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Lecture 1



Constructive vs nonconstructive

Nonconstructive proof: an existence proof-by-contraction of this schematic
form:

Suppose that the desired object x does not exist.

Derive a contradiction.

Claim that x must exist after all.

This proves that it is impossible for x not to exist; but it does not tell us how
to �nd/compute/construct x:

�[Nonconstructive existence proofs] inform the world that a treasure
exists without disclosing its location.� Hermann Weyl



Constructive proof of the existence of an object x: a proof that embodies an
algorithm for the construction/computation of the desired object x.

Note: Not all proofs-by-contradiction are nonconstructive. it is perfectly con-
structive to prove P false by assuming that P is true and deriving a contra-
diction. This process just captures the constructive meaning of negation.



A nonconstructive proof:

There exists a digit that appears in�nitely often in the decimal expansion of
the number �:

Note �rst that the decimal expansion of � is nonterminating and
nonrecurring, since � is irrational.

Suppose that each of the digits 0; 1; 2; : : : ; 9 occurs only �nitely many
times in the decimal expansion of �:

Then there exists a positive integer N such that each of 0; 1; 2; : : : ; 9
appears at most N times in the decimal expansion of �:

So that decimal expansion cannot have more than 10N places, which
contradicts the �Note �rst ...� above.



Although the decimal expansion of � has been computed to billions of places,
the foregoing proof does not tell us (and nobody knows) which of the dig-
its 0; 1; 2; : : : ; 9 appears in�nitely often in the nonterminating, nonrecurring
expansion.

All we know is that it is impossible that each of the ten digits appears only a
�nite number of times.



For another nonconstructive proof, consider the statement:

There exist irrational numbers a; b such that ab is rational.

Either
p
2

p
2
is rational or it is irrational.

In the �rst case, take a = b =
p
2:

In the second case, take a =
�p

2

p
2
�
and b =

p
2:



Why is this proof nonconstructive?

1) It does not tell us which of the two alternatives for
p
2

p
2
(rational or

irrational) actually holds.

2) It therefore does not tell us which of the two choices for a and b actually
produces irrational numbers with the desired property.

A constructive proof would produce, unambiguously, two irrational numbers a
and b and show us that ab is rational.

Explicit example of irrational numbers a; b such that ab is rational:

a =
p
2; b = log2 9; ab = 3:



In fact,
p
2

p
2
is transcendental, by the (classical) Gelfand-Schneider theorem:

ab is transcendental if (i) a is algebraic, (ii) a 6= 0; 1 and (iii) b is
both algebraic and irrational.



If we want to prove something constructively, then we must not use the law of
excluded middle,

LEM: For any proposition P , either P is true or else P is false.

Allowing the use of LEM is tantamount to allowing nonconstructive existence
proofs.



Historical note: Existence proofs-by-contradiction go back at least as far as
Gauss (Fundamental Theorem of Algebra, 1799).

They became dominant after Hilbert�s proof of his �basis theorem�(1888).

�Das ist nicht Mathematik. Das ist Theologie.� Paul Gordan



The constructive vs nonconstructive controversy goes back at least to Kro-
necker�s attacks on Cantor�s set theory (1877�).

It was strengthened by Brouwer�s campaign, from 1907 onwards, to convert all
mathematicians to the exclusive use of constructive methods, and culminated
in the Grundlagenstreit between Brouwer and Hilbert in the 1920s.

�Taking the principle of excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his �sts.� David Hilbert (1928)



What is constructive mathematics?

Two ways to approach computability in mathematics:

1. Use classical logic:

� allows �decisions� that cannot be made by any real computer

� requires clearly speci�ed types of algorithm

2. Use intuitionistic logic:

� automatically takes care of the problem of noncomputational �deci-
sions�

� enables us to work, with any mathematical objects, in the familiar style
of the analyst, algebraist, geometer, ...



Bishop-style constructive mathematics (BISH) is just

mathematics with intuitionistic logic

and some appropriate set-theoretic foundation such as the CST of Myhill,
Aczel, and Rathjen.



Using intuitionistic logic, we can

� clarify distinctions of meaning obscured by classical logic, and

� allow results to have a wider range of interpretations (including recursive
ones) than their counterparts proved with classical logic.

