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Abstract. Classical particles oscillating in high-frequency or static fields effectively exhibit a
modified rest mass meff which determines the guiding center motion. Unlike the true mass, meff
depends on the field parameters and can be a nonanalytic function of the particle average velocity
and the oscillation energy; hence non-Newtonian “metaplasmas” that permit a new type of plasma
maser, signal rectification, frequency doubling, and one-way walls.
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1. INTRODUCTION

Problems connected with multiscale adiabatic dynamics of classical particles in oscil-
latory and static fields enjoy simplification within the guiding-center approach, which
allows separating fast oscillatory motion of the particles from their slow translational
motion [1, 2, 3, 4, 5]. Often, the average forces on a guiding center are then written in
terms of fictitious fields, such as ponderomotive [6, 7, 8], diamagnetic [9], or other po-
tentials [5, 10]. However, within a more general relativistic approach [11], the average
forces are embedded into the properties of the particle guiding center, so the latter is
treated as a non-Newtonian quasi-particle with a variable effective mass meff.
In this paper, we study effects that flow from meff dependence on the guiding center

velocity v and the oscillation energy W . Particularly, we propose a number of deriva-
tive applications, including a new type of plasma maser, signal rectification, frequency
doubling, and others possible due to specific properties of “metaplasmas” formed by
quasi-particles with variable meff. To the extent that meff(v) can be controlled, these
metaplasmas can exhibit solid-state-like phenomena, and devices utilizing these phe-
nomena would operate at much higher powers as compared to their solid-state coun-
terparts. Also, to the extent that meff(W ) can be varied, non-conservative Hamiltonian
average forces are produced, resulting in one-way-wall effects [10, 12, 13, 14, 15] and
can be employed, e.g., for current drive [16, 17, 18] and atomic cooling [14, 19].
The paper is organized as follows: In Sec. 2 we briefly restate the effective mass

concept. In Sec. 3 we contemplate possible applications of non-Newtonian phenomena
due tomeff dependence on the guiding center velocity. In Sec. 4 we derive nonrelativistic
potentials that are due to meff dependence on the particle oscillation energy and explain
how one-way walls are produced. In Sec. 5 we summarize our main ideas.



2. EFFECTIVE MASS

Basic equations. — Consider a classical particle undergoing arbitrary quasi-periodic
oscillations superimposed on the average motion. In the adiabatic regime, one can map
out the quiver dynamics by changing variables [1, 2, 3, 4, 5]; hence the guiding center is
treated as a “dressed”, or quasi-particle. Suppose, for now, that the pump fields causing
the oscillations do not vary along the trajectory. Then the associated field tensor Fμν will
not enter the averaged equations as a force. However, it will affect the motion such that,
in response to additional perturbation fields F̃μν , the guiding center will react as if it had
a modified mass.
In Ref. [11] we show that the particle guiding-center Lagrangian in the field Fμν can be

written in the form equivalent to that for a free particle with an invariant mass meff(Fμν):

L =−meffc2/γ, meff = c−2
(
J ·ΩΩΩ−〈L〉)′, γ =

√
1− v2/c2, (1)

with v = 〈v〉 and c being the average velocity and the speed of light, correspondingly.
In the definition of meff, the right-hand side is to be evaluated in the guiding center rest
frame (hence the prime), thus meff may depend on v; 〈L〉 is the time-average particle
Lagrangian determined by Fμν (for explanation on the gauge invariance see Ref. [11]);
J are the actions and ΩΩΩ are the frequencies of oscillations in canonical angles, if any,
to average over. For instance, for a particle in a dc magnetic field B, J ·ΩΩΩ = μB/γ ′,
where μ is the magnetic moment, and γ ′ is the Lorentz factor associated with the
Larmor rotation, so meff = m

√
1+2μB/mc2, m being the true mass. Similarly, for

a nonrelativistic particle in a wave field, one gets meff = m+ Φ/c2, where Φ is the
ponderomotive potential [6, 7, 8, 20]. More examples of meff are found in Ref. [11].
Should Fμν slowly vary with the guiding center coordinate r or time t, the variations

ofmeff will determine the average forces on the particle (e.g., μ∇B-force and the average
ponderomotive force −∇Φ) derived from the Euler-Lagrange equations

dt (∂vL ) = ∂rL . (2)

