

1957-8

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Physics of 5d Ir oxides.

TAKAGI Hidenori University of Tokyo, Graduate School of Frontier Sciences Dept. Advanced Material Sciences Kibanto 403, Kashiwa-no-ha 5-1-5 277-8561 Kashiwa, Chiba JAPAN

ICTP Trieste 2008

Physics of 5d Ir oxides

Hide TAKAGI RIKEN & University of Tokyo

Outlines

Why Ir oxides??

1. Spin-orbit coupling driven Mott insulating state in $Sr_2 IrO_4$

ideal playground for "phase sensitive" magnetic xray diffraction

B.J.Kim (UT), S.Fujiyama (RIKEN), K.Ohashi (UT) and T.Takayama (UT)

2. Spin liuquid state in hyper-kagome $Na_4Ir_3O_8$

<u>_</u>Y.Okamoto (UT), S.Fujiyama (RIKEN), R.Perry (UT) and M.Nohara (UT))

Mott physics in correlated electron system

Hubbard model

 $H= \pm \sum a_{i+1}^{+}a_{i} + \bigcup \sum n_{i\uparrow} n_{i\downarrow}$

U/t, n

Rich variety of exotic electronic phases near Mott insulating state

perovskite (related) oxides as a playground for Mott physics

3d transition metal perovskite as a playground for Mott physics

Group 9 Sr_2MO_4 What is the ground state?

K_2NiF_4 structure

Five d-electrons d^5 3d Sr_2CoO_4 4d Sr_2RhO_4 5d Sr_2IrO_4

Transfer increase

ng											1
Ca 🕈	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	(
		0.39	5.3							0.9	
5r	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	1
		0.52	9.2	0.92	8.8	0.49				0.56	:
Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	1
	6.0	0.09	4.48	0.01	1.70	0.66	0.11			4.16	
la	Ac	Ce	e Pr	· No	l Pr	n Si	m Eu	ı G	d Ti	D D	y

New itinerant ferro-magnet Sr_2CoO_4 developed by "atomic graphoepitaxy"

Matsuno PRL (2004) SCO

- Ferromagnet: T_C ~ 250 K
 cf. SrCoO₃ (T_C ~ 280 K)
- Metallic conduction below T_C
- Anisotropy $\rho_c/\rho_b \sim 10^2$ quasi-two-dimensionality

Group 9 Sr₂MO₄

K_2NiF_4 structure

Five d-electrons d⁵ 3d Sr₂CoO₄ Ferromagnetic metal 4d Sr₂RhO₄ 5d Sr₂IrO₄

Transfer increase

.026	5										
/lg											
La	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	1
		0.39	5.3							0.9	
5r 💥	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd]
		0.52	9.2	0.92	8.8	0.49				0.56	
3a 🛞	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	1
	6.0	0.09	4.48	0.01	1.70	0.66	0.11			4.16	
la	Ac	No.		- I NT							
		L 🕵	e Pi		1 Pi	m S	m Ei	1 G	d T	b Di	y
			XXX								<u></u>

Sr₂RhO₄, a paramagnetic metal

low spin t2g⁵ metal

Quasi 2D Fermi liquid

No magnetism

I. Nagai et al. unpublished

Importance of SOC in Sr₂RhO₄

ARPES FS not 100% consistent with LDA FS

LDA

LDA+SOC

(b)

SOC 100-200meV

TB+'SO

Г

LDA+SO

Г

LDA+U+SO

Г

Tend to make FS isotropic

Haverkort et al. PRL(2008)

Liu et al. PRL(2008)

Group 9 Sr₂MO₄

K_2NiF_4 structure

Five d-electrons d⁵ 3d Sr₂CoO₄ Ferromagnetic metal 4d Sr₂RhO₄ paramagnetic metal 5d Sr₂IrO₄

Transfer increase

.026										
Лg										
Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
		0.39	5.3							0.9
5r 💥	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
		0.52	9.2	0.92	8.8	0.49				0.56
Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
	6.0	0.09	4.48	0.01	1.70	0.66	0.11			4.16
la	Ac	No.								
			e Pi	· No		n Si	m Ei	ı G	d 1	b Dy

Sr_2IrO_4 , a magnetic insulator

G.Cao et al. PRB 1998

Mott insulator?

