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Nonlinear Dynamics of Burning Plasmas I

2 A burning plasma is a complex self-organized system where among the crucial processes
to understand there are (turbulent) transport and fast ion/fusion product induced
collective effects.
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Nonlinear Dynamics of Burning Plasmas II

2 Reactor relevant conditions require fast ion (MeV energies) and charged fusion products
good confinement:

• Identification of burning plasma stability boundaries with respect to energetic
ion collective mode excitations and their nonlinear dynamic behaviors above the
stability thresholds

• Obvious impact on the operation-space boundaries, since collective losses may
lead to significant wall loading and damaging of plasma facing materials in ad-
dition to degrading fusion performance

2 Mutual interactions between collective modes and energetic ion dynamics with drift
wave turbulence and turbulent transport should not deteriorate the thermonuclear
efficiency:

• MeV ion energy tails introduce a dominant electron heating and different weight-
ing of the electron driven micro-turbulence w.r.t. present experiments

• They also generate long time-scale nonlinear behaviors typical of self-organized
complex systems
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The roles of simulation and theory

2 These phenomena can be analyzed, at least in part, in present day experiments and
provide nice examples of mutual positive feedbacks between theory, simulation and
experiment.

2 In a burning plasma, however, unique features not reproducible in existing experiments
are:

• energetic ion power density profiles and characteristic wavelengths of the collec-
tive modes

• local power balance dominated by electron heating (fast ions) and self-
organization of radial profiles of the relevant quantities: consequence on tur-
bulence spectra and turbulent transport

2 Crucial roles of predictive capabilities based on numerical simulations as well as of
fundamental theories for developing simplified yet relevant models, needed for insights
into the basic processes

2 Importance of using existing and future experimental evidences for modeling verifica-
tion and validation
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Outline

2 Collective behaviors and fast ion transport:

• The shear Alfvén fluctuation spectrum: Alfvén Eigenmodes and resonant modes

• Fast ion transport: diffusion and avalanches

• Open issues in fast ion transport studies

2 Mutual interactions between collective modes and energetic ion dynamics with drift
wave turbulence and turbulent transport

2 Examples of broader applications of fundamental physics in fusion science

2 Additional material: lecture notes from ICTP Autumn College on Plasma Physics,
Oct. 13 - Nov. 7 2003 (available for distribution)

• Role of resonant vs non-resonant wave-particle interactions in electromagnetic turbu-
lence

• Collective effects and self-consistent energetic particle dynamics in burning plasmas
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The role of shear Alfvén waves

2 Collective behaviors due to energetic ions in burning plasmas: shear Alfvén (SA) waves
play a crucial role:

• Resonant wave particle interaction of ≈ MeV ions with SA inst. due to
vE ≈ vA (k‖vA ≈ ωE)

• Group velocity is along B-field lines (ω = k‖vA): particles stay in resonance

2 Toroidal geometry plays a crucial role: SA waves propagate along B as in a 1D lattice
and sample periodic potential structures with influence on SA spectrum and linear as
well as non-linear dispersion

2 Focus on non-linear dynamics and fast ion transport: conclusions largely apply to
MHD modes
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Shear Alfvén spectrum: continuum with gaps

}EPM

W.W. Heidbrink, Phys. Plasmas 9, 2113,
(2002)

2 Frequency gaps are due to lattice symme-
try breaking

2 Linear theory reasonably well understood:
few technical aspects need to be refined for
more realistic comparisons with EXP

2 Unified description: discrete gap modes vs.
resonant (driven) continuum modes.

2 Alfvén Eigenmodes (AE): weakly damped
gap modes excited by fast ions; fixed fre-
quency

2 Energetic Particle Modes (EPM): fast ions
drive overcomes continuum damping; res-
onant particle characteristic frequency

2 Nonlinear dynamics and fast ion transport:
reflect different nature of AE and EPM
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Fast ion transports in burning plasmas

2 AE modes are predicted to have small saturation levels and yield negligible transport
unless stochastization threshold in phase space is reached: H.L. Berk and B.N.
Breizman, Phys. Fluids B 2, 2246, (1990) and D.J. Sigmar, C.T. Hsu, R.B. White
and C.Z. Cheng, Phys. Fluids B, 4, 1506, (1992).
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Phase space structures: fast ion resonant interactions

with AE
D.J. Sigmar, et al. 1992, PFB 4, 1506 ; C.T.
Hsu and D.J. Sigmar 1992, PFB 4, 1492

2 Transient losses ≈ δBr/B: resonant drift
motion across the orbit-loss boundaries in
phase space

2 Diffusive losses ≈ (δBr/B)2 above a
stochastic threshold, due to stochastic dif-
fusion in phase space across orbit-loss b.

2 Uncertainty in the stoch. threshold:
(δBr/B)<∼ 10−4 in the multiple mode case.
Possibly reached via phase space explo-
sion: “domino effect” (H.L. Berk, et al.

