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Abstract 
 We present analytic theory of laser acceleration of monoenergetic protons by 
irradiation on a thin foil, reported by Yan et al., 2008 in simulations. The ponderomotive 
force pushes the electrons forward, leaving ions behind until the space charge field 
balances the ponderomotive force at distance πλ /)/( 00 Lcs nna≈Δ , where 0a   and Lλ  
are the normalized laser amplitude and wavelength, cn  is the critical density and 0n is the 
plasma density. For the target thickness sD Δ= , the electron sheath piled up at the rear 
surface is detached from the bulk ions and moves into vacuum, carrying with it the 
protons contained in the sheath width pc ω/~ , where pω  is the plasma frequency. These 
protons are trapped by the self field of the dense electron sheath and are collectively 
accelerated as a double layer by the laser ponderomotive force, giving proton energy ≈ 
200 MeV at 50 =a , 10/ 0 =nnc  and pulse length 90 fs. 
 
 
 
 Laser acceleration of energetic protons by irradiation on solid thin foil target is an 
area of great interest and importance with potential applications ranging from the medical 
treatment of cancer to fast ignition laser fusion1-10. Experiments with a laser prepulse 
would produce a thin plasma layer at the foild surface. Main laser pulse would then 
accelerate electrons in the plasma to high energy either by p-polarized electric field or 
ponderomotive force and they penetrated into the rear surface of the target to create a 
space charge field which ionizes and accelerates ions to high energies. Generally the ions 
are accelerated to multi MeV energy with energy spectrum monotonically decreasing 
with energy and the nergy increasing with foil thickness.  
 Some experiments have reported quasi-monoenergetic ions10-13 employing 
intricate and complex target designs. Recently, Yan et al.14 have reported, using 1-D 
particle in cell simulations, a novel scheme for producing monoenergetic ions, in the 
hundreds of MeV range, with a specific foil thickness, equal to the distance of maximum 
charge separation at which the space charge force on electrons is balanced by the 
ponderomotive force. Nearly all the electrons of the foil are swept by the ponderomotive 
force and piled up at the rear surface of the foil. They are detached from the surface into 
the vacuum to form a moving double layer, trapping the ions in the sheath of width 

pc ω/ , the skin depth. The laser acceleration of double layer leads to monoenergetic ion 
(proton) generation. 



 We present, in this letter, an analytic theory of this collective acceleration of 
trapped protons in the moving double layer by laser ponderomotive force. 
 First, we derive the ponderomotive pressure of a relativistic intensity laser in an 
overdense plasma and demonstrate its relation to the usual radiation pressure. For 
simplicity, we consider a circularly polarized laser, 
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normally incident on an overdense plasma (z > 0) of density 0n . The fields of the 
reflected wave (z < 0) are   
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 The transmitted wave has, for z >0, 
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0 )/4( menp πω = , -e, m, and ne are the electronic charge, mass and 

density, the transmitted field is evanescent, i.e. )exp(|| 0φiAA TT = , with 0φ  a constant 
determined by the continuity conditions at z = 0, and || TA  a monotonically decreasing 
function of z. The continuity of tangential components of fields at z=0 gives 
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 The wave equation governing Ta  is  
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Initially, we may ignore the density modification ( 0nne = ) and integrate Eq. (6), 
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with ∞→z , ,0→Ta 0→
dz

daT . 

 From Eqs. (5) and (7), we have  
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Solutions of Eqs. (7) and (8) for different cases of 0a and 22 /ωω p  are shown in Fig. 1. At 
higher initial amplitude, the transmitted amplitude is larger, however, its decay with 
distance is faster. On increasing the plasma density, the transmitted amplitude falls down. 

 
   (a)      (b) 
Figure 1: Distribution of normalized transmitted field amplitude vs z. (a) 7,5,30 =a  
and 10/ 22 =ωω p  (b) 30 ,20 ,10/ 22 =ωω p  and 50 =a . 

Now we can obtain the ponderomotive potential ]1)1)[(/( 2/122 −+−= TP aemcφ  and 
ponderomotive force 
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It is maximum at z = 0 and falls off over a scale length pc ω/~ . If one integrates the 
ponderomotive force on all the electrons per unit x-y cross-section of the plasma and use 
Eq. (8), one obtains 
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where 0I  is the incident laser intensity. F exactly equals the momentum change per unit 
area of the incident laser, i.e., radiation pressure when reflectivity is 100%. 
 The ponderomotive force pushes the electrons forward leaving behind a positive 
ion space charge and piling up electrons at the laser front into a sheath of width 

ps cl ω/~ . As the laser front moves a distance Δ, the electron density in the sheath is 

