- Magnetization of the vacuum for future lasers?
- Principle: magnetic field exerts Lorentz force on vacuum fluctuations.
- Possible to use for QED experiments, or to muddled?
Hawking–Unruh effect

> Testing the Hawking–Unruh effect (Chen & Tajima, PRL, 1999; Schützhold et al., PRL, 2006, 2008; Brodin et al., CQG, 2008); electron acceleration.

\[k_B T_H = \frac{\hbar g}{2\pi c} \]
\[k_B T_U = \frac{\hbar a}{2\pi c} \]
Unruh effect

> Need electrons plasma to get measurable signal.

> Problem: hole in Larmor radiation pattern decreases like $1/N$ for N-electron plasma.

> Use spectral pattern; detectable soft x-ray signal from Unruh effect?

> Achievable by present day high-intensity lasers.

> Connection: dynamical Casimir?
Quantum aspects of spacetime

- Non-commutative spacetime

\[[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu} \]

QFT on NCST interpreted as low-energy limit of open strings or limit on length scales. IR/UV mixing: high-energy affects low-energy.

- Canonical quantum gravity and loop quantum gravity: spacetime quantization, coarsening.

- String theory: low-energy case gives birefringence-free nonlinear electrodynamics.

http://www.cpt.univ-mrs.fr/~rovelli/
Quantum aspects of spacetime

 - Birefringence.
 - Anisotropic speed of light.
 - Anisotropy in quantum fields.
 - Violations of universality of free fall and the universality of the gravitational redshift.
 - Time and space variations of “constants”.
 - Charge non-conservations.
 - Anomalous dispersion.
 - Decoherence and spacetime fluctuations.
 - Modified interference.
 - Non-localities.
Dispersion: invariant scale length (such as Planck scale) introduces Lorentz invariance violations (massive and massless).

\[c^2 k^2 = \omega^2 \left(1 \pm \xi \frac{\hbar \omega}{E_{QG}} \right), \quad E_{QG} \sim 10^{19} \text{ GeV} \]

From NCST and LQG. Test through γ-ray bursts.

Possibility for coherent states: “nonlocality” and bulk property (Magueijo, PRD, 2006; Hossenfelder, PRD, 2007)

\[\xi = \xi(|A|) \sim \xi_0 |A|^a \]
Conclusions

➢ Laser science is entering a new era:
 ➢ Relativistic optics.
 ➢ Nonlinear quantum vacuum.

➢ Possible to experimentally probe uncharted QED sectors.

➢ Atomic systems in ultra-intense fields.

➢ Laser probes of elastic photon-photon scattering.

➢ “Clean” experiment, benchmark experiment?

➢ Interesting future possibilities:
 ➢ Collective quantum vacuum effects.
 ➢ Higher harmonic generation.
 ➢ Unruh test, dynamical Casimir effect, accelerated mirrors?.