

1953-43

International Workshop on the Frontiers of Modern Plasma Physics

14 - 25 July 2008

On the Nature of Plasma Core Turbulence.

F. Jenko Max-Planck Institute fuer Plasmaphysik Garching bei Munchen Germany

Max-Planck-Institut für Plasmaphysik

On the Nature of Plasma Core Turbulence

Frank Jenko IPP Garching & University of Ulm, Germany

Acknowledgements: F. Merz, T. Görler

ICTP Trieste, 23 July 2008

The next step for magnetic fusion: ITER

Plasma turbulence

will determine the energy confinement time (and efficiency) of ITER

www.iter.org

Turbulent mixing in a tokamak

gradients \rightarrow microinstabilities \rightarrow fluctuations \rightarrow transport

Plasma turbulence is driven by different kinds of linear microinstabilities

Exceptional points

Different microinstabilites (usually considered as separated) can be transformed into each other via continuous parameter changes.

The non-Hermiticity of the linear gyrokinetic operator leads to Exceptional Points.

Here, both eigenvalues and eigenvectors are identical.

Similar: quantum physics etc.

0.6

Turbulent transport and structures

Saturation of ITG modes: zonal flows

Zonal Flow Turbulence

GENE s- α flux tube simulation

M.J. Pueschel, 2008

gene@ipp.mpg.de

Structure formation

Emergence of **zonal ExB flows** (due to symmetry breaking!)

They are linearly neutrally stable but excited nonlinearly

Zonal flows in geo-/astrophysics

Effect on turbulent transport

Zonal flows may reduce or even suppress the turbulent transport

Adiabatic ITG turbulence in a simple tokamak

Reference case for core turbulence simulations:

- "Cyclone base case" also serves as standard paradigm of turbulence
- idealized physical parameters; adiabatic electrons; s- α model equilibrium

Key findings:

- saturation via zonal flows
- ion heat flux is offset-linear
- nonlinear upshift of threshold

What about other transport channels, modes, and scales? How generic is the adiabatic ITG s- α scenario?

The remainder of this talk

- The tool: GENE
- The nature of (pure) TEM turbulence F. Merz & F. Jenko, PRL **100**, 035005 (2008)
- Nonlinear ITG-TEM-ETG interactions
 T. Görler & F. Jenko, PRL 100, 185002 (2008)

The nonlinear gyrokinetic equations

$$f = f(\mathbf{X}, v_{\parallel}, \mu; t)$$

Advection/Conservation equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = \mathbf{0}$$

$$\dot{\mathbf{X}} = v_{\parallel} \mathbf{b} + \frac{B}{B_{\parallel}^*} \left(\frac{v_{\parallel}}{B} \bar{\mathbf{B}}_{1\perp} + \mathbf{v}_{\perp} \right)$$

$$\mathbf{v}_{\perp} \equiv \frac{c}{B^2} \bar{\mathbf{E}}_1 \times \mathbf{B} + \frac{\mu}{m\Omega} \mathbf{b} \times \nabla (B + \bar{B}_{1\parallel}) + \frac{v_{\parallel}^2}{\Omega} (\nabla \times \mathbf{b})_{\perp}$$

X = gyrocenter position $\forall_{II} =$ parallel velocity $\mu =$ magnetic moment

Appropriate field equations

$$\frac{n_1}{n_0} = \frac{\bar{n}_1}{n_0} - \left(1 - \|I_0^2\|\right) \frac{e\phi_1}{T} + \|xI_0I_1\| \frac{B_{1\parallel}}{B}$$

$$\nabla_{\perp}^2 A_{1\parallel} = -\frac{4\pi}{c} \sum \overline{\bar{J}_{1\parallel}}$$

$$\dot{v}_{\parallel} = \frac{\dot{\mathbf{X}}}{mv_{\parallel}} \cdot \left(e\bar{\mathbf{E}}_{1} - \mu \nabla (B + \bar{B}_{1\parallel}) \right)$$

$$\frac{B_{1\parallel}}{B} = -\sum \epsilon_{\beta} \left(\frac{\bar{p}_{1\perp}}{n_0 T} + \|xI_1I_0\| \frac{e\phi_1}{T} + \|x^2I_1^2\| \frac{B_{1\parallel}}{B} \right)$$

Current physics features of GENE

Treatment of particle dynamics

- Arbitrary number of gyrokinetic particle species, passing and trapped
- Can be active (feedback via field equations) or passive
- Non-Maxwellian (beam-type) equilibrium distributions
- Electromagnetic effects are included

Collisions

- Collisions between any pair of species are kept
- Pitch angle scattering *and* energy scattering are retained
- Momentum and energy conserving terms are implemented

General geometry

- Interface to CHEASE MHD equilibrium code
- Interface to other MHD codes: TRACER

Hyperscaling of GENE

- GENE runs very efficiently on a large number of parallel platforms
- Example: IBM BlueGene/L @ Watson Research Center

Strong scaling (fixed problem size) – from 1k to 16k cores

The nature of (pure) TEM turbulence

Characteristics of TEM turbulence

In the saturated phase, TEM turbulence often exhibits:

 radially elongated structures ("streamers"; remnants of linear modes), nonlinear spectrum reflects linear growth rate spectrum

Characteristics of TEM turbulence (cont'd)

 no significant shift of cross phases w.r.t. linear ones
 [Dannert & Jenko, PoP 2005]

 nonlinear frequencies close to linear ones for low ky values

Description of the nonlinear system as linear modes in a turbulent bath?

