

1953-59

International Workshop on the Frontiers of Modern Plasma Physics

14 - 25 July 2008

Some Constraints on Generation of Poloidal Shear Flow.

SAGDEEV Roald Z.

University of Maryland

College Park

UNITED STATES OF AMERICA

Electrons:

$$\omega = \omega_k + \delta \omega_{\rm NL},$$

$$\omega_k = \omega_p + \frac{3}{2} k^2 \frac{T_e}{m},$$

$$\delta\omega_{\rm NL} = \frac{1}{2}\omega_p \, \delta n/n,$$

Ions:

$$\Omega^2 = k^2 \frac{T_e}{M} + \delta_{NL},$$

Nonlineari ty is coming from $(V_e \nabla)V_e$ in electron equations of motion (and taking V_e as $eE/m\omega$ while $\omega=\omega_p$) and can be reduced to a kind of additional pressure :

$$\delta\Omega_{NL}^{2} = \frac{E^{2}}{8\pi nM}.$$

$$(\omega - \omega_p)\delta E = \frac{1}{2}\omega_p E \frac{\delta n}{n},$$

$$\left(\frac{\partial^{2}}{\partial t^{2}} - \frac{T_{e}}{M}\right) \delta n = \frac{1}{8\pi M} \frac{\partial^{2}}{\partial x^{2}} E \delta E$$

$$\omega = \omega_{\rm p} + i \nu, \qquad \qquad \Omega = \Omega_{\rm s} + i \nu,$$

$$v^2 = \frac{1}{16} \omega_p \omega_s E^2 / 4\pi nT$$

$$\left(\frac{\partial^{2}}{\partial t^{2}} - \frac{T}{M}\right) \delta n = \frac{1}{8\pi M} \frac{\partial^{2}}{\partial x^{2}} E \delta E,$$

$$\omega = \omega_{\rm p} + i \nu, \qquad \qquad \Omega = \Omega_{\rm x} + i \nu,$$

$$v^3 = \left(\frac{1}{16\pi nM}\omega_p E^2\right)^{\frac{1}{3}}$$

$$\omega_d \Rightarrow \omega_d + \omega_{c.c.}$$

- 1. $\omega_{\rm c.c.}$ small compared to $\omega_{\rm d}$
- 2. Dissipation brings imaginary part greater than 3 wave resonance mismatch

Arbitrary strong dissipation but only in one mode (e.g. in drift mode) does not eliminate instability, only reduces its growth rate.

Poloidal zonal (Shear) flow is a particular case of Convective Cells (c.c.)

$$k_{y} = 0, k_{x} \neq 0$$

 $x \leftrightarrow r$ (in cilindrical geometry)

If poloidal shear flow supresses drift mode microturbulence, is there mechanism to switch it on and off?

Standart Theory:

Parametric generation of polodal shear flow by Drift mode is unstoppable,

Thus the "Predator-Pray" scenario is unavoidable with improved confinement.

Experiment:

There are regimes of improved confinement but not universal; within the same regimes there might be zones of significantly lower microturbulence (areas of "Transport Barriers")

Computational:

See both cases

Suggested Model (Dissipation in both resulting modes)

Drift Mode:

- Consider scenario of Non-linearly Saturated Drift Microturbulence (as starting point before it start interacting with zonal flow)
- Imaginary part of damping is of the order of real part

Zonal Flow mode:

 Include "primordial" damping due to turbulent viscosity provided by
 Initial Drift Mode
 Turbulence