Metamagnetic transition Weakly ferromagnetic at least H>Hc

Tc~240K
μ_s~0.1 μ_B/Ir
μ_{eff}=0.5 μ_B/Ir
Magnetic anisotropy (easy axis along a axis)

Why Sr₂IrO₄ insulating?

<u>K₂NiF₁ st</u>ructure

Five d-electrons d^5 $3d Sr_2CoO_4$ ferromagnetic metal $4d Sr_2RhO_4$ paramagnetic metal $5d Sr_2IrO_4$ magnetic insulator

Transfer increase

Octahedron rotates 11° M-O-M bond angle ~ 22° aO Ir O Ir O Sr₂RhO₄ 20° !

.026												
Лg												4
Ca	Sc	Ti	V	Cr		Mn	Fe	Co	Ni	Cu	Zn	(
		0.39	5.3								0.9	
5r	Y	Zr	Nb	Mo		Tc	Ru	Rh	Pd	Ag	Cd]
		0.52	9.2	0.9	2	8.8	0.49	}			0.56	
3a	La	Hf	Ta	W		Re	Os	Ir	Pt	Au	Hg	-
	6.0	0.09	4.48	0.0	1	1.70	0.66	0.11			4.16	
la	Ac											
			e ∣Pı & ∣	r	No	i P	m Sr	$n E_1$	u Go	d TI	b Dy	1
			×××		<u>.</u>		_					<u>80</u>

Sr₂IrO₄ Spin-orbit driven Mott insulator?

Ir 4+ (5d⁵), low spin config.

B.J.KIM

Octrahedron elongated along c A few to several 100 meV

 $L_{t_{2g}} \rightarrow -L_{2p}$ inverts the energy order of J_{eff} multiplets

	(0	$\Delta/2$	$-i\Delta/2$)		$(xy\uparrow)$
	$\Delta/2$	0	$-i\Delta/2$					$y_{z}\downarrow$
$H = \Lambda I \cdot S =$	$i\Delta/2$	$i\Delta/2$	0				hasis —	$zx \downarrow$
$\Pi_{SO} = \Delta L \cdot S =$				0	$-\Delta/2$	$i\Delta/2$, Dusis -	$xy\downarrow$
				$-\Delta/2$	0	<i>i</i> ∆/2		$y_{\mathcal{Z}} \uparrow$
				$-i\Delta/2$	$-i\Delta/2$	0		zx

Sr₂IrO₄ Spin-orbit driven Mott insulator?

Ir $4+(5d^5)$, low spin config.

B.J.KIM

B.J.KIM

X-ray Absorption Spectroscopy cosistent with 1:1:1 xy yz zx

$$I_{eff1/2} = \frac{1}{\sqrt{3}} \left(|xy,\pm 1/2\rangle \pm |yz,\mp 1/2\rangle + i |zx,\mp 1/2\rangle \right)$$

Characteristic orbital state with xy:yz:zx=1:1:1 ratio of J_{eff}=1/2 is confirmed by O K-edge XAS

B.J.KIM

Points to be clarified

HIIa axis

H=0.5 T

HIIC axis

$$J_{eff1/2} = \frac{1}{\sqrt{3}} \left(|xy,\pm 1/2\rangle \pm |yz,\mp 1/2\rangle + i |zx,\mp 1/2\rangle \right) \qquad \langle L_z \rangle = \frac{2}{3}, \langle S_z \rangle = \frac{1}{6}, \langle L_z + 2S_z \rangle = 1$$

⁰⁰ T (K) ³⁵⁰

1. Magnetism??

 J_{eff} =1/2 canted 0 50 100 150 200 250 300 350 400 T (K) AF magnet because of rotation of octahedra?

0.14

0.12 0.1 0.08 0.06

H/M 0.04

0.06

0.02

2. Determination of wave function?

complex phase L S separation

Neutron could not detect magnetic signal

Ir is strong neutron absorber Moment small (1/2?) Large single crystal not available

Neutron does not distinguish L and S

Points to be clarified

HIIa axis

H=0.5 T

HIIC axis

$$J_{eff1/2} = \frac{1}{\sqrt{3}} \left(|xy, \pm 1/2\rangle \pm |yz, \pm 1/2\rangle + i |zx, \pm 1/2\rangle \right) \qquad \langle L_z \rangle = \frac{2}{3}, \langle S_z \rangle = \frac{1}{6}, \langle L_z + 2S_z \rangle = 1$$

50 100 150 200 250 300 350 400 T (K)

⁰⁰ T (K) ³⁵⁰

(elom/mole) M/H (emu/mole) 0.08 0.06 0.06 1. Magnetism?? 0.02

 J_{eff} =1/2 canted AF magnet because of rotation of octahedra?

