



1957-18

#### Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Theory and experimental overview of the Iron Based Pnictides

HAULE Kristjan Rutgers State University

Dept.of Physics and Astronomy 136 Frelinghuysen Road NJ 08854-8019 Piscataway U.S.A. Iron based high temperature superconductors

K Haule, Rutgers University



#### Technologically relevant

The State Universi of New Jersev

Department of Physics and Astronomy

Wires fabricated by the powder-in-tube (PIT) method:



Jc up to 2×105 A/cm<sup>2</sup>

(*Hc*<sub>2</sub>) up to 120 T

More three-dimensional than cuprates

#### How it all started....

LUGERS

Physics and Astronomy

The State Universi of New Jersev



Published on Web 02/23/2008

#### Iron-Based Layered Superconductor La[O<sub>1-x</sub> $F_x$ ]FeAs (x = 0.05-0.12) with T<sub>c</sub> = 26 K

Yoichi Kamihara,\*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Discovery of the copper-based superconductor  $La_{2-x}Ba_xCuO_4^1$ with a high transition temperature ( $T_c$ ) triggered extensive research with the intention of developing new transition-metal-based superconductors.<sup>2,3</sup> Currently, high  $T_c$  superconductors are limited to layered perovskites that contain CuO<sub>2</sub> structural units as the conduction layers. However, the  $T_c$  of the non-Cu-based superconductors in this category has remained low, although spin triplet superconductivity has been found in UPt<sub>3</sub> ( $T_c \sim 0.54$  K)<sup>4</sup> and Sr<sub>2</sub>-RuO<sub>4</sub> ( $T_c \sim 1.4$  K).<sup>5,6</sup> Here, we report a layered iron-based compound, LaOFeAs, which undergoes superconducting transition under doping with F<sup>-</sup> ions at the O<sup>2-</sup> site. Its  $T_c$  exhibits a



Published in Chemical journal (Journal of American Chemical Society) Received January 2008, published online Feb 2008

#### And exploded....

The State University of New Jersey UTSECTS Department of Physics and Astronomy

#### more than 23 cond-mat's in March 2008

| 2                      | Superconducting properties of Fe-based layered superconductor LaO <sub>0.9</sub> F <sub>0.1-</sub> FeAs<br>G. F. Chen, <sup>1</sup> Z. Li, <sup>1</sup> G. Li, <sup>1</sup> J. Zhou, <sup>1</sup> D. Wu, <sup>1</sup> J. Dong, <sup>1</sup> W. Z. Hu, <sup>1</sup> P.<br>Zheng, <sup>1</sup> Z. J. Chen, <sup>1</sup> H. Q. Yuan, <sup>2,3</sup> J. Singleton, <sup>2</sup> J. L. Luo, <sup>1</sup> and N. L. Wang <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $[\frac{5}{2}]{$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 803.01                 | <ul> <li><sup>1</sup>Beijing National Laboratory for Condensed Matter Physics,<br/>Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China</li> <li><sup>2</sup>National High Magnetic Field Laboratory, MS-E536,<br/>Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA</li> <li><sup>3</sup>Department of Physics, Zhejiang University, Hangzhou 310027, China</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| arXiv:0                | We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the conductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductor has a rather high upper critical field of over 50 T. A clear signature of superconducting conductors for Gang Mu, Xiyu Zhu, Lei Fang, Lei Shan, Cong Ren and Hai-Hu Wen conductors for Superconductivity. Institute of Physics and Bailing National Laborators for Conductor for Superconductivity. Institute of Physics and Bailing National Laborators for Conductors for Superconductivity. |  |  |
|                        | Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People's Republic of China<br>Wa report the specific heat measurements on the nextly discovered Fachered layered superconductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| arX1v:0803.0429v2<br>I | $ \begin{array}{c} & \text{LaO}_{0_0}F_{0,1_{-x}}\text{Fa}: \text{A low carrier density superconductor near itinerant magnetism} \\ \text{D.J. Singh and MH. Du} \\ Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 \\ (Dated: July 9, 2008) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                        | Density functional studies of 26K superconducting LaFeAs(O,F) are reported. We find a low carrier density high density of states $N(F_{T})$ and modest phones. Frequencies relative to $T$ . The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                        | high $N(E_F)$ leads to proximity to itinerant magnetism, with composition of the balance between these controlled b<br>is in a unique class of high $T_c$ superconductors: high $N(E_F)$ ionication of the balance between these controlled b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                        | K. Haule, J. H. Shim, and G. Kotliar<br>Department of Physics, Rutgers University, Piscataway, NJ 08854, USA<br>(Dated: July 11, 2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                        | We compute the electronic structure, momentum resolved spectral function and optical conduc-<br>tivity of the new superconductor $LaO_{1-x}F_xFeAs$ within the combination of the Density functional<br>theory and the Dynamical Mean Field Theory. We find that the compound in the normal state<br>is a strongly correlated metal and the parent compound is a bad metal at the verge of the metal<br>insulator transition. We argue that the superconductivity is not phonon mediated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                        | – >260 preprints at the end of July mostly from China!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

### First family of SC

The State University of New Jersey





- a) Y. Kamihara et.al., Tokyo, JACS
- b) X.H. Chen, et.al., Beijing,arXiv: 0803.3790
- c) Zhi-An Ren, Beijing, arXiv: 0803.4283
- d) Zhi-An Ren, Beijing, arXiv: 0804.2053.

