

1957-2

Miniworkshop on Strong Correlations in Materials and Atom Traps

4 - 15 August 2008

Superconductivity, magnetism and criticality in the 115s.

THOMPSON Joe David Los Alamos National Laboratory Materials Science - K764 New Mexico, 87545 Los Alamos U.S.A.

Superconductivity, magnetism and criticality in the 115s

with Tuson Park

Los Alamos National Laboratory and Department of Physics, Sungkyunkwan University

Outline:

• brief introduction

• interplay between unconventional superconductivity and magnetism in $CeRhIn_5$ – superconducting gap symmetry

• signatures for quantum criticality and implications – evidence for an unconventional form of criticality and its role in superconductivity

• summary and issues

special thanks to: A. Bianchi, N. J. Curro, Z. Fisk, R. Movshovich, M. Nicklas, J. L. Sarrao, V. A. Sidorov, O. Stockert, Y. Tokiwa and R. Urbano

2008 Trieste Workshop on Strongly Correlated Materials and Atom Traps; JDT

the general problem

Tuning parameter

• questions:

-- Can magnetism and superconductivity coexist to the left of the QCP? If so, what is the nature of the superconductivity? -- Can the QCP ('D') hidden by a dome of superconductivity be revealed by suppressing superconductivity?

-- What is the nature of the quantum criticality? Does it provide glue?

zero-temperature transition between ordered (eg. antiferromagnetic) and disordered states; driven by quantum, not thermal, fluctuations
a highly degenerate state susceptible to transformation into new electronic configurations, such as unconventional superconductivity, with critical fluctuations possibly providing a 'glue' that forms Cooper pairs (N. D. Mathur et al., Nature 394, 39 (1998); P. Monthoux et al., Nature 450, 1177 (2007) and references therein)

P. Coleman and A. Schofield Nature 433, 226 (2005)

CeRhIn₅ as an example

 phase diagram from *ac* specific heat; below ~ 8K, electronic entropy independent of ground state

- ◆ CeRhIn₅: antiferromagnetic member of the 115s that include the unconventional heavy-fermion superconductors CeCoIn₅ and CeIrIn₅
- \blacklozenge exceptionally 'clean', with RRR ~ 500 and $\rho_0 \leq 100 n \Omega cm$

• antiferromagnetic with $T_N = 3.8$ K, above which $\gamma \approx 450$ mJ/molK², and below which is an ordered moment $M_0 = 0.79 \mu_B$, slightly reduced from 0.84 μ_B expected for a CEF doublet-local moment • temperature-pressure phase diagram similar to generic example: region of superconductivity and magnetic order; no evidence for magnetism above P1 where $T_N = T_c$; maximum T_c where T_N extrapolates to T=0

coexistence to the left of the QCP

nature of AFM and SC in coexistence phase

• except for pressure-induced superconductivity, • 2-fold modulation in polar sweep \Rightarrow H-T phase diagram unchanged for 0 < P < P1; combined with only small decrease in ordered magnetic moment \Rightarrow 4f electrons remain dominantly 'localized' but also participate in SC

anisotropy reflected in H_{c2} ; 4-fold in-plane modulation with minima along $[100] \Rightarrow d_{xy}$ line nodes along c-axis; no evidence for exotic nodal structure, eg. due to magnetic order

emergence of magnetic order above P1

◆ at 2.1 GPa, where only superconductivity in H=0, magnetism 'hidden' by superconductivity emerges in the superconducting state when H ≥ 55 kOe; T_N weakly increasing with H, as at P<P1 and $S(T_N) \propto H \propto$ areal density of vortices; similar results at P=1.8 and 1.9 GPa ◆ no evidence for field-induced magnetism at 2.3 GPa; once superconductivity suppressed, C/T diverges as T→0 T. Park et al

T-P-H phase diagram of CeRhIn₅

♦ H=0 plane, as before; representative
H-P plane at T=0.5K

 line of field-induced, second-order magnetic transitions connecting P1 and P2 inside the SC state; line separates a phase of coexisting magnetic order (MO) and superconductivity (SC) from a purely unconventional superconducting state

T. Park et al., Nature **440**, 65 (2006)

 ♦ if similar at T=0, have a line of field-induced magnetic quantum criticality

♦ anticipated theoretically by Demler et al. (E.
 Demler et al., PRL 87, 067202 (2001)) in the context of cuprates, where hole doping, instead of pressure, is the tuning parameter

relationship to deHaas-vanAlphen results

• divergence of cyclotron mass m* near 2.35 GPa \approx P2, where C/T \propto m* also diverges