Suppose now that the particle, with charge e, interacts also with a perturbation field F̃μν
governed by Ãμ = (Ã, ϕ̃), which is imposed over Fμν [21, 22]. In the adiabatic regime,
the orbit is not altered on the oscillation time scale; thus,

L =−meffc2/γ +(e/c)(v · Ã)− eϕ̃, (3)

and a nonelectromagnetic potential can be added similarly. Then, the canonical momen-
tum equals P= p+(e/c)Ã, and the kinetic momentum p is given by

p= γmeffv− (c2/γ )∂vmeff. (4)

Correspondingly, the HamiltonianH = P ·v−L reads

H = γmeffc2− (c2/γ ) (v ·∂vmeff)+ eϕ̃, (5)



so the motion is non-Newtonian at nonzero ∂vmeff; yet E = H (r,P, t) is conserved
whenH is independent of time, and meff can be viewed as the normalized quasi-energy
of an unperturbed (F̃μν = 0) particle in the guiding-center rest frame, meff = E ′/c2.
The unified effective mass formulation yields the known relativistic ponderomotive

and diamagnetic forces, as well as magnetic drifts obtained by analyzing the meff de-
pendence on the guiding center location and velocity [11]. Below, we consider another
example of the classical particle nonlinear dynamics causing specific properties of meff
and, therefore, of the guiding-center motion. In Sec. 3, we will employ these properties
to suggest how the effective mass variability could be applied.

Example. — Consider a relativistic particle in a wave propagating along a static
magnetic field [11]. Assume a smooth magnetic field B = ∇×Adc, approximately in
the ẑ direction; then the vector potential Adc can be considered a linear function of the
particle displacement r⊥ from the guiding center location.We will also assume a vacuum
pump wave, for simplicity having a circular polarization in the plane transverse to B, so
the total vector potential reads A= Adc+Aw,

Adc = B(z)
(
ẑ× r⊥

)
/2, Aw = (mc2/e)(a0/

√
2)

(
x̂cosξ − ŷsinξ

)
, (6)

where a0 ≡ eE0/mcω = inv is allowed to slowly vary in space and time, E0 is the
amplitude of the electric field E=−(1/c)∂tAw, ξ = ωt−kz is the phase, and k= ω/c.
The corresponding particle motion is integrable, and meff is found analytically [11]:

meff = m
[
1+ s2+

a20(2−σ)
4(1−σ)2

][
1+ s2+

a20
2(1−σ)2

]− 12
. (7)

Here s2= 2μB/mc2 is the normalized Lorenz-invariant magnetic moment of the particle;

σ = σ0/u= (Ω0γ−1)/(ω− kvz) (8)

is the ratio of the particle relativistic gyrofrequency and the Doppler-shifted wave fre-
quency (here σ0 = Ω0/ω , and Ω0 = eB/mc); u= γ− pz/mc is an integral given by

u= h

√
1+ s2+

a20
2(1−σ)2

, h=

√
c− v
c+ v

; (9)

γ and pz are the particle Lorentz factor and momentum component; mc2a20/4 equals the
zero-B nonrelativistic ponderomotive potential Φ = e2E20/4mω2.
By definition, Eq. (7) only refers to the particle motion along z. It yields the magne-

tized particle relativistic Hamiltonian [23, 24] and drifts [1, 23, 25, 26, 27, 28] at a0 = 0
[11], the relativistic ponderomotive Hamiltonian [22, 29, 30, 31, 32, 33, 34, 35, 36, 37]
at B = 0, the nonrelativistic ponderomotive potential in a magnetic field [6, 7, 38] at
v/c� 1, and the “classic” ponderomotive potential Φ [6, 7, 8, 20] at v/c� 1 together
with B = 0. From Eq. (7), it also follows that meff(a0 < 4) > 0, yet meff(a0 > 4) < 0 at
least for some σ > 1.