Quasilinear ansatz

- Assumption $\ensuremath{\mathcal{N}l}[g]\sim g$ leads to an effective linear equation

$$\frac{\partial g}{\partial t} = \mathcal{L}g + \mathcal{X}g$$

- $\mathcal{N}l[g]$ and g are fluctuating quantities; to get an estimate for the complex proportionality constant $X=X(k_x,k_y,z,spec)$, we minimize the model error $\langle |\mathcal{N}[g] \mathcal{X}g|^2 \rangle$
- The resulting expression $\mathcal{X} = \langle g^* \mathcal{N}[g] \rangle / \langle |g|^2 \rangle$ is evaluated in numerical simulations of TEM turbulence

($\langle\rangle$: average over velocity space and time)

Transport relevant ky range

• Result: Im(X) is negligible, Re(X) is a parabola

$$\mathcal{N}l[g] \simeq D(-k_{\perp}^2)g = D\nabla_{\perp}^2 g$$

Cp. Resonance Broadening Theory (Dupree), MSR formalism (Krommes), Dressed Test Mode Approach (Itoh) in long wavelength, low frequency limit

 10^{-2}

 10^{-3}

 10^{-4}

ອສ.ບ

Parallel structure of diffusivity

• Dependence on parallel coordinate: $\approx |\Phi|^2$

- Integration with parallel weighting yields effective wave number $\langle k_{\perp}^2 \rangle := \int d\theta D(\theta) k_{\perp}^2 \simeq c \int d\theta \left| \Phi^2(\theta) \right| k_{\perp}^2$
- Quasilinear equation:

$$\frac{\partial g}{\partial t} = \mathcal{L}g + \mathcal{N}l[g] \simeq (i\omega_r + \gamma - D_0 \langle k_{\perp}^2 \rangle)g$$

Stationarity implies

$$D_0 \sim \frac{\gamma}{\langle k_\perp^2 \rangle}$$

Quasilinear transport model

• Application: q dependence of TEM-induced transport

- Scaling: $Q_e \propto q^{
 u}$
- The quasilinear model captures the q-dependence seen in nonlinear simulations (here $\nu \approx 1.7$) and in experiments ($\nu = 1-2$)

Nonlinear ITG-TEM-ETG interactions

Question to theory: What is the role of high wavenumbers?

(Pure) ETG turbulence can induce significant electron heat transport:

 $\chi_{e}^{E^{T}G} \gg \frac{\rho_{e}^{2} v_{te}}{L_{T_{e}}}$ is possible (Jenko, Dorland, Rogers & Kotschenreuther, PoP/PRL 2000) For comparison: $\chi_{i}^{I^{T}G} \approx 0.7 \frac{\rho_{s}^{2} c_{s}}{L_{T_{i}}}$ (Cyclone base case) Confirmed, e.g., by (Idomura *et al.*, NF 2005), (Nevins *et al.*, PoP 2006), and (Bottino *et al.*, PoP 2007)

ETG turbulence in concert with longer wavelengths (ITG, TEM, etc.):

First gyrokinetic multiscale simulations (with GENE): Transport in the tokamak edge (Jenko, J Plasma Fus Res 2004)

Recently: Similar work for core parameters by Candy and Waltz

TEM-ETG turbulence (Φ contours)

Here: electrostatic, collisionless, s-α model equilibrium; Cyclone-like parameters, reduced mass ratio

Case I: ITG is turned off

~ 100,000 CPUh / run

box size: 64 ion gyroradii

resolution: ~2 electron gyroradii

ETG streamers and TEM streamers coexist

ETG transport level is in line with pure ETG simulations **75% of the electron heat transport is in the kpi>0.5 regime**

ITG/TEM-ETG turbulence (Φ contours)

Note: For R/LTi = 6.9, one obtains $\chi_i \sim 50 \text{ m}^2/\text{s}$ (!) and a fairly small ETG fraction; therefore, we use R/LTi = 5.5

Case II: ITG is dominant

small-scale streamers are subject to large-scale vortex shearing

Our theoretical understanding of plasma microturbulence is still fragmentary, and the adiabatic ITG scenario is not universal...

GENE simulations show:

- Nonlinear TEM saturation due to turbulent eddy viscosity:
 F. Merz & F. Jenko, PRL 100, 035005 (2008)
- Scale separation of ion/electron heat transport for realistic plasma parameters: T. Görler & F. Jenko, PRL **100**, 185002 (2008)

A lot remains to be discovered – by you?!

More information and papers:

www.ipp.mpg.de/~fsj