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Introduction - The Auroral Kilometric Radiation

Intense RF emission at high altitudes (~1.5 – 3 Earth radii) within a large region 
of plasma depletion (the auroral density cavity), at frequencies of ~300kHz

Discrete components of emission typically ~1kHz in bandwidth

Within the source region the emissions have been observed to be polarised in 
the extraordinary (X) mode

At certain altitudes, frequency components of emission are observed to extend 
down to the local relativistic electron cyclotron frequency Ωce/γ

These emissions are observed in conjunction with the formation of a horseshoe 
distribution function in electron velocity space

Total RF output power ranges between 107 – 109 Watts. Efficiency of emission 
is ~1-2% [Gurnett1974]



Cyclotron Resonant Instability
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Electrons gyrate in close synchronism with a rotating electric field 
vector

Bunching occurs due to modulation of the electron energy via the
relativistic cyclotron frequency- this is fundamentally a relativistic 
phenomenon

If the cyclotron frequency is slightly less than the wave frequency 
then net energy extraction may occur 

Saturation arises when phase trapping occurs



Horseshoe distribution formation

When an electron propagates into an 
increasing axial magnetic field a horseshoe 
distribution may arise

Reason - conservation of the magnetic 
moment, µ

Conversion of axial velocity v// into 
perpendicular velocity v┴, results in an 
increase in electron pitch factor, α. 
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Space    :    Laboratory

Objectives

To form in the laboratory an electron beam with velocity distribution 
comparable to the magnetosphere 
Scale radiation resonance to the microwave range
Characterise the electron beam parameters and take microwave 
measurements as function of magnetic compression
Compare with numerical simulation and magnetospheric results
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Similar astrophysical radio sources
CU Virginis

Recently observed by the 
telescopes at Jodrell Bank

Highly reproducible L Band 
microwave emission from polar 
regions

Strongly circularly polarised



Polarisation and dispersion
Natural emission is in the X-mode, AC E-field and wavevector normal to static B-field

Perpendicular wavevector can be achieved by waveguide modes near cut-off

Transverse field components for modes of cylindrical waveguides
Near cut-off modes are required to give the correct propagation orientation 
and minimise the Doppler broadening

TE modes have finite transverse electric field when  k|| →0

TM modes have zero transverse electric field when  k|| →0

Using TE modes near cut-off gives an approximation to the X-mode 
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Experimental schematic



Insulated OFHC copper tubing, 7mm OD, 2mm ID (total length >1km) wound on non-
magnetic formers, tubing is core cooled by water at 20Bar

Drive 5 solenoids independently up to 300A with 120kW DC power supplies 

Flexible control of the magnetic field configuration 

Solenoid configuration
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Solenoid 1:  4 Layers, Length = 0.5m, Ri = 0.105m, Current = 75A.

Solenoid 2:  2 Layers, Length = 0.45m, Ri = 0.105m, Current = 60A.

Solenoid 3:  10 Layers, Length = 0.5m, Ri = 0.05m, Current = 250A.

Solenoid 4:  2 Layers, Length = 0.11m, Ri = 0.12m, Current = 250A.

Solenoid 5:  2 Layers, Length = 0.11m, Ri = 0.12m, Current = 250A.

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4 Solenoid 5

Experimental apparatus



Vacuum spark electron injector 
Velvet electron emitter secured to a planar metallic surface facing a sparse mesh

Cathode energised by a double Blumlein pulser generating over 75kV

Field emission from velvet fibres combined with dielectric avalanche and surface  
flashover leads to a cathode plasma flare

Space charge limited emission into vacuum gap

Mesh concentrates electric field close to cathode

mesh

Velvet ring

Cathode Nose-
cone

2cm



Experimental geometry

Solenoid sizes set by power and cooling constraints
Sets dimensions of the rest of the apparatus

Electron gun region 16cm in diameter

Resonant region 8cm diameter and 20cm length

Maximum possible fill factor ~50% (radius)

Evacuated to <10-6mBar



Electrical diagnostics

Diode voltage: 
Matching resistor (230Ω) in shunt with accelerator
Current measured by a Rogowski belt 

Diode current: 
Rogowski belt (in ground connection of anode)

Beam current: 
Faraday cup feeding 50Ω shunt resistor

Cup shaped to inhibit secondary escape

50Ω

Co-ax to 50Ω CRO8 cm



Microwave detection: Amplitude and Spectrum

Waveguide 12 (single mode at 4.42GHz) or Waveguide 18 (single   
mode at 11.7GHz) antenna in far field of experiment output