2. Determination of wave function?

0.14

0

complex phase L S separation

X-ray scattering by electrons

Resonant magnetic x-ray

$$f_{\alpha\beta} = \sum_{m} \frac{m_{e} \omega_{im}^{3}}{\omega} \frac{\langle i | R_{\beta} | m \rangle \langle m | R_{\alpha} | i \rangle}{\hbar \omega - \hbar \omega_{im} + i \Gamma / 2}.$$

Enhance signal from t_{2g} in charge of magnetism can gain more magnetic scattering

Can expect quantum interference through intermediate state detection of phase

Ir compounds as an ideal playground for magnetic x-ray diffraction using L-edge $(2p \rightarrow d)$

Ir wave length 0.1 nm because of high energy!!

3d Cu as long as 1nm!! Only long wave length modulation the same is true for 4f

Element		Edge Energies (keV)		Eleme	ent	Edge Energies (keV)	
Symbol	Ir	К	76.1119995	Symbol	Cu	K	8.97900009
Z	77	Ll	13.4239998	Z	29	Ll	1.10000002
Atomic Weight	192.199997	L2	12.8240004	Atomic Weight	63.5400009	L2	0.952000022
Density	22.4200001	L3	11.2150002	Density	8.93999958	L3	0.931999981
		M	3.17199993			M	0.119999997
		K-alpha	64.8860016			K-alpha	8.04699993
		K-beta	73.5490036			K-beta	8.90400028
		L-alpha	9.17300034			L-alpha	0.
		L-beta	10.7060003			L-beta	0.

Gigantic enhancement of magnetic x-ray diffraction peak

Gigantic enhancement of magnetic x-ray diffraction

Magnetic Bragg peak consistent with canted AF

Magnetic Bragg peak consistent with canted AF

up up down down stacking of canted moments along c-axis

Metamagnetism seen in magnetic x-ray diffraction

2D spin correlations observed by magnetic diffuse x-ray scattering

with 100 μ m size crystals!!!

Selection rule for magnetic x-ray diffraction

Almost no resonance at L_2 : L_2 scattering intensity is only about 1% of that of the L_3 .

Extinction rule for L2 and L3 edges

$$f_{\alpha\beta} = \sum_{m} \frac{m_{e} \omega_{im}^{3}}{\omega} \frac{\langle i | R_{\beta} | m \rangle \langle m | R_{\alpha} | i \rangle}{\hbar \omega - \hbar \omega_{im} + i \Gamma / 2}.$$

$$c_1 |xy,\uparrow\rangle + c_2 |yz,\downarrow\rangle + c_3 |zx,\downarrow\rangle$$

$$\mathbf{f}^{L2}_{\alpha\beta} = \frac{1}{6} \begin{pmatrix} (c_1 + ic_3)(c_1^* - ic_3^*) & (ic_1^* + c_3^*)(c_1 - c_2) & 0\\ (-ic_1 + c_3)(c_1^* - c_2^*) & (c_1 - c_2)(c_1^* - c_2^*) & 0\\ 0 & 0 & (c_2 + ic_3)(c_2^* - ic_3^*) \end{pmatrix}.$$

S=1/2 model(xy orbital)

 \cdot

$$f_{(L_3)}^{\ \alpha\beta} = \begin{pmatrix} 1/3 & i/6 & 0 \\ -i/6 & 1/3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$f_{(L_2)}^{\ \alpha\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

L3
$$f_{(L_3)}^{\alpha\beta} = \begin{pmatrix} 1/3 & i/6 & 0 \\ -i/6 & 1/3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

L2 $f_{(L_2)}^{\alpha\beta} = \begin{pmatrix} 1/6 & i/6 & 0 \\ -i/6 & 1/6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

LS decoupling by "non-resonant" scattering

$$\begin{pmatrix} E'_{\sigma} \\ E'_{\pi} \end{pmatrix} = \begin{pmatrix} S_2 \sin 2\theta & -2\sin^2 \theta [(S_1 + L_1)\cos \theta - S_3 \sin \theta] \\ 2\sin^2 \theta [(S_1 + L_1)\cos \theta + S_3 \sin \theta] & [2L_2 \sin^2 \theta \cos \theta + S_2]\sin 2\theta \end{pmatrix} \begin{pmatrix} E_{\sigma} \\ E_{\pi} \end{pmatrix}$$