�Intuitionistic logic is richer than classical logic, since the former
makes distinctions that the latter fails to make.�

J.L. Bell & M. Machover



We

� do not restrict to a class of �constructive/computable objects�;

� use intuitionistic logic to deal with the normal objects of mathematics.



Ishihara�s classi�cation:

B a constructive theory of real numbers: the usual R studied with intuition-
istic logic.

B a theory of constructive real numbers: the recursive reals studied with
classical logic.

B a constructive theory of constructive real numbers: the recursive reals
studied with intuitionistic logic.



The BHK interpretation

Modern intuitionistic logic is based on the BHK-interpretation� of the connec-
tives

_ (or); ^ (and); ! (implies); : (not)

and quanti�ers

9 (there exists), 8 (for all/each).

Note that it is provability, rather than an a priori notion of truth, that is
fundamental to the constructive approach.

�Brouwer-Heyting-Kolmogorov



I P _Q : either we have a proof of P or else we have a proof of Q:

I P ^Q : we have both a proof of P and a proof of Q:

I P ! Q : by means of an algorithm we can convert any proof of P into
a proof of Q:

I :P : assuming P; we can derive a contradiction (such as 0 = 1); equiv-
alently, we can prove (P ! (0 = 1)) :



I 9xP (x) : we have (i) an algorithm which computes a certain object x; and
(ii) an algorithm which, using the information supplied by the application
of algorithm (i), demonstrates that P (x) holds.

I 8x2AP (x) : we have an algorithm which, applied to an object x and a
proof that x 2 A; demonstrates that P (x) holds.

Note that in the interpretation of the statement 8x2AP (x); the proof of P (x)
will normally use both the data describing the object x and the information
supplied by a proof that x belongs to the set A:



Consider the statement:

LPO For each binary sequence a � (an)n>1 either an = 0 for all n; or
else there exists N such that aN = 1:

This is trivially true under classical logic.

What is its BHK interpretation?

We have an algorithm which, applied to any binary sequence a, either
produces a proof that an = 0 for each n; or else computes N such
that aN = 1:

Claim: Such an algorithm is unlikely to be found.



The Goldbach conjecture (GC, 1742):

Every even integer > 2 is a sum of two primes.

Status still unknown.

De�ne a binary sequence a as follows.

If 2n+ 2 is a sum of two primes, set an = 0:

If there exists k 6 n such that 2k+2 is not a sum of two primes, set an = 1:



Suppose we have an algorithm as in the BHK interpretation of LPO. Applied
to this binary sequence, this algorithm

either proves that an = 0 for all n (i.e., proves GC)

or else computes N such that aN = 1 (i.e., gives a counterexample to GC).



The use of GC here is purely illustrative: we could have used any of a multitude
of unsolved problems of a certain type (Riemann hypothesis, ...).

Conclusion: the existence of an algorithm as in the BHK interpretation of LPO
is highly doubtful.

Moreover, LPO is provably false in certain models of constructive mathematics
(but it is not provably false in Bishop-style constructive mathematics).

We therefore stay clear of LPO as a working constructive principle.



Consequence: we also must avoid using any proposition that constructively
implies LPO.

In particular, we must avoid using the full law of excluded middle.

This has a serious impact on even elementary analysis.

Consider the classically trivial proposition:

8x2R (x = 0 _ x 6= 0) ;

where

x 6= 0, 9n2N
�
jxj > 2�n

�
:



Suppose we have a constructive proof� that is, an algorithm which, applied to
any real number x either proves that x = 0 or else computes a positive integer
N such that jxj > 2�N :

Given a binary sequence a; apply this algorithm to the real number

x =
1X
n=1

2�nan = 0 � a1a2a3 : : : (in�nite binary expansion).

The algorithm either proves that x = 0; and therefore an = 0 for all n; or
else computes N such that jxj > 2�N :

In the second case, an = 0 for all n > N ; so, by testing a1; a2; : : : ; aN (a
�nite test), we can check whether an = 0 for all n or there exists n 6 N with
an = 1:



Thus the proposition

8x2R (x = 0 _ x 6= 0)

implies LPO and is therefore essentially nonconstructive!



Here is another essentially nonconstructive principle that is trivially true under
classical logic.

LLPO For each binary sequence a with at most one term equal to 1; either
an = 0 for all even n; or else an = 0 for all odd n:

BHK-interpretation:

We have an algorithm which, applied to any binary sequence a and
the data that an = 1 for at most one n; either proves that all even-
indexed terms of the sequence are 0; or else proves that all odd-
indexed terms are 0:



Again, it is extremely unlikely that such an algorithm could be produced.