With relativistic effects present, the cyclotron resonance is nonlinear and permits
multiple energy states at given v and μ , as follows from Eq. (9), which can be rewritten
as a fourth-order algebraic equation for u:

2(u−σ0)2(h−2u2− s2−1)−a20u2 = 0. (10)

In Ref. [11], we show that possible are, in fact, one or three energy states, all being stable
to the variation of initial conditions, unlike for a one-dimensional (1D) nonlinear oscil-
lator [39]. Thus, three different values of meff are possible, and a guiding center behaves
differently in response to perturbation forces depending on which meff is selected.
Rewrite the average motion equation (2) as dtv= F̃ , where m|| = ∂vp, or

m|| = ∂v
[
γmeffv− (c2/γ )∂vmeff

]
, F̃ =−∂z

[
γmeffc2− (c2/γ )(v∂vmeff)+ eϕ̃

]−∂t p,

where p = p(z,v, t) [Eq. (4)]; hence m|| is the effective longitudinal mass [40], and F̃ is
the perturbation force. A straightforward derivation yields

m|| = mγ3Γ3/22 Γ−13 Γn = 1+ s2+(a20/2)(1−σ)−n, (11)

Γ2 coinciding with u2(v = 0). In the absence of the laser field (a0 = 0), Eq. (11) reads
m|| = meffγ3 > 0, as one would expect for a particle with meff independent of v [40].
However, for nonzero a0, one can show that m||1,3 > 0, yet m||2 < 0 for any v and s.
Thus a particle residing at the second branch will exhibit unusual behavior in response
to the force F̃ , such as that, e.g., due to a gravitational or an electrostatic potential.
Unlike a “normal” particle with a positive mass, a particle with m|| < 0 will accelerate
adiabatically in the direction opposite to F̃ . Also, Eq. (11) predicts that m|| will be an
asymmetric function of v; hence non-Newtonian effects, which we discuss in Sec. 3.

3. ANISOTROPIC DISPERSION

Consider the dispersion relation p(v) flowing from Eq. (7) as an example illustrating
non-Newtonian effects for guiding centers subjected to a perturbation force F̃ , assuming
uniform and stationary background fields E and B. The branches 2 and 3 merge at
m||(v) → ∞ so as to yield continuous yet double-valued p(v) [Figs. 1(a), (b)]; thus
a particle can be adiabatically transferred between these branches as p changes, and
the dependence of the particle quasi-energy E on v is α-shaped [Fig. 1(c)]. The local
maximum corresponds to m|| < 0 (branch 2) at rest (v = 0), whereas the minimum
corresponds to m|| > 0 (branch 3), also at rest; hence the possible applications.

Negative-mass plasma maser. — The presence of an energy zone with m|| < 0 allows
for a lasing mechanism known from solid state physics as the Negative Effective Mass
Amplifier and Generator, or NEMAG [41, 42, 43] and is explained as follows [44].
Suppose a cold plasma is first created in a dc magnetic field, after which the wave is
turned on slowly with initial a0 = 0 and ω < Ω0, so particles occupy the positive-mass
branch 3. Suppose that the particles are then adiabatically pushed in the −z direction.
As a result, their guiding-center momentum p is reduced, causing the particle transfer
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FIGURE 1. The guiding center effective longitudinal mass m||, the canonical momentum p, and the
quasi-energy E for the branches 2 (solid) and 3 (dashed) as in Ref. [11] (a0 = 5

√
2, σ0 = 8.3, s= 0). The

guiding center velocity v is measured in units c; p is measured in units mc; E is measured in units mc2.
The dotted lines mark zeros and, in Fig. (a), also the vertical asymptote at v= v∗ for m|| → ±∞.

to the higher-energy branch 2 [Fig. 1(b)]; hence the population inversion. Consider the
interaction of the inverted population with a low-frequency pulse F̃ , which will transfer
the momentum Δp =

∫ +∞
−∞ F̃ [r(t), t]dt to individual particles. Since the particles get

trapped and untrapped by the pulse [45, 46] (or when its envelope has a time scale
comparable to 2π/ϖ or acts over a nonuniform background [20]), Δp will generally
be nonzero; thus, the pulse will exchange energy with the plasma. The energy ΔE
transferred to the pulse per particle will depend on Δv(Δp). Yet, since the negative-
mass rest state corresponds to the energy maximum, ΔE will be positive for all Δp;
particularly, the transition back to the positive-mass rest state will yield the largest gain