)/1(0 se lnn Δ+≅  and the space charge field at z = Δ is Δ= enzEs 04ˆ π , )(ΔsE  increases 



with Δ. At sΔ=Δ where space charge force at sz Δ= balances the ponderomotive force 
)( sPs FeE Δ=  on electrons, the acceleration of the electron sheath nearly vanishes, sΔ  

turns out to be 
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)( sTa Δ  and 
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can be written as 
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 If the thickness of the thin foil, D, is equal to sΔ , the electron sheath is simply 
detached from the bulk ions and moves out in vacuum, trapping the ions within its width 
~ skin depth. This double layer is accelerated by the laser ponderomotive force or 
radiation pressure as we shall demonstrate. We have plotted in Fig. 2 the variation of 
optimum foil thickness normalized to electron skin depth as a function of normalized 
laser amplitude for 30 ,20 ,10/ 22 =ωω p . D scales almost linearly with 0a . For 50 =a , 

10/ 22 =ωω p , LD λ13.0= , which compares well with the value of LD λ2.0=  considered 
by Yan et al. in their simulation. 

 



Figure 2: Variation of optimum foil thickness normalized to electron skin depth as a 
function of normalized incident laser amplitude for 30 ,20 ,10/ 22 =ωω p . Solution is 

obtained with uniform electron density.   
 

 As the ion-electron double layer is accelerated by the radiation force the laser 
reflectivity 2|| R  becomes less than 1, and the radiation force on the double layer per unit 
area becomes )||1)(/( 2

0 RcIF += . If the velocity of the double layer is fV , the work 
done by the ponderomotive force per unit area per second is fFV , hence the reflected 

power per unit area fFVIRI −= 0
2

0 || . This gives 
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Further, the intensity of incident radiation on the moving front is reduced by a factor 
)/1( cV f−  due to the stretching of the pulse, hence 

 )/1/()/1)(/2( 0 cVcVcIF ff +−= .      (13) 
The mass per unit area of the double layer is si lnm 0  where im  is the ion mass. Solving 
the equation of motion 
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where 2/122 )/1( −−= cV ffγ , one obtains 
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where pisiL ammlncmTIR ωωπ /)/(4)/(2 2
00

2
0 ==  and ωπ /2=LT  is the laser period. 

For 1836/ =mmi , 50 =a , 10/ 22 =ωω p , 05.0≅R . The characteristic time for ion 
acceleration is LT30~ . We have plotted on Fig. 3 the variation of ion energy 
 2)1( cmifi −= γε  

as a function of time for  50 =a , 10/ 22 =ωω p .  



 
Figure 3: Variation of ion energy as a function of time for 50 =a , 10/ 22 =ωω p . 
 The ion energy varies pretty linearly with time upto 50~/ LTt and then varies bit 
slowly. The behavior is similar to the one observed in 1-D PIC simulations by Yan et al. 
for the same parameters. Typically in time ~ 90 fs at an intensity of 7.5�1019 w/cm2 in a 
ten times critical density plasma one obtains ion energy gain ~ 200 MeV. With higher  

0a energy gain is faster. However, with increasing plasma density the energy gain 
decreases as the double layer becomes heavier. 
 The critical parameter for collective double layer ion acceleration is the thickness 
of the thin foil. If it is less than the optimal length sD Δ< , the space charge field is not 
enough to carry the ions with electron sheath. For sD Δ> , the space charge force stops 
the electron sheath, hence no double layer acceleration occurs. The optimum width of the 
foil sD Δ= . This width increases with the intensity of the laser and decreases with the 
density of the plasma. 
 In calculating )( sTa Δ  we have assumed the electron density in the sheath, en , to 
be uniform. If one takes )(/ Ps ezeE φ∂∂=  in the entire sheath region and use the 
Poisson’s equation )(4/ 0 es nnezE −=∂∂ π , one obtains 
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which on using Eq. (6) gives 
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We have solved Eq. (6) with this density variation and obtained sΔ  using Eq. (11). The 
variation of  sΔ  for this non-uniform density sheath with 0a  is plotted in Fig. 4. The 
behavior is similar to Fig. 4. The new sΔ  is within a factor of 1.5 of the one obtained 
earlier. 



  
 Figure 4: Variation of optimum foil thickness normalized to electron skin depth 
as a function of normalized incident laser amplitude for 30 ,20 ,10/ 22 =ωω p . Solution is 

obtained with non-uniform electron density.   
 
 The bulk ions left behind the double layer, in the region 0 < z < sΔ , could be 
accelerated by the space charge self field. An ion originated at position 0z  will 
experience a constant force 0

2
04 zenπ  until the 2D effects weaken it. In traveling upto z = 

d, it will gain energy )(4 00
2

0 zdzeni −= πε . Once d becomes comparable to the laser 
spot size r0 , the ion energy will saturate. The number of ions per unit cross-sectional area 
contained in the energy interval iε  and ii dεε +  turn out to be ii dfdN εε )(= , with 

)2/()( 22
0 ipi dmdnf εωε −= . However, 2-D effects could strongly modify it. 

 
One more figure comparing the solution to Eq. (6) with uniform and non-uniform 
ne. (for your reference) 
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