Moreover, LLPO, like LPO, is provably false in certain models of constructive
mathematics (but it is not provably false in BISH).

We therefore avoid using LLPO as a working constructive principle.

Note that LLPO is a consequence of LPO; but LPO cannot be derived from
LLPO.



Consider the classically trivial proposition: For each real number x; either x > 0
or x 6 0:

Suppose we have a constructive proof: that is, an algorithm which, applied to
any given real number x; either decides that x > 0 or else decides that x 6 0:

Given a binary sequence a with at most one term equal to 1; apply this algo-
rithm

x =
1X
n=1

(�1)n+1 2�nan

=
a1
2
� a2
4
+
a3
8
� a4
16
+ � � � :

If x > 0; then an = 0 for all even n; if x 6 0; then an = 0 for all odd n:



Conclusion: The statement

8x2R (x > 0 _ x 6 0)
implies LLPO and is therefore essentially nonconstructive.



The following elementary classical statements also turn out to be nonconstruc-
tive.

B Each real number x is either rational or irrational (that is, x 6= r for each
rational number r). To see this, consider

x =
1X
n=1

1� an
n!

;

where a is any increasing binary sequence. This is equivalent to LPO.

B Each real number x has a binary expansion. Note that the standard
interval-halving argument for �constructing� binary expansions does not
work, since we cannot necessarily decide, for a given number x between
0 and 1; whether x > 1=2 or x 6 1=2: In fact, the existence of binary
expansions is equivalent to LLPO.



B The intermediate value theorem, which is equivalent to LLPO.

B For all x; y 2 R; if xy = 0; then either x = 0 or y = 0. This is
equivalent to LLPO. The constructive failure of this proposition clearly
has implications for the theory of integral domains.



Note: classically valid statements like �each real number is either rational or
irrational�that imply omniscience principles are not false in constructive math-
ematics. They cannot be, since BISH is consistent with classical mathematics
(CLASS):

Every theorem in BISH is also a theorem of CLASS.

In fact, we can regard CLASS as BISH + LEM.



Another way of looking at CLASS: it is a model of BISH.

Brouwer�s intuitionistic mathematics (INT) and the recursive constructive
mathematics (RUSS) of the Markov School both use intuitionistic logic, and
both are models of BISH:

Every theorem in BISH is also a theorem of INT and of RUSS.

Brauer has shown that BISH can be interpreted within Weihrauch�s Type 2
E¤ectivity framework for computable analysis.



We use these models of BISH to obtain independence results.

Since

INT/CLASS ` Every continuous function f : [0; 1]! R is uniformly
continuous

and

RUSS ` There exists a continuous, real-valued function on [0; 1] that
is not uniformly continuos,

we see that each of the propositions following �`� is neither provable nor
disprovable in BISH. In other words, each of them is independent of BISH.



In place of the essentially nonconstructive propositions

8x2R (x = 0 _ x 6= 0) ;
8x2R (x > 0 _ x 6 0) ;

we have these constructively valid propositions:

1) If a < b; then for each real number x; either a < x or x < b:

2) If (x > 0) is impossible, then x 6 0:



Note, though, that the statement

If (x > 0) is impossible, then x < 0

implies (actually, is equivalent to) another constructively dubious principle,
Markov�s principle:

MP: If a is a binary sequence and it is impossible that an = 0 for
all n; then there exists N such that aN = 1:



The real line

Starting with the set N of natural numbers, we can build the sets Z (of integers)
and Q (of rationals) by elementary algebraic means.

By a real number we mean a subset x of Q�Q such that

B for all
�
q; q0

�
in x, q 6 q0;

B for all
�
q; q0

�
and

�
r; r0

�
in x, the closed intervals

�
q; q0

�
and

�
r; r0

�
in Q

intersect in points of Q;

B for each positive rational " there exists
�
q; q0

�
in x such that q0 � q < ":



The last of these properties ensures that the set x is inhabited� that is, we
can construct elements of x).

Any rational number q gives rise to a canonical real number

q = f(q; q)g

with which the original rational q is identi�ed.