ΔE = (meff,2−meff,3)c2 > 0, (12)

where the right-hand side is evaluated at v= 0. The pulse can therefore be amplified or
generated from noise, assuming an appropriate resonant feedback.
Like in solid-state or gas lasers, it is the pump wave energy that is being channeled

through particles to the amplified signal in the proposed scheme. Thus, in contrast to
free electron lasers and similar devices [47, 48] or a related cyclotron instability used
for α channeling [49], the particle translational energy is not at stake here, and neither
collective effects are essential, unlike in the known plasma masers [50, 51]. These
features make the new mechanism unique in its class and promising in marrying the
advantages of solid-state oscillators with high powers, which plasma naturally tolerates.

Hamiltonian ratchet. — Suppose that a weak oscillating field is imposed over a
uniform stationary pump, so the guiding center canonical momentum is governed by

dt p = F̃ , F̃ = F sinϖt. (13)

IfF is fixed or evolves adiabatically in time, Eq. (13) yields p = p0+δ p, where p0 is a
constant, and δ p=−(F/ϖ)cosϖt has a zero average. Assuming thatF is small, one
can Taylor-expand the guiding center velocity v(p) around v0 ≡ v(F = 0) so as to get

v≈ v0+δ p ∂pv+(δ p2/2)∂ 2ppv, (14)
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FIGURE 2. The particle drift induced by the perturbation force (13), withF = F0 exp[−(t− t0)2/T 2].
HereF0 = 0.01, ϖ = 0.1ω , ωT = 400, ωt0 = 1000, a0 = 5

√
2, σ0 = 8.3, s= 0; the initial guiding center

velocity is v0 = 0; the particle is at the branch 2 (black) or 3 (gray). (a) The guiding center coordinate z
vs. time (here z matches z); the nonoscillatory curves are analytical results derived from Eq. (16). (b) The
guiding center velocity v vs. time. (c) The guiding center canonical momentum p vs. time. Same units as
in Fig. 1; also, z is measured in units k−1 = c/ω , and t is measured in units ω−1.

or, using m|| = ∂vp,

v≈ v0− [F/(ϖm||)] cosϖt + Φ̃ (cos2ϖt+1)∂v (m||−1), (15)

where Φ̃ = F 2/4ϖ2m|| is the perturbation ponderomotive potential.
Eq. (15) predicts that, in average over the oscillation period 2π/ϖ , the particle will

exhibit a drift velocity (in addition to v0):

vd = Φ̃∂v (m||−1). (16)

In contrast to an isotropic dispersion law m|| = m||(v2) precluding the drift at v0 = 0, an
anisotropic m||(v) allows acceleration of initially resting particles with an oscillating F̃
having no bias. (This mechanism can be understood as a variation on the Hamiltonian
ratchet; however, unlike those considered elsewhere [52, 53], the new ratchet relies on
entirely regular dynamics.) For a magnetized wave-driven particle (Sec. 2) with v0 = 0,
one has ∂ 2ppv> 0 [Fig. 1(b)]; hence a drift with vd > 0 [Fig. 2(a)].

Frequency doubling. — The velocity (15) also has an oscillatory component

v∼ =−[F/(ϖm||)] cosϖt + Φ̃ cos2ϖt ∂v (m||−1), (17)

which contains both the first and the second harmonics of the signal F̃ . Therefore, a
linear [in terms of Eq. (13)] interaction with an oscillatory perturbation force allows one
also to generate an output wave at a doubled frequency. Fig. 2(b) shows the asymmetry
in v(t) oscillations for the system considered in Sec. 2, hence proving the presence of
higher harmonics despite p(t) remains monochromatic [Fig. 2(c)]. If v0 = v∗, such that
m||(v∗)→ ±∞, the first harmonic in v(t) vanishes (∂pv→ 0), so it is only the second
harmonic that contributes to the electric current (Fig. 3) and thus determines the particle
radiation spectrum.
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FIGURE 3. The particle response at v0 = v∗ to the perturbation force (13) same as in Fig. 2. Variations
of the guiding center canonical momentum (gray) and velocity v (black) show that, although p oscillates
at the first harmonic of F̃ , v oscillates at the second harmonic. Arbitrary units for δ p and δv; the time is
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4. HYBRID POTENTIALS AND ONE-WAYWALLS