H. Shishido et al., JPSJ 74, 1103 (2005)

♦ main dHvA frequencies (Fermi surface volume) essentially unchanged for P < 2.3 GPa \Rightarrow f-electron remains localized; but also new branches in interval ~ P1 < P < ~ P2

above 2.4 GPa, qualitative change in dHvA spectrum; frequencies of α_i branches for P > P2 essentially identical to those of CeCoIn₅ at P=0 in which 4f electrons contribute to FS ⇒ f-'localized' to f-'delocalized' (small-to-large Fermi volume) transition in a narrow P interval
 not a conventional quantum phase transition; what happens at P1?

connecting P1 and P2

T. Park et al., PNAS 105, 6825 (2008)

 \blacklozenge from slope of $\rm B_{c2}$ (T) near T_c, (1/B_{c2}')^{1/2} \propto v_F \propto 1/m^*

• m* (~ γ_N) increasingly heavy as P approaches P1 but jumps by ~ 2x upon crossing P1, not seen in high field dHvA

 diverging high field m* at P2 from dHvA and jump in zero-field m* at P1; consistent with T-P-H phase diagram – line of field-induced quantum criticality accompanied by Fermisurface reconstruction

aside: relation to CeCoIn₅

inferences from Cd–doped CeCoIn₅

• abrupt halt to AFM order parameter development at $T_c \Rightarrow$ coupling of SC and AFM; what happens to magnetic degrees of freedom? some evidence, though not straightforward to separate from effects of disorder, that $\gamma(0)$ increases in the coexistence phase where $1/T_1 \propto T$ also appears at T<< T_c • if similar in CeRhIn₅'s coexistence regime, possible source of finite $\gamma(0)$ and T-linear $1/T_1$

♦ magnetism explicitly present for H=0 with small (~1%) Cd substitution for In; region of microscopic coexistence (NMR: R. R. Urbano et al., Phys. Rev. Lett. 99, 146402 (2007)) of large-moment AFM (neutrons: M. Nicklas et al., PRB 76, 052401(2007)) and SC; same conclusion from neutron diffraction on x=0.75%

no theory but a framework for non-phononic 'glue'

• consider a quasiparticle with spin s coupled to an effective field proportional to some spin density or magnetization $\mathbf{m}(\mathbf{r},t)$; then the interaction of the quasiparticle with the field is $-s \cdot [gm(\mathbf{r},t)]$

• in linear response $\mathbf{m}(\mathbf{r},t)=\mathbf{g}\mathbf{s}^{\prime}\chi(\mathbf{r},t)$, so the induced interaction V= -s•s'g² $\chi(\mathbf{r},t)$

• near an antiferromagnetic instability, $\chi(\mathbf{r},t)$ a maximum at r=0 but also oscillates in space with a period comparable to lattice spacing; for opposite spins, i.e. net S=0 (spin singlet), V repulsive at origin but attractive at $\mathbf{r} > 0$, and by Pauli, must have even L, eg. L=2 \Rightarrow <u>d-wave</u>

P. Monthoux et al., Natur	e 450 , 1177	(2007)	and references therein

		(a)					
	AFM, $z=2$ d=3	$\begin{array}{c} \text{AFM, } z = 2 \\ d = 2 \end{array}$	FM, $z = 3$	=3 3	FM, $z=3$ d=2		
C/T	$\gamma - a \sqrt{T}$	$c \log(T_0/T)$	$c \log(T_i)$	$_0/T$)	$T^{-1/3}$	U	Hertz/Mil
$\Delta \chi$	T ^{3/2} T ^{3/2}	$\chi_0 - dT$ T	т			ſ	
$T_{N'C}$	$(\delta_c - \delta)^{2/3}$	$(\delta_c - \delta)$	$(\delta_c - \delta$) ^{3/4}	$(\delta_c - \delta)$	•	
T_{I}	$(\delta - \delta_c)$	$(\delta - \delta_c)$	$(\delta - \delta_c)$	$)^{3/2}$	$(\delta - \delta_c)^{3/2}$		
T_{Π}	$(\delta - \delta_c)^{2/3}$	$(\delta - \delta_c)$	$(\delta - \delta_c$)	$(\delta - \delta_c)$		
	Ferro	(b) Ferro	AFM		AFM		
	3-dim	2-dim	3-dim	, i	2-dim.	l l	
C_m/T	$-\log T$	$T^{-1/3}$	$\gamma_0 - a T$	1/2	$-\log T$	5	Moriya
χQ	$T^{-4/3}$	$-T^{-1}/\log T$	$T^{-3/2}$ $T^{3/2}$		$-(\log T)/T$		
$\Delta \rho$	1	1 ····	1		Ι		
	Ferro,	Ferr	ο.		Antiferr,		
	3-d (d=z=3)	b) $2 - d (d = 2)$;z=3)	3- <i>d</i>	(d=3;z=2)	l	T • 1
C/T	$-\log T$	$T^{-1/3}$		$\gamma +$	\sqrt{T}	5	Lonzarich
$\Delta \chi$	$T^{-4/3}$ $T^{5/3}$	T^{-1} $T^{4/3}$		T^{-3} $T^{3/2}$	W2		
ρ	1	1		1		1	