M. Blume and Doon Gibbs, Phys. Rev. B **37**, 1779 (1988).

$$J_{efl1/2} = \frac{1}{\sqrt{3}} (|xy,\pm 1/2\rangle \pm |yz,\mp 1/2\rangle + i|zx,\mp 1/2\rangle)$$

$$\langle L_z \rangle = \frac{2}{3}, \langle S_z \rangle = \frac{1}{6}, \langle L_z + 2S_z \rangle = 1$$
Inclined Scattering Plane
Vertical Plane
Vert

Summary of Sr₂IrO₄

"J_{eff}=1/2" Mott insulator not S=1/2 Mott insulator Wave function $J_{eff1/2} = \frac{1}{\sqrt{3}} \left(|xy,\pm 1/2\rangle \pm |yz,\mp 1/2\rangle + i |zx,\mp 1/2\rangle \right)$

in strong SOC limit

- interplay between coulomb U and a large SOC

-Why crystal field splitting ~ a few 100 meV, comparable to SOC, behave as if the were absent??

 $J_{eff} = 1/2$ Canted antiferromagnet

Perfect playground for magnetic x-ray because of L-edge being hard x-ray region

Mott transition within J_{eff} =1/2 band - increase dimensionality

Metallic state can be described as a half filled J_{eff} =1/2 band? If so, any exotic transport due to strong SOC?? Thin film without inversion symmetry??

Develop compounds with more exotic structure?

Geometrically Frustrated Lattices

2D Triangular lattice

TTFCu(NCS)

2D Kagome lattice

ZnCu₃(OH)₆Cl₂ $SrCr_9Ga_3O_{19}$,

NaTiO₂

a wide variety of materials, most popular oxide structure

Geometrically Frustrated Lattices

Physics Today Feb 2007

segrch adiscovery

New candidate emerges for a quantum spin liquid

A newly synthesized mineral is perhaps the most promising material yet to realize a hypothetical state with exotic behavior.

Nature sometimes surprises us with intriguing material behavior. Witness the fractional quantum Hall effect or high-temperature superconductivity. More rarely, theorists conceive of novel systems and then set out to look for them in nature. One such novel system is the spin liquid,¹ postulated in 1973 by Philip Anderson for an antiferroThe discovery of high- T_c superconductivity renewed interest in spin liquids because copper oxide materials are antiferromagnetic insulators before they are doped to become superconductors. Anderson and others have used the concept of a resonating-valence-bond, which underlies the prediction of a spin-liquid state, to try to explain the at MIT were able to synthesize a rare mineral known as herbertsmithite.³ (The small amounts found in nature are not sufficiently pure.) It's a member of the paratacamite family characterized by the formula $Zn_xCu_{4-x}(OH)_6Cl_2$, where x = 1 for herbertsmithite. As pictured in figure 2 and confirmed by crystallography, the spin- $\frac{1}{2}$ copper atoms

$Na_4Ir_3O_8$: Ir^{4+} oxide with hyper-kagome structure

B-cation ordered spinel

 $2 (Na_{3/2})_1 (Ir_{3/4}, Na_{1/4})_2 O_4$

Na₄Ir₃O₈: cubic P4₁32, a = 8.985 Å Isostructural to Na₄Sn₃O₈

"hyper-Kagome" frustration B-site ³/₄ : Ir, ¹/₄ : Na Cation ordering

S=1/2 or J=1/2 ??

Locally more distorted

$Na_4Ir_3O_8$ J or S=1/2 Mott Ins. with AF interaction

No ordering in χ down to 1.8 K $\leftarrow \theta_{cw}$ = 650K Strong frustration No long range ordering detected by neutron down to 4K

²³Na NMR indicates absence of magnetic ordering down to 2 K (J=650 K) - evidence for spin liquid

Hyperkagome (ordered spinel) lattice has "chirality"

P4132 L P4₃3 R

Spin liquid formed on chiral lattice! (+ strong spin orbit coupling)

Itinerancy and stabilization of spin liquid

common physics with BEDT salt (Kanoda) S=1/2 triangular?

