

1957-14

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Frustrated magnetism and strong correlation effects in 2D He-3

FUKUYAMA Hiroshi The University of Tokyo, Department of Physics 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 JAPAN

Frustrated Magnetism and Strong Correlation Effects in 2D ³He

Hiroshi Fukuyama

Dept. of Phys., The Univ. of Tokyo

- 1. Introduction (2D ³He systems)
- 2. Gapless spin-liquid state in the 4/7 phase
- 3. Possible vacancy (hole) doping into the 4/7 phase
- 4. Particle doping into the 4/7 phase
- 5. Summary

Interaction ranges in He and electron systems

§1. 2D ³He systems (1st and 2nd layers on graphite)

Nearly ideal 2D systems adsorbed on atomically flat graphite surface

2D Helium adsorbed on graphite

Finite-*T* phase diagram of 1st layer ³He on graphite

Finite-*T* phase diagram of 2nd layer ³He on graphite

Variety of 2D ³He systems

³He monolayer on ⁴He monolayer

(our system)

³He monolayer localizes without adding overlayer (filling control)

³He bilayer on ⁴He bilayer

M. Neumann et al., Science 317, 1356 (2007)

³He underlayer localizes only by adding ³He overlayer (band width control)

T = 0 phase diagram of 2D ³He (2nd layer)

Experimental setup

Heat capacity cell Y. Matsumoto et al.,

Physica B **329-333**, 146 (2003)

 $100 \ \mu K \le T \le 80 \ m K$ $0 \le B \le 1.2 \ T$ NMR cell

S. Murakawa et al., Physica B **329-333**, 144 (2003)

> 60 μK ≤ *T* ≤ 2 K 0 ≤ *B* ≤ 1.17 T

Nuclear demag. fridge

Y. Matsumoto et al., JLTP **134**, 61 (2004)

• $T_{\rm min} = 51 \ \mu {\rm K}$

• holding $T \le 200 \ \mu K$ for one week

§2. Gapless spin-liquid state in the 4/7 phase

Highly frustrated quantum spin system (S=1/2) on a triangular lattice

Frustrated magnetism of the 4/7 phase (earlier works)

Heat capacity measurements

D.S. Greywall, PRL 62, 1868 (1989)

- A round maximum at $T \approx 2$ mK.
- Missing entropy ($\approx 0.5 \ln 2$)?
- Highly frustrated antiferromagnet

Exact diagonalization and PIMC calculations

- V. Elser, PRL 62, 2405 (1989)
- $\sqrt{7} \times \sqrt{7}$ structure (**4/7 phase**)
- S = 1/2 Heisenberg AF on a
 Kagome lattice (HAFK) model

$$H = J \sum_{i < j}^{A(\text{N.N.})} S_i \bullet S_j \qquad \left| J_{\text{AB}} \right| \lll \left| J_{\text{AA}} \right|$$

Gapless spin-liquid behaviour in 4/7 phase

- Absence of finite-*T* phase transitions ... truly 2D down to $T/J \approx 10^{-2}$ - 10^{-3} (J = 1-10 mK)
- Double peak in C(T) ... highly frustrated
- No exponential behaviour at *T* << *J* ... gapless excitation

Magnetization curve of the 4/7 phase

3D solid ³He (bcc) Highly frustrated **3D** AFM $k_{\rm B}T_{\rm N} \ll \mu B_{\rm c2}$ $T_{\rm N} (B = 0) = 0.93$ mK $B_{\rm c2} (T = 0) \approx 20$ T

Gapless QSLs found in other materials

94.4 94.5 94.6 94.7 Frequency (MHz)

A variation of spin liquids

• RVB

- kagome lattice
- Δ -chain

Gapless spin liquids

- 2D ³He
- $Cu(C_4H_4N_2)(NO_3)_2$
- κ -(BEDT-TTF)₂Cu₂(CN)₃

Multiple-spin exchange model -- general

Many-body interactions are essentially important in hardcore quantum solids due to the steric hindrance.