Hertz/Millis

• as $T_N \rightarrow 0$, magnetic excitations become quantum critical \Rightarrow magnetic susceptibility singular at **Q**, possibly favorable for enhancing the induced attractive interaction, and leads to power-law forms of physical properties but no jump in Fermi volume

CeRhIn₅ summary

unconventional SC coexisting with AFM

♦ FS reconstruction at P1 and P2, with apparent jump in FS volume at P2 • sublinear resistivity and strong isotropic scattering emerging from P2 where T_c is a maximum, unexpected within conventional models of SDWtype of criticality

issues

- (1) in coexistence phase below P1, f-electron basically localized (dHvA, M₀, H-T-P diagram, very low impurity T_K), yet ΔC at $T_c \Rightarrow$ bulk SC from heavy electrons how does the f-electron 'partition' itself between these two roles? k-dependent, eg orbitally selective, hybridization? Is the development of the ordered moment arrested at T_c , as in Cd-doped CeCoIn₅, and what is the role of the non-ordered magnetic component? transfer of spectral weight?
- (2) Fermi surface topology change at P1, where AFM disappears, and at P2, where m* diverges in high fields with apparent increase in Fermi volume \Rightarrow not obviously anticipated in conventional models of magnetic quantum criticality *is Fermi surface reconstruction a signature of quantum criticality?* Perhaps, but counterexample in CeRh_{1-x}Co_xIn₅ (S. K. Goh et al., arXiv: 0803.4424) where reconstruction coincides with onset of SC and not T_N \rightarrow 0; *if a form of criticality, what is its nature?*
- (3) line of field-induced magnetic transitions at T→0, with P1 apparent zero-field limit and P2 the high field limit what is the nature of the induced magnetism? A continuation of the ambient pressure local moment type or an instability of the Fermi surface? Don't know! Analogies to CeCoIn₅ maybe SDW-like or to Cd-doped CeCoIn₅—maybe local moment type, but nFL behavior dominated by P2
- (4) Origin of the nFL state? Resistivity exponent not within any framework of 3D criticality, though sublinear exponent above ~ 0.1K (~T-linear below) also found in purest YbRh₂Si₂ (P. Gegenwart et al. Nature Phys. 4, 186 (2008)) that is believed to be locally critical; maybe just not low enough T in CeRhIn₅ to find T-linear?

issues (cont.)

- (4) (cont.) large decrease in resistivity anisotropy in nFL regime, comparable to that near room temp. ⇒ involvement of entire Fermi surface; together with FS surface change at P2 ⇒ some form of unconventional criticality that involves fermionic and well as bosonic degrees of freedom, possibly of the local or Kondo-breakdown/selective Mott type? (T. Senthil et al; P. Coleman et al., J. Phys. Condens. Mat. 13, R723 (2001); Q. Si et al., Nature 413, 804 (2001); C. Pepin, PRL 94, 066402 (2005); I. Paul et al., PRL 98, 026402 (2007); C. Pepin, PRL 98, 206401 (2007)); need theoretical predictions for comparison to experiment
- (5) striking increase in scattering centered on P2 where T_c is a maximum \Rightarrow *fluctuations of the critical state a source of pairing glue?* If unconventional criticality \Rightarrow fluctuations in charge and spin channels, but which channels or channel dominate(s) the pairing interaction is an open question