

1957-21

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Antiparamagno-mediated superconductivity in CeCu2Si2 ?

STOCKERT Oliver Max Planck Institute Dresden GERMANY

ICTP, Trieste, 5.8.2008

Paramagnon-mediated superconductivity in the heavy-fermion compound CeCu₂Si₂?

Max-Planck-Institut CPfS, Dresden, Germany

O. Stockert

Outline

Quantum phase transitions

Neutrons as microscopic probe

CeCu₂Si₂:

- Ground state properties / antiferromagnetic order
- Interplay magnetism / superconductivity
- Spin dynamics in superconducting state

Conclusion

Collaborations

Thanks ...

J. Arndt, M. Deppe, H.S. Jeevan, C. Geibel, M. Nicklas, F. Steglich E. Faulhaber, A. Schneidewind*, M. Loewenhaupt K. Prokes, N. Stüßer, K. Habicht, S. Gerischer, P. Smeibidl, M. Meißner K. Schmalzl, W. Schmidt, F. Thomas, X. Tonon, S. Pujol A. Amato, D. Andreica** H. Schneider*

Max-Planck-Institut CPfS Dresden

Institut für Festkörperphysik, TU Dresden

Hahn-Meitner-Institut Berlin

Institut Laue-Langevin Grenoble

Paul Scherrer Institut, Villigen

JCNS, Forschungszentrum Jülich

* FRM-II, TU München ** Babes-Bolyai Univ., Cluj-Napoca

Work partially funded by SFB 463, DFG, and EU

Continuous phase transitions

Continuous phase transitions:

- (critical) fluctuations of order parameter
- critical exponents in thermodynamic properties:

 α , β , γ , ... (scaling laws)

Critical behavior depends on

- dimensionality
- dimensionality/symmetry of order parameter
- range of interactions/fluctuations

classification \rightarrow universality classes

Can concept also be applied to QPTs?

Quantum phase transitions

Continuous phase transition for $T \rightarrow 0$

→ Quantum phase transition (QPT) with unusual low temperature properties, e.g.: T

• C/T ∝ -In T;

 $\Delta \rho \propto T^{\alpha}, \alpha < 2 \text{ (NFL)}$

superconductivity

Origin?

- Magnetic order
- (Quantum-)critical spin fluctuation
- Interplay between AF and SC

[recent review QPT: H. v. Löhneysen, RMP '07]

Heavy fermions

Kondo screening vs. RKKY interaction:

Kondo effect → nonmagnetic singlet

indirect RKKY interaction → magnetic order

Pressure tuning: electrical resistivity

Pressure tuning: phase diagram

- \cdot T_N suppressed under pressure
- Occurrence of two superconducting regimes

[H.Q. Yuan, Science, '03]

Quantum phase transitions in CeCu₂Si₂

[H.Q. Yuan, Science '03]

Energy scales: superconductivity and spin fluctuations

superconducting T_c scales with spin fluctuation T_{sf}

Neutrons as microscopic probe

Magnetic neutron scattering:

FT of spin-spin-correlation function

$$\mathbf{I} \propto \frac{d^2\sigma}{d\Omega d\omega} \propto S(\mathbf{q},\omega) = \operatorname{FT}\left\{\sum_{i,j} e^{i\mathbf{q}(\mathbf{R}_i - \mathbf{R}_j)} \langle \hat{S}_i(0)\hat{S}_j(t)\rangle\right\}$$

- Magnetic order
- Spin wave
- Spin fluctuations: resolved in energy and momentum transfer

Inelastic neutron scattering

- Instruments for different **q**-, ω -regions
- Three-axis spectrometer:

Instruments: IN12, IN14 at ILL / Grenoble V2 at HMI / Berlin PANDA at FRM-II / Garching

Inelastic neutron scattering

- Instruments for different **q**-, ω -regions
- Three-axis spectrometer:

PANDA at FRM-II / Garching

Neutron diffraction

Magnetism and superconductivity in CeCu₂Si₂

- Heavy-fermion superconductor [F. Steglich, PRL '79]
- NMR and µSR: first indication of magnetic order (A-phase) [H. Nakamura, JMMM '88; Y. J. Uemura, Physica C '88, PRB '89]
- Vicinity to quantum phase transition: $\Delta \rho \propto T^{1...1.5}$; C/T = γ_0 $\alpha \sqrt{T}$ (3D-AF instability)

QPT in A/S-CeCu₂Si₂: low T properties

Ground states in CeCu₂Si₂

Ground state dependent on stoichiometry: A, Superconducting, A/S [C. Geibel, '95]

Vicinity to quantum phase transition at disappearance of magnetic order

Nature of the magnetic A-phase in CeCu₂Si₂

Fermi surface: nesting for wave vector $q \approx (0.21 \ 0.21 \ 0.55)$

 → Fermi surface unstable with respect to formation of spindensity wave

- Observation of incomm. AF order
- Propagation vector

 $\tau = (0.215 \ 0.215 \ 0.530)$ at T = 50 mK _{c*}

• T_N ≈ 0.8 K, m₀ ≈ 0.1 μ_B [OS, PRL '04]

In situ ac susceptibility

Magnetism and superconductivity in A/S-CeCu₂Si₂

- No coexistence of AF and SC on microscopic scale
- Confirmation of µSR and NQR
 [R. Feyerherm, PRB '97; K. Ishida, PRL '99]
- Magnetic intensity just below T_c

µSR: phase separation!
 Different AF and SC volumes

Magnetic correlations in S-CeCu₂Si₂

Spin dynamics in S-CeCu₂Si₂

Spin excitation gap below T_c

Spin dynamics in S-CeCu₂Si₂

Q-dependence of gap mode in S-CeCu₂Si₂

Magnetic excitations in HF-superconductors

[N. Bernhoeft, '06]

Magnetic response in UPd₂Al₃

- Coexistence of antiferromagnetism $T_N = 14$ K, $\mu = 0.85$ μ_B , $\tau = (0 0 1/2)$ and superconductivity ($T_c = 1.9$ K)
- Inelastic neutron scattering: spin wave (E = 1.5 meV) and "resonance" (E = 0.3 meV) in superconducting state

[N. Bernhoeft, '98, N. K. Sato, '01, A. Hiess, '06]

Spin resonance in CeCoIn₅

• Superconductivity below $T_c = 2.3 \text{ K}$

- Commensurate AF spin fluctuations at $Q_{AF} = (1/2 \ 1/2 \ 1/2)$
- Spin resonance in superconducting state

[C. Stock, PRL '08]

Conclusions

• Quantum phase transitions

Heavy-fermion superconductors:

- Coexistence of magnetism and superconductivity only for commensurate order (?)
- Spin dynamics strongly affected in superconducting state

CeCu₂Si₂:

- Antiferromagnetic order due to Fermi surface nesting
- No coexistence of magnetism and superconductivity
- Observation of spin excitation gap with dispersive mode in superconducting state