

1957-12

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Neutron and X-Ray scattering study on cuprate superconductors.

YAMADA Kazuyoshi Kyoto University Institute For Chemical Research Gokasho, Uji City F-611 Kyoto JAPAN

Cuprate superconductivity and spin fluctuations

K. Yamada,

Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan M. Fujita, H. Hiraka Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan M. Matsuda, S. Wakimoto Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

collaborators for neutron scattering

C.H. Lee. (AIST), J.M. Tranquada (BNL), M. Kofu , S.H. Lee. (U. Virginia), B. Fak, C. Frost (ISIS, RAL) , M. Braden (U. Cologne), D. Reznik (LLB)

collaborators for X-ray scattering

A. Q. Baron (RIKEN), J. Mizuki, T. Fukuda, K. Ikeuchi, K. Ishii(JAEA), Y. Sakurai (JASRI), Y. Murakami (Tohoku), D. Reznik (LLB)

Is There Glue in Cuprate Superconductors?

Philip W. Anderson

Many theories about electron pairing in cuprate superconductors may be on the wrong track.

Science 317 June 2007

"We have a mammoth and an elephant in our refrigerator do we care much if there is also a mouse?"

> spin fluctuation ? electron-phonon ?

High T_c cuprate superconductivity is still one the attractive field of material science

Figure 1 in M. Eschrig Adv. Phys. 55(2006)

many ?s in the phase diagram

Contents

1) Magnetic fluctuation of p-type cuprates (10min.)

2) Magnetic fluctuation of n-type cuprates (15min.)

3) "Magnetic" impurity-effect in p-type cuprates (15min.)

4) New pulsed neutron facility in J-PARC (3min.)

Advertisement

Magnetic scattering

$$S^{\alpha\beta}(\boldsymbol{Q},\omega) = \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \sum_{r} e^{i\mathbf{Q}\cdot\mathbf{r}} \left\langle S_{0}^{\ \alpha}(0)S_{r}^{\ \beta}(t) \right\rangle$$

Neutron sees spin-spin correlation (two-particle correlation)

Dynamical magnetic susceptibility

$$\chi''(Q,\omega) = (1 - e^{-\hbar\omega/k_{\rm BT}})S(Q,\omega)$$

Local dynamical magnetic susceptibility

$$\chi''(\omega) = \int_{B.Z.} dQ \chi''(Q,\omega)$$

Instantaneous (t=0) spin correlation

$$S(\boldsymbol{Q}) = \int_{-\infty}^{\infty} d\omega S(\boldsymbol{Q}, \omega)_{\mathbf{Q}:const.} \approx \int_{-Ei}^{-k_B T} d\omega S(\boldsymbol{Q}, \omega)_{\mathbf{Q}:const.}$$
$$= \sum_{r} e^{i\mathbf{Q}\cdot\mathbf{r}} \left\langle S_0^{\ \alpha}(0) S_r^{\ \beta}(t) \right\rangle_{t=0}$$

What is neutron scattering experiment?

Inelastic scattering by monochromated beam

By using TOF method with monochromated beam inelastic signal can be obtained at fixed scattering angle

Scattered neutrons scan along a locus in a (Q, ω) space with a finite resolution

Contents

1) Magnetic fluctuation of p-type cuprates (10min.)

interpretation of hour-glass type of magnetic excitation spectrum -doping-induced two energy scales-

2) Magnetic fluctuation of n-type cuprates (15min.)

3) "Magnetic" impurity-effect in p-type cuprates (15min.)

4) New pulsed neutron facility in J-PARC (5min.)

Advertisement

(1/2,0)

Carrier-doping into Mott insulators induces superconductor

Hourglass shape of magnetic excitation in superconducting phase

Our interpretation of hour glass type magnetic excitation

Two energy scales E_{cross} and J_{eff} can be defined

 $\rm E_{cross}$ is the crossing energy between the downward and upward excitation. In YBCO, Bi2212, $\rm E_{cross}$ nearly corresponds to resonance peak energy.

J_{eff} is defined from the upward excitation.

 E_{cross} (J_{eff}) decreases (increases) with decreasing doping and is continuously connected to the spin excitation of undoped Mott insulator

With dilute doping spin excitation is modified at low energy region

ω (meV)

Similarity between LSCO(optimally doped) and YBCO(underdoped)

We can also define higher energy scale : renormalized J, J_{eff}

Peak position of two-magnon scattering is proportional to renormalized J(x) ---> J(x) well corresponds to J_{eff} by neutron scattering

Spin dynamics

Two energy scales in charge dynamics

Contents

1) Magnetic fluctuation of p-type cuprates (10min.)

2) Magnetic fluctuation of n-type cuprates (15min.)

doping dependence in the overdoped superconducting phase

3) "Magnetic" impurity-effect in p-type cuprates (15min.)

4) New pulsed neutron facility in J-PARC (5min.)

Advertisement

n-type cuprates : SC and AF ordered phases are touched

commensurate spin correlation in both SC and AF phase

Two types of spin fluctuations in n-type cuprate NCCO

J_{eff} from instantaneous spin correlation length in paramagnetic state

continuous reduction of spin stiffness upon doping

(darkness of color corresponds to the strength of spin correlation)

N-type cuprates are normal?

Magnetic fluctuations in n-type high- T_c superconductors reveal breakdown of fermiology

F. Krüger¹, S. D. Wilson², L. Shan³, S. Li², Y. Huang³, H.- H. Wen³, S.-C. Zhang⁴, Pengcheng Dai^{2,5}, J. Zaanen¹

cond-mat 07054424

Electron-doping

Experiment

Fermi liquid model cannot reproduce commensurate low energy spin fluctuations in electron-doped cuprates

The high energy magnetic excitation is also anomalous

MAPS

Pencil shape excitation?

Dual nature in magnetic excitations in n-type?

Fujita et al.JPSJ, 75 ('06)

Future experiment including polarization analysis will clarify this issue

Contents

1) Magnetic fluctuation of p-type cuprates (10min.)

2) Magnetic fluctuation of n-type cuprates (15min.)

3) "Magnetic" impurity-effect in p-type cuprates (15min.)

Ni-impurity in not magnetic impurity but charge one

4) New pulsed neutron facility in J-PARC (5min.)

Advertisement

Uniqueness of Ni-impurity in doped cuprates

Zn in Bi2212

Kofu et al., PRB (2006)

J.C. Davis's group

Effect of Ni-impurity on spin correlation

Ni-impurity recovers 3DAF order

hole-doping

3DAF order => spin-glass => SC

Ni-doping

3DAF order <= spin-glass <= SC

Ni-impurity reduces effective (mobile) hole concentration (Blotter effect)

There must be two types of holes by Ni-doping

Ni doped

Itinerant Zhang-Rice singlet

Itinerant holes + Localized holes

XAFS experiment (SPring-8, linearly polarized, Ni K-edge, T=300 K)

Site-selective measurement (local structure around ~1% Ni impurity)

2 types of local in-plane structure around Ni impurity -----> two types of Ni states Ni^{2+} and $Ni^{(2+\alpha)+}$

Ni-substitution effect on magnetic excitation

Unique feature of Ni-impurity including the robust SC against Ni can be qualitatively explained by the blotter effect of Ni-impurity in the doped cuprates

In order to sustain high-Tc SC, 2D antiferromagnetic framework with s=1/2 is necessary

Thank you for attention