Substantial variations of the particle effective mass in relativistic fields yield “metaplas-
mas” with adjustable properties; hence parametric effects suitable for continuous con-
version of electromagnetic signals [54] or static control over the plasma low-frequency
dielectric constant ε(m||), e.g., for inducing plasma transparency (ε → 1) or sensitive
detection due to abrupt acceleration of particles with m|| → 0. Yet at lower energies
guiding centers can also behave differently from Newtonian particles and thus permit
complementary manipulation techniques, as discussed below.
Rewrite Eq. (1) as

L =−mc2+mv2/2−Ψ, Ψ = δmc2, (18)

where we used meff = m+ δm, δm� m, and v/c� 1. For simplicity, assume that δm
is independent of v; hence Ψ ∝ δm plays a role of an effective potential, which can be
further expanded in the oscillation actions: Ψ = ∑iΨi. The linear expansion yields [55]

Ψ≈Ψ1 =W +Φ, W = J ·ΩΩΩ, Φ =−E∗0 · α̂αα ·E0/4, (19)

where W is the oscillation energy [5], Φ is the ponderomotive potential [10], α̂αα is
the particle polarizability tensor, and E0 is the oscillatory field amplitude [56]; e.g.,
α̂αα =−(e2/mω2)Î for a free electron (Î being a unit tensor) yieldsΦ = e2E20/4mω2 [6, 7].
In this order, adiabatic motion [10, 20] is conservative, and, at fixedΩΩΩ, the average force
on the particle is entirely determined by the E0(r) profile. However, higher-orderΨi can
depend on E0 and J simultaneously, yielding so-called hybrid ponderomotive potentials.
For a particle with two natural frequencies satisfying Ω1−Ω2 ≈ ω , the second-order

hybrid potential reads [55]

Ψ2 = κ2|E0|2 (J1− J2)/(Ω1−Ω2−ω), (20)

where κ2> 0 is a constant. SinceΨ1 is nonresonant in this case [5], one also hasΨ≈Ψ2;
thus the ponderomotive force essentially depends on the actions J1 and J2. Should
particles incident on the oscillatory field from opposite directions receive different J
via nonadiabatic interaction with another field, the barrier will operate asymmetrically



and can be arranged to transmit particles from one side yet reflect them from another
side. Should the particles later exhibit radiative thermalization before returning to the
barrier, the oscillatory field will hence operate like a Maxwell demon, decreasing their
translational entropy without collisions.
A similar effect is possible at the main yet nonlinear resonance. Suppose a single

eigenfrequency Ω≈ ω; then the ponderomotive potential universally reads [5]

Φ = κ1|E0|2/(ω−Ω), (21)

where κ1 > 0 is a constant. For Ω being a function of J, the maximum of Φ is sensitive
to the particle internal energy; hence the one-way wall effect, as predicted for atoms in
Refs. [14, 19, 15] and recently confirmed in experiments [57, 58].
Without a second field required to preheat particles, asymmetric barriers are also real-

ized due to hysteresis [55]. Yet similar barriers are as well possible for linear oscillators –
when the particle natural frequencies vary in space, either due to J ·ΩΩΩ potential [59], or
due to Φ being asymmetric at the main resonance. The latter effect is explained as fol-
lows: given a gradient of Ω, Φ(z) [Eq. (21)] exhibits a singularity at Ω = ω , and the
effective potential is repulsive at Ω(z) < ω while being attractive at Ω(z) > ω; hence a
Hamiltonian ratchet is produced and can be employed, e.g., for current drive [16, 17, 18].
In Ref. [12], the anticipated dynamics was confirmed for cyclotron-resonant rf fields,
and, in Ref. [13], an alternative scheme with abrupt E0(r) was proposed.