1996, PoP 3, 1827)

2 SOC models for transport event and re-
lated PDF?

Lichtenberg & Lieberman 1983, Sp.-Ver. NY
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Simulation results: strongly unstable 1D system

2 Creation of phase space structures changes the distribution function thereby permitting
otherwise disallowed modes to grow ( R.G.L. Vann, et al. 2005 Intl. Sherwood Conf.)

ASICTP, TS July 2008



2008/07/21 Fulvio Zonca 8

Fast ion transports in burning plasmas

2 AE modes are predicted to have small saturation levels and yield negligible transport
unless stochastization threshold in phase space is reached: H.L. Berk and B.N.
Breizman, Phys. Fluids B 2, 2246, (1990) and D.J. Sigmar, C.T. Hsu, R.B. White
and C.Z. Cheng, Phys. Fluids B, 4, 1506, (1992).

2 Strong energetic particle redistributions are predicted to occur above the EPM exci-
tation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F. Zonca
and G. Vlad, Phys. Plasmas 5, 1321, (1998).
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Zonca et al. IAEA, (2002)

Avalanches and NL EPM dynamics
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2 Importance of toroidal geometry on wave-packet propagation and shape
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Vlad et al. IAEA-TCM, (2003)

Propagation of the unstable front
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2 Gradient steepening and relaxation: spreading ... similar to turbulence
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Fast ion transports in burning plasmas

2 AE modes are predicted to have small saturation levels and yield negligible transport
unless stochastization threshold in phase space is reached: H.L. Berk and B.N.
Breizman, Phys. Fluids B 2, 2246, (1990) and D.J. Sigmar, C.T. Hsu, R.B. White
and C.Z. Cheng, Phys. Fluids B, 4, 1506, (1992).

2 Strong energetic particle redistributions are predicted to occur above the EPM exci-
tation threshold in 3D Hybrid MHD-Gyrokinetic simulations: S. Briguglio, F. Zonca
and G. Vlad, Phys. Plasmas 5, 1321, (1998).

2 Nonlinear Dynamics of Burning Plasmas: energetic ion transport in burning plasmas
has two components:

• slow diffusive processes due to weakly unstable AEs and a residual component
possibly due to plasma turbulence (Vlad et al. PPCF 47 1015 (2005); Estrada-
Mila et al., Phys. Plasmas 13, 112303, (2006)).

• rapid transport processes with ballistic nature due to coherent nonlinear interac-
tions with EPM and/or low-frequency long-wavelength MHD: fast ion avalanches
& experimental observation of Abrupt Large amplitude Events (ALE) on JT60-U
(K. Shinohara etal PPCF 46, S31 (2004))
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Abrupt Large amplitude Events (ALE) in JT60-U

K. Shinohara etal PPCF 46, S31 (2004)

Courtesy of M. Ishikawa, K. Shino-
hara and JT60-U
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Fast ion transport: 3D simulation and experiment
S.Briguglio,G.Fogaccia,G.Vlad et al,EPS⊕IAEA⊕APS 2006
• Abrupt Large amplitude Events (ALE) in JT60-U:

• n = 1 mode, βH0 = 8πPH0/B2 ≈ 3%;

• linear growth rate γ ≈ 0.106τ−1

A0
;

• half width of the pulse ∆tALE ≈ 64.5µs;

• experimental range ∆tALE ≈ 50 ÷ 200µs;

• energetic particle profiles compare well before and af-
ter ALE burst

K. Shinohara etal PPCF 46, S31 (2004)

ASICTP, TS July 2008



2008/07/21 Fulvio Zonca 15

Some open issues for fast ion transport

2 Single mode vs. multi-mode nonlinear dynamics:

• dense spectrum of modes of characteristic frequency and location

• coherent vs. incoherent wave-particle interaction

• structure formation in phase space

2 Wave-particle resonances ⇒ nonlinear phase-space dynamics of charged particles ⇒
trapping, stochastic motion; etc.

2 Nonlinear dynamics of Energetic Particle Modes:

• importance of rare but large and potentially dangerous transport events

• coherent non-linear wave-particle interactions

ASICTP, TS July 2008
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Fast ion transport: some broader applications
A.V. Milovanov et al., (2006)

2 Convective amplification of the EPM wave-packet and ballistic particle transport in
Avalanche process is described by the complex Ginzburg-Landau equation (GLE)

∂2

ξ An = i
γL

D

(

∆γL

γL

+
L2

NL

γL

∂2

ξ

(

γL |An|
2
)

)

An+
∆ω

D
An

ξ = r − vgrt
γL ∝ αH = −R0q

2(dβH/dr)

2 For Gaussian source function αH = αH0 exp[−(ξ−ξ0)
2], the GLE reduces to its canoni-

cal form; for generalized stretched Gaussian distribution, i.e., αH = αH0 exp[−|ξ−ξ0|
µ]