| •               |                                                    |                                                   |
|-----------------|----------------------------------------------------|---------------------------------------------------|
| t               | SmF <sub>x</sub> O <sub>1-x</sub> FeAs<br>x~0.2 d) | Tc=55K,<br>cm/0803.3603<br>a=3.933A,<br>c=8.4287A |
| maller c        | PrF <sub>x</sub> O <sub>1-x</sub> FeAs c)          | Tc=52K,<br>cm/0803.4283<br>a=3.985A, c=8.595A     |
| ō               | CeF <sub>x</sub> O <sub>1-x</sub> FeAs b)          | Tc=41 K,<br>cm/0803.3790<br>a=3.996A, c=8.648A    |
|                 | LaF <sub>x</sub> O <sub>1-x</sub> FeAs a)          | Tc=26 K,<br>JACS-2008<br>a=4.036A, c=8.739 A      |
| .4283<br>.2053. | La <sub>1-x</sub> Sr <sub>x</sub> OFeAs            | Tc=25K,<br>cm/0803.3021,<br>a=4.035A, c = 8.771A  |
| Rare earth'     | 61 62 63<br><b>Pm Sm Eu</b><br>(145) 150.38 151.98 |                                                   |

#### Crystal Structure: Tetragonal I4/mmitgers



- •2D square lattice of Fe
  •Fe magnetic moment
  •As-similar then O in cuprates
- CUPRATE Oxygen ions Copper ions Copper ions Copper ions Copper ions Copper ions Copper ions





The State Univer

Physics and Astronomy

But As not in plane!







#### The State Universit of New Jersey <u>Phase diagrams SmFeAsOR</u> Department of Physics and Astronomy



Igers





# Common features of the parent compound





In single crystals of 122 seems  $T_M$  and  $T_S$  close or the same



#### **Itinerancy & Frustration**

The undoped compound is metal (although very bad one  $\sim 1m\Omega cm$ ), hence moment is partially screened

Magnetic exchange interaction is very frustrated (Qimiao Si, Elihu Abrahams, arXiv:0804.2480)

Exchange interactions are such that J2~J1/2, very strong frustration, (KH, G. Kotliar, arXiv: 0805.0722)

For the doped compound, LDA structural optimization fails for non-magnetic state! (It is very good if magnetism is assumed)

For non-magnetic state, LDA predicts 1.34Å shorter FeAs distance (10.39 instead of 11.73). One of the largest failures of LDA.

T. Yildirim, arXiv: 0807.3936

Paramagnetic state must have (fluctuating) magnetic moments not captured in LDA







sics and Astronomy

#### Signatures of moments

The State University of New Jersey Department of Physics and Astronomy

Doped LaOFeAs



Susceptibility 50xlarger than Pauli LDA T. Nomura et.al., 0804.3569



#### Nonmagnetic impurities not detrimental to SC

•Fe replaced by Co

•Impurities do not destroy SC (like Zn doping in cuprates)

•No signature of Curie-Weiss susc.



### Band structure of LaOFeAs Rutgers

LDA: Mostly iron bands at EF (correlations important)

6 electrons in 5 Fe bands: Filling 6/10 -> large spin



The 5-band Hubbard-type model As(p)-Fe(d) hybridization weak

LDA DOS



The State Universi of New Jersey

epartment of Physics and Astronomy

KH, J.H. Shim, G. Kotliar, cond/mat 0803.1279 (PRL. 100, 226402 (2008)):





LDA+DMFT: LaOFeAs is at the verge of the metal-insulator transition (for realistic U=4eV, J=0.7eV) For a larger (U=4.5, J=0.7eV) semiconducing insulator



Need to create a singlet out of spin and orbit





For J=0 there is negligible mass enhancement at U~W!

The coupling between the Fe magnetic moment and the mean-field medium (As-p,neighbors Fe-d) becomes ferromagnetic for large Hund's coupling!

J~0.35 gives correct order of Magnitude for both χ and ρ. KH, G. Kotliar, cond/mat 0803.1279



Very incoherent in normal state (large resistivity) ------ High Tc

## ARPES on $Ba_{0.6}K_{0.4}Fe_2As_2$



The State Universi



LDA(LAPW) calculation



C. Liu, et.al., arXiv: 0806.3453

Gaps on the two FS around  $\Gamma$  are very different

H. Ding et.al., arXiv:0807.0419

Large gap in the inner  $\,\Gamma\,$  and M

Small gap in the outer  $\Gamma$  pocket

### Anisotropy of the gap

The State University of New Jersey Rutgers Department of Physics and Astronomy



#### Other common possibilities

s-constant

![](_page_23_Picture_2.jpeg)

maybe

 $ex-s \sim cos(kx)+cos(ky)$ 

![](_page_23_Picture_5.jpeg)

No nodes, but gap different sign on  $\Gamma$  and M

maybe

...and many other possibilities

![](_page_23_Picture_9.jpeg)

The State Universit of New Jersev

Department of Physics and Astronomy

#### One more possibility

![](_page_24_Picture_1.jpeg)

Fa Wang et.al., arXiv: 0807.0498

Numerical Renormalization Group ~ "advanced" way of summing LOD

![](_page_24_Figure_4.jpeg)

#### Conclusions

![](_page_25_Picture_1.jpeg)

- Variety of materials with common SDW feature and SC
  - 1111: LaOFeAs, CeOFeAs,...SmOFeAs
  - □ 122: BaFe2As2, CaFe2As2
  - LiFeAs
  - FeSe, FeTe
- Highest Tc~55K achieved in  $SmF_xO_{1-x}FeAs$
- Some similarities with cuprates, but also differences (Co doping)
- Correlations weaker than in cuprates (not doped Mott insulators)
- ARPES shows almost uniform gap on FS sheets (s-wave, extended s-wave,....)
- Other probes of gap symmetry are still controversial  $(1/T_1 \sim T^3, 1/\lambda^2 \sim exp/powerlaw, Cv \sim exp/powerlaw)$