5. CONCLUSIONS

Classical particles oscillating in high-frequency or static fields effectively exhibit a mod-
ified rest mass meff which determines the guiding center motion. Unlike the true mass,
meff depends on the field parameters, can take negative values, and is generally a nonan-
alytic function of the particle average velocity and the oscillation energy; hence guiding
centers exhibit non-Newtonian effects, producing “metaplasmas” with unusual proper-
ties. In this paper, we propose a number of applications flowing frommeff dependence on
the guiding center velocity, including a new type of plasma maser, signal rectification,
and frequency doubling. We also contemplate effects based on nonadiabatic variations
of meff, particularly one-way walls, which could be applied for current drive and transla-
tional cooling. Like in Refs. [20, 60, 61] that cover the associated quantum-like effects,
such variations of meff render additional flexibility in particle manipulation and allow
techniques complementary to those for non-oscillatory objects.

Acknowledgments. — This work was supported by DOE Contracts No. DE-FG02-
06ER54851, DE-FG02-05ER54838, and by the NNSA under the SSAA Program
through DOE Research Grant No. DE-FG52-04NA00139.

REFERENCES

1. T. G. Northrop, The adiabatic motion of charged particles (Interscience, New York, 1963).
2. R. L. Dewar, Phys. Fluids 16, 1102 (1973).
3. A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).



4. P. L. Similon, A. N. Kaufman, and D. D. Holm, Phys. Fluids 29, 1908 (1986).
5. I. Y. Dodin and N. J. Fisch, Phys. Lett. A 349, 356 (2006).
6. A. V. Gaponov andM. A. Miller, Zh. Eksp. Teor. Fiz. 34, 242 (1958) [Sov. Phys. JETP 7, 168 (1958)].
7. H. Motz and C. J. H. Watson, Adv. Electron. 23, 153 (1967).
8. J. R. Cary and A. N. Kaufman, Phys. Rev. Lett. 39, 402 (1977).
9. J. D. Jackson, Classical electrodynamics (Wiley, New York, 1975).
10. I. Y. Dodin and N. J. Fisch, Phys. Plasmas 14, 055901 (2007).
11. I. Y. Dodin and N. J. Fisch, Phys. Rev. E 77, 036402 (2008).
12. I. Y. Dodin, N. J. Fisch, and J. M. Rax, Phys. Plasmas 11, 5046 (2004).
13. I. Y. Dodin and N. J. Fisch, Phys. Rev. E 72, 046602 (2005).
14. M. G. Raizen, A. M. Dudarev, Q. Niu, and N. J. Fisch, Phys. Rev. Lett. 94, 053003 (2005).
15. A. Ruschhaupt and J. G. Muga, Phys. Rev. A 70, 061604(R) (2004).
16. E. V. Suvorov and M. D. Tokman, Fiz. Plazmy 14, 950 (1988) [Sov. J. Plasma Phys. 14, 557 (1988)].
17. A. G. Litvak, A. M. Sergeev, E. V. Suvorov, M. D. Tokman, and I. V. Khazanov, Phys. Fluids B 5,

4347 (1993).
18. N. J. Fisch, J. M. Rax, and I. Y. Dodin, Phys. Rev. Lett. 91, 205004 (2003), Erratum: Phys. Rev. Lett.

93, 059902(E) (2004).
19. A. M. Dudarev, M. Marder, Q. Niu, N. J. Fisch, and M. G. Raizen, Europhys. Lett. 70, 761 (2005).
20. I. Y. Dodin and N. J. Fisch, Phys. Rev. E 74, 056404 (2006).
21. J. E. Moore and N. J. Fisch, Phys. Plasmas 1, 1105 (1994).
22. I. Y. Dodin, N. J. Fisch, and G. M. Fraiman, Pis’ma Zh. Eksp. Teor. Fiz. 78, 238 (2003) [JETP Lett.