Fitted with calibrated attenuators

Signals delivered to calibrated rectifying diodes

Rectified signals measured on a 1.5GHz digital oscilloscope

Spectrum measured by FFT of AC waveform captured by 12GHz DSO

Waveguide Stub

Rectifying Diode



Microwave detection: Polarisation and Propagation

Waveguide stub receiving antenna - output pattern and polarisation

Waveguide attenuators and  rectifying diodes - operating efficiency

Azimuthal polarisation

0.6m

20°

Glass 
Vacuum 
Chamber

Mylar RF 
Output 
window

Output antennaInteraction 
waveguide

80mm

5°

Semi-circular wooden 
platform marked with 

angular divisions

Radial polarisation

Rectangular waveguide 
antenna orientation



Experimental and numerical studies
Beam formation investigated, numerically and experimentally

Two regimes of radiation generation were studied:

4.42GHz resonance, plateau B=0.18T
-Expected mode TE0,1
-Relatively low order mode and magnetic flux density
-Potential to measure the electron velocity distribution 

11.7GHz resonance, plateau B=0.48T
-Resonant mode TE0,3
-Highly overmoded, λ<<D, high magnetic flux density
-Chosen as most representative of magnetosphere



Experimental results: Beam formation

0.18T on main coil, beam voltage 75kV: 

Mirror Ratio of 17 gave Ibeam of 12A

Mirror Ratio of 9 gave Ibeam of 34A

Mirror Ratio of 4 gave Ibeam of 44A
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Progressive decrease in current with increasing mirror ratio

-Demonstrates formation of horseshoe distribution

Beam transport measurements

Ibeam/Idiode vs mirror ratio
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Estimation of 1D number density

Line Density vs pitch angle
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4.42GHz Numerical simulations

Geometry programmed into KARAT, a 2D axi-
symmetric PiC (Particle in Cell) code

Highest η at 1% cyclotron detuning

Cathode B=0.011T, power ~20 kW, η=1.7%

Cathode B=0.02T, power ~50kW, η=2%

Frequency (GHz)



2D Simulations: Electron velocity distributions
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4.42GHz 3D Simulations



Microwave spectral measurements - 4.42GHz

AC signal -TE01
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Microwave amplitude and polarisation measurements 
at 4.42GHz

Integrated antenna pattern: 

Radial polarisation gave no output

Azimuthal polarisation:

Cathode B=0.011T ~ 19 kW

Cathode B=0.02T ~ 35 kW

Results consistent with 1D number 
density measurements

Max efficiencies of ~2% for mirror 
ratio of 17, despite lower power

Highest η at cyclotron detuning 
2.4%

Antenna Pattern: Mirror Ratio 9



Comparison of numerical and experimental results

Pitch angle is arctan(v⊥/ vz)
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11.7GHz 2D Numerical Results
Solenoid 1

Solenoid 2

Solenoid 3

Solenoid 4 Solenoid 5
Solenoid 6

Fourier transform of Etheta over the time interval 
45 - 50ns @ z = 1.4m
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11.7GHz 3D Numerical Simulations
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Microwave Spectral Measurements- 11.7GHz

Spectral peak at 11.7GHz

Evidence of backward wave Doppler 
downshift component 

Close to cut-off for TE03

Close to CRO Bandwidth

Check with waveguide filters

AC output 0.48T
(Bz/Bz0 = 16)
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Microwave amplitude and polarisation measurements 
at 11.7GHz

Antenna Pattern indicated complex mode 
mixture

Dominant mode changed with time

-mode competition and hopping

Radiation in both polarisations

TETE0303 and TEand TE2323 modes presentmodes present

Integration of antenna pattern

Max efficiencies of ~1% with peak output 
power ~20kW

Azimuthal mode profile for a diode 
solenoid current of 90A
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Conclusion 

Succeeded in forming electron beam with Horseshoe velocity distribution

Number density mapped as a function of pitch angle

Numerical simulations predict instabilities with efficiencies ~1-2%

Microwave measurements confirmed instability of distribution to cyclotron emissions 

Radiation frequency slightly > relativistic cyclotron frequency

The antenna pattern measurements illustrated near cut-off TE modes as numerically 
predicted

Experimental efficiencies comparable with the numerical predictions

Wave polarisation, propagation similar to X mode

Generation efficiencies compare well with some auroral estimates



Investigate Doppler shifted regimes of resonance
Measure the resilience of the instability to parallel propagation
Build convective experiment to measure spatial growth rate

Bridge gap to unbounded geometry
Numerical simulations underway to study cyclotron instabilities in the  
absence of ‘hard’ radiation boundaries

Investigate influence of background plasma
Numerical studies underway of magnetised-plasma loaded waveguides
Experimental modification to include a plasma background- possibly a 
quasi-Penning trap

Future work
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