(1 < µ < 2), the GLE is rewritten in terms of fractional derivative operators:

∇2A = q2A − p2A∇2−µ|A|2

Fractional derivativeRiesz Operator

∇2−µ|A|2 =
1

Γ(1 − µ)
∇
∫ x

−∞

|A|2(x0)

(x − x0)2−µ
dx0

2 The fractional derivative GLE incorporates the key features of non-Gaussianity and
long-range dependence in thresholded nonlinear dynamical systems
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Physics issues behind fluctuations non-linear interac-

tions

2 Interaction between collective modes and thermal plasma turbulence:

• collective modes due to energetic particles

• plasma turbulence due to thermal components

2 Intrinsic separation of spatial scales (orbit size) in the free energy source: interaction
occurs

• if the time scales become comparable such as for Alfvén ITG (e.m. ITG)

• if mediated by the 3rd entities such as zonal structures: zonal flows, fields,
corrugations of radial profiles
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Mutual interactions of collective modes with DW tur-

bulence

2 E.m. plasma turbulence: theory predicts excitation of Alfénic fluctuations in a wide
range of mode numbers near the low frequency accumulation point of s.A. continuum,
ω ≃ (7/4 + Te/Ti)

1/2(2Ti/mi)
1/2/R (F. Zonca, L. Chen, et al. 96, PPCF 38, 2011; ...

99, PoP 6, 1917):

• by energetic ions at long wavelength: finite Beta AE (BAE)/EPM

• by thermal ions at short wavelength: Alfvén ITG

2 Magnetic flutter: may be relevant for electron transport (B.D. Scott 2005,NJP 7, 92;
V. Naulin , et al. 2005, PoP 12, 052515)

2 Recent observations on DIII-D confirm these predictions (R. Nazikian, et al. 06, PRL

96, 105006)
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2 The same modes are excited by a large amplitude magnetic island on FTU (P. Buratti,
et al. 2005, NF 45 1446; S. Annibaldi, EPS 2006, O2.016).

n=-1, m=-2 tearing mode Locking & unlocking

n = -1 HF mode

n=+1

P. Smeulders, et al. 2002, ECA 26B, D5.016
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Zonal Flows are common in plasmas

Zonal Flows on Jupiter

Drift Waves

Drift waves
+

Zonal flows

Paradigm Change
P.H. Diamond, et al. 2005

PPCF 47, R35

ZFs peculiarities

• No direct radial transport

• No linear instability

• Turbulence driven
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Zonal Flows regulate turbulence: effect on transport

Z. Lin, et al. 1998, Science 281, 1835
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Long time scale behaviors
2 Depending on proximity to marginal stability, AE and EPM nonlinear evolutions can

be predominantly affected by

• spontaneous generation of zonal flows and fields (L. Chen, et al. 2001, NF 41,
747; P.N. Guzdar, et al. 2001, PRL 87, 015001)

• radial modulations in the fast ion profiles (F. Zonca, et al. 2000, Theory of

Fusion Plasmas, 17)

EPM NL dynamics (F. Zonca, et al. 2000, Theory of Fusion Plasmas, 17)

2 AITG and strongly driven MHD modes behave similarly
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Zonal Flows and Zonal Structures

2 Very disparate space-time scales of AE/EPM, MHD modes and plasma turbulence:
complex self-organized behaviors of burning plasmas will be likely dominated by their
nonlinear interplay via zonal flows and fields

2 Crucial role of toroidal geometry for Alfvénic fluctuations: fundamental importance
of magnetic curvature couplings in both linear and nonlinear dynamics (B.D. Scott
2005,NJP 7, 92; V. Naulin , et al. 2005, PoP 12, 052515)

2 Long time scale behaviors of zonal structures are important for the overall burning
plasma performance: generators of nonlinear equilibria

2 The corresponding stability determines the dynamics underlying the dissipation of
zonal structures in collision-less plasmas and the nonlinear up-shift of thresholds for
turbulent transport (L. Chen, et al. IAEA 2006, 2007 NF 47, 886)

2 Impact on burning plasma performance
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Conclusions

2 Burning plasmas are complex self-organized systems, whose investigation requires a
conceptual step in the analysis of magnetically confined plasmas.

2 Integrated numerical simulations are crucial to investigate these new physics; while
fundamental theories provide the conceptual framework and the necessary insights.

2 Verification against experimental observations in present day machines is a necessary
step for the validation of physical models and numerical codes for reliable extrapola-
tions to burning plasmas.

2 Lack of understanding of some complex burning plasma behaviors can be likely filled
in by increasingly complicated and more realistic modeling of plasma conditions as
computing performances improve.

2 However, some other unexplained behaviors may be just indications of fundamen-
tal conceptual problems: mutual positive feedbacks between theory, simulation and
experiment will be necessary.

2 Burning plasma physics is an exciting and challenging field: many examples of funda-
mental problems with broader applications and implications.
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