78, 202 (2003)].
23. R. G. Littlejohn, Phys. Fluids 27, 976 (1984).
24. A. H. Boozer, Phys. Plasmas 3, 3297 (1996).
25. C. Grebogi and R. G. Littlejohn, Phys. Fluids 27, 1996 (1984).
26. A. H. Boozer, Phys. Fluids 23, 904 (1980).
27. R. B. White, A. H. Boozer, and R. Hay, Phys. Fluids 25, 575 (1982).
28. A. H. Boozer, Phys. Fluids 27, 2441 (1984).
29. I. Y. Dodin and N. J. Fisch, Phys. Rev. E 68, 056402 (2003).
30. T. W. B. Kibble, Phys. Rev. 150, 1060 (1966).
31. J. H. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968).
32. E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970).
33. J. M. Rax, Phys. Fluids B 4, 3962 (1992).
34. D. Bauer, P. Mulser, and W. H. Steeb, Phys. Rev. Lett. 75, 4622 (1995).
35. P. Mora and T. A. Antonsen Jr., Phys. Plasmas 4, 217 (1997).
36. M. D. Tokman, Fiz. Plazmy 25, 160 (1999) [Plasma Phys. Rep. 25, 140 (1999)].
37. A. Bourdier and D. Patin, Eur. Phys. J. D 32, 361 (2005).
38. I. Y. Dodin and N. J. Fisch, J. Plasma Phys. 71, 289 (2005).
39. N. N. Bogoliubov and Y. A. Mitropolskii, Asymptotic methods in the theory of nonlinear oscillations

(Gordon and Breach, New York, 1961), Sec. 15.
40. L. B. Okun, Phys. Today 42 (6), 31 (1989).
41. H. Krömer, Phys. Rev. 109, 1856 (1958).
42. A. A. Andronov, A. M. Belyantsev, V. I. Gavrilenko, E. P. Dodin, Z. F. Krasil’nik, V. V. Nikonorov,

and S. A. Pavlov, Pis’ma Zh. Eksp. Teor. Fiz. 40, 221 (1984) [Sov. Phys. JETP Lett. 40, 989 (1985)].
43. A. A. Andronov, A. M. Belyantsev, V. I. Gavrilenko, E. P. Dodin, E. F. Krasil’nik, V. V. Nikonorov,

S. A. Pavlov, and M. M. Shvarts, Zh. Teor. Eksp. Fiz. 90, 367 (1986) [Sov. Phys JETP 63, 211
(1986)].

44. Discussed is the amplification at frequencies comparable to the gyrofrequency Ω. However, values
of Ω accessible in laboratory are limited [62], and the lasing mechanism is primarily aimed for the
microwave and rf frequency range; hence the term “maser”.

45. D. L. Bruhwiler and J. R. Cary, Phys. Rev. Lett. 68, 255 (1992).
46. D. L. Bruhwiler and J. R. Cary, Phys. Rev. E 50, 3949 (1994).
47. K. R. Chu, Rev. Mod. Phys. 76, 489 (1994).
48. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, IEEE J. Quantum Electr. QE-19,

282 (1983).
49. N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 612 (1992).



50. P. A. Bespalov and V. Yu. Trakhtengerts, Alfvén masers (IAP AS, Gorkiy, USSR, 1986) [in Russian].
51. V. S. Krivitsky, V. N. Tsytovich, and S. V. Vladimirov, Phys. Rep. 218, 141 (1992).
52. S. Denisov and S. Flach, Phys. Rev. E 64, 056236 (2001).
53. S. Denisov, J. Klafter, and M. Urbakh, Phys. Rev. E 66, 046203 (2002).
54. M. I. Bakunov, V. B. Gildenburg, S. N. Zhukov, and N. A. Zharova, Phys. Plasmas 7, 046203 (2000).
55. I. Y. Dodin and N. J. Fisch, Ponderomotive potentials for nonlinear oscillators, in preparation.
56. The ponderomotive potential flows from expanding meff in |E0|2, or the field action.
57. G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius, and M. G. Raizen, Phys. Rev. Lett. 100,

093004 (2008).
58. J. J. Thorn, E. A. Schoene, T. Li, and D. A. Steck, Phys. Rev. Lett. 100, 240407 (2008).
59. P. B. Parks and F. B. Marcus, Nucl. Fusion 21, 1207 (1981).
60. I. Y. Dodin and N. J. Fisch, Phys. Rev. Lett. 95, 115001 (2005).
61. I. Y. Dodin and N. J. Fisch, Phys. Rev. Lett. 98, 234801 (2007); cf. with the atomic beam slicing

technique in Ref. [63].
62. G. Boebinger, A. Passner, and J. Bevk, Sci. Am. 272, 58 (1995).
63. M. B. d’Arcy, R. M. Godun, D. Cassettari, and G. S. Summy, Phys. Rev. A 67, 023605 (2003).