$$H = \sum_{n}^{n} (-1)^{n} J_{P} \left(P_{n} + P_{n}^{-1} \right)$$
D.J. Thouless, Proc. Phys. Soc. **86**, 893 (1965), *ibid.* **86**, 905 (1965)
M. Roger, J.H. Hetherington and J.M. Delrieu, Rev. Mod. Phys. **55**, 1 (1983)
 P_{n}, P_{n}^{-1} : cyclic permutation operator of *n* particles
All $J_{P} > 0$
2-spin exchange: $P_{2} = P_{i,j} = 2S_{i} \cdot S_{j} + \frac{1}{2}$ (AFM)
3-spin exchange: $P_{3} = P_{1,2,3} + P_{1,2,3}^{-1} = P_{1,2} + P_{2,3} + P_{3,1} - 1$ (FM)
4-spin exchange: $P_{4} = P_{1,2,3,4} + P_{1,2,3,4}^{-1} = P_{1,2}P_{3,4} + P_{1,4}P_{2,3} - P_{1,3}P_{2,4} + P_{1,3} + P_{2,4} - 1$ (AFM)
5-spin exchange: $P_{1,2,3,4,5} + P_{1,2,3,4,5}^{-1} = P_{1,2}P_{3,4} + P_{1,4}P_{2,3} - P_{1,3}P_{2,4} + P_{1,3} + P_{2,4} - 1$ (AFM)
4 = $J\sum(S_{i} \cdot S_{j}) + K \sum_{n} \left\{ (S_{i} \cdot S_{i})(S_{k} \cdot S_{1}) + (S_{i} \cdot S_{i})(S_{j} \cdot S_{k}) - (S_{i} \cdot S_{k})(S_{j} \cdot S_{i}) \right\}$

$$+J_6 \sum_{i < j < k < l} \left\{ \left(S_i \bullet S_j \right) \left(S_k \bullet S_l \right) \left(S_m \bullet S_n \right) + \left(S_j \bullet S_k \right) \left(S_l \bullet S_m \right) \left(S_n \bullet S_l \right) + \cdots \right\}$$

$$J = J_2 - 2J_3$$
 : effective 2-spin exchange (< 0)
 $K = J_4 - 2J_5$: effective 4-spin exchange (> 0)

Six-spin

Multiple-spin exchange model for 2D ³He

Theoretical magnetic phase diagram of 2D ³He

Theoretical approaches to gapless QSL in 4/7 phase

Elementary excitation?

spinon (e.g., magnon in systems with LRO)

Effective Hamiltonian?

§3. Possible vacancy (hole) doping into the 4/7 phase

Hypothesis of zero-point vacancy (ZPV) phase

ZPVs in solid He -- holes in quantum solids

1. In 3D solid He

So far, no experimental evidence M.W. Meisel, Physica B **178**, 121 (1990)

Theories (PIMC, SWF) contradict each other.

Prediction of supersolidity due to BEC of ZPVs. A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP **29**, 1107 (1969)

³He *impuriton* ... experimentally observed

2. ZPV may be more favorable in 2D

Substrate potential corrugation may decrease Δ_v and increase *t* due to much lower density.

H. Matsuda and T. Tsuneto, Suppl. Prog. Theor. Phys. 46, 411 (1970)

Heat capacities of Region-II

MT-anomalies of heat capacity in Region-II

2D hole (ZPV) band picture for Region-II

Entropies of Region-II

 $\Delta S_{eff} (= \Delta S_{m} + \Delta S_{l})$: deduced from C(T) below 0.2 K

- spin mass separation in 2D? Y, Fuseya and M. Ogata, submitted to JPSP(2008)
- fermion differentiation? T. Misawa and M. Imada, PRB 75, 115121 (2007)

Magnetization of Region-II

All $\Delta M(\rho, T)$ have the same *T*-dependence.

phase separation?! •••• contradicts heat capacity data

High-*T* series expansions for *t*-*J* models

Exp. Magnetization data are consistent with *t*-*J* model for triangular lattice.

$$H = -t \sum_{\langle i,j \rangle,\sigma} P(c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.)P + J \sum_{\langle i,j \rangle} S_i \bullet S_i$$

P: operator to prohibit doublon

Triangular lattice

T. Koretsune and M. Ogata, PRL 89, 11640 (2002)

Hole doping decreases $\boldsymbol{\chi}$

- release of spin frustration
- giving gaped nature
- nontrivial AFM

Square lattice

Hole doping increases χ

- destructing Neel coupling
- Nagaoka FM

Wilson ratio in Region-II

Spinon Fermi surface?

Spin-spin relaxation time (T_2) measurements

T_2 measurements near the 4/7 phase

There are three *T*-regimes:

- (1) $T \le 10$ mK: short-range ordering?
- (2) $10 \le T \le 300$ mK: *T*-independent regime determined by quantum motions
- (3) $T \ge 300$ mK: thermally activated density fluctuations

Region-II

motional-narrowing presumably due to ZPV

Region-III<mark>, IV</mark> :

exchange-narrowing due to interlayer exchanges

§4. Particle doping into the 4/7 phase

FM phases appear due to reduced frustration.

T = 0 phase diagram of 2D ³He (2nd layer)

Magnetization of 2D ³He

Heat capacities in Regions III-VII ($\rho \ge \rho_{4/7}$)

• Excess particles are promoted into 3rd layer $(1 \le n \le 1.2)$ and behave as a degenerate Fermi liquid (puddle).

Heat capacities in Regions III-VII ($\rho \ge \rho_{4/7}$)

Isotherms of heat capacity and magnetization in excess particle regions

Coexistence within 2nd layer (Region-IV)

The 4/7 phase coexists with the other commensurate phase (C2-phase).

Heat capacities of C2 and IC phases

C2 phase (FM ground state)

• slightly frustrated 2D FM on a triangular lattice

$$J$$
(magnetization) = -(1.7 - 2.1) mK

J (heat capacity) = -2.7 mK

$$\eta = (K + J_6)/|J| = 0.10 - 0.12$$

IC phase (FM ground state)

• nearly ideal 2D FM on a triangular lattice J (heat capacity) = -1.0 mK $\eta \approx 0$

S = 1/2 Heisenberg model on a triangular lattice: HAFT model

> B. Bernu and G. Misguich., PRB **63**, 134409 (2001)

Interpolation scheme between

- HT series expansion (with Pade approx.) regime
- LT spin-wave regime

Future prospect

Region-II : $(0.8 \le n \le 1)$ ··· hole doping

1. Verification of the ZPV model

- more complete spin-echo measurements
- vapor pressure measurement at fixed $T \rightarrow$ compressibility

2. Experimental determination of the 4/7 structure

LEED or neutron scattering

3. Search for supersolid phase in 2D ⁴He

- torsional oscillator (with Shirahama group)
- 2nd sound

Region-III, IV : $(1 \le n) \cdots$ particle doping

- 1. Full survey of the phase diagram
 - heat capacity and pulsed-NMR

2. Experimental determination of structural change

LEED or neutron scattering

§5. Summary

1. 4/7 phase

- First gapless spin-liquid state experimentally observed.
- MSE model explain exp. data but not the gapless nature.

2. Region-II (hole doping)

- Possible ZPV phase suggested from heat capacity data.
- T_2 data support single phase (ZPV phase) at least at high- $T (\ge 20 \text{ mK})$.
- But magnetization data suggest phase separation being inconsistence with heat capacity data.
- spin-mass separation?, fermion differentiation?, gradual phase separation?

3. Region-III-VII (particle doping)

- The 4/7 phase is stable until 20% excess particles. The newly added particles are promoted into 3rd layer forming FL paddles.
- A new commensurate phase (C2) was found. It is a slightly frustrated 2D FM on a triangular lattice.