Two real numbers x and y are

� equal, written x = y; if for all
�
q; q0

�
2 x and all

�
r; r0

�
2 y; the intervals�

q; q0
�
and

�
r; r0

�
in Q have a rational point in common;

� unequal (or distinct), written x 6= y; if there exist
�
q; q0

�
2 x and

�
r; r0

�
2

y such that the intervals
�
q; q0

�
and

�
r; r0

�
in Q are disjoint.

Taken with the equality and inequality we have de�ned above, the collection
of real numbers forms a set: the real line R:



Let x;y be real numbers. We say that

B x > y; and that y < x; if there exist
�
q; q0

�
2 x and

�
r; r0

�
2 y such

that r0 < q;

B x > y; and that y 6 x; if for all �q; q0� 2 x and all �r; r0� 2 y we have
q0 > r.

We pass over the (complicated) de�nitions of the algebraic operations on real
numbers.



The set R is uncountable: if (an)n>1 is a sequence of real numbers, then
there exists x 2 [0; 1] such that x 6= an for each n:

The set R is complete: every Cauchy sequence of real numbers converges to
a limit in R. (The proof requires the principle of dependent choice.)

What about the order-completeness of R?



Let S be a subset of R.

An upper bound of/for S is a real number b such that x 6 b for each x 2 S.
We say that b is the supremum, supS, of S if (i) it is an upper bound for S
and (ii) for each x < b there exists s 2 S such that x < s.

We say that S is upper order located if for all rational numbers a; b with a < b,
either x 6 b for all x 2 S or else there exists x 2 S such that x > a:

The constructive least-upper-bound principle:

Let S be an inhabited set of real numbers that is bounded above.
Then supS exists if and only if S is upper order located.

Analogous de�nitions and results hold for the in�mum, inf S, of S:



The upper order locatedness cannot be dropped from the hypotheses of the
constructive least-upper-bound principle.

Consider any statement P . The set

S � f0g [ fx 2 R : x = 1 ^ (P _ :P )g

is inhabited by 0 and bounded above by 1. Suppose that � � supS exists.
Then � 6 1. If � < 1, then : (P _ :P ), which is absurd. Hence � = 1 and
there exists s 2 S with s > 1=2. It follows that

s 2 fx 2 R : x = 1 ^ (P _ :P )g ;

so P _ :P .

From now on, we drop boldface notation for real numbers.



Lecture 2



Metric spaces

The elementary constructive notions associated with a metric space (X; �) are
more or less as in classical mathematics.

Note that when there are alternative classical de�nitions, these may not be
equivalent constructively. In that case, we choose the most computationally
informative notion.

For example, we do not de�ne closed sets as complements of open sets: a
closed set S is de�ned to be one that equals it closure S; in other words, S is
closed in X if and only if all limits of sequences in S belong to S.

We denote the open and closed balls in X with centre a and radius r > 0 by
B(a; r) and B(a; r) respectively.



As in the classical theory, both X and ? are open, unions of open sets are
open, and �nite intersections of open sets are open; in other words, the open
sets form a topology on X.

Likewise, both X and ? are closed, and arbitrary intersections of closed sets
are closed.

We cannot prove that the union of two closed sets is closed: in the metric
space R, the intervals [�1; 0] and [0; 1] are closed and their union is dense in
[�1; 1]; but if that union is closed, then

8x2R (x 6 0 _ x > 0) ;
a proposition equivalent to LLPO.



Decent sets come equipped with an inequality as well as an equality. The
inequality on a metric space is de�ned by

x 6= y , �(x; y) > 0:

Note that

: (x 6= y)) (x = y)

but without Markov�s principle we cannot prove that

:(x = y)) x 6= y.



The complement of a set S in X is the set

�S � fx 2 X : 8s2S (x 6= s)g :

In the absence of Markov�s principle, this is not the same as the logical com-
plement

:S � fx 2 X : x =2 Sg

of S.

Proposition: If S is an open subset of X, then �S is closed in X, and
�S = :S.

The complement of a closed set need not be open.



Given " > 0; by an "-approximation to a subset S of a metric space X we
mean an inhabited subset T of S such that for each s 2 S there exists t 2 T
with � (s; t) < ":

If for each " > 0 there exists a �nitely enumerable "-approximation to S; then
we say that S is totally bounded.

The closure of a totally bounded subset of X is totally bounded.

If a subset S of X contains a dense totally bounded set, then S itself is totally
bounded.

The product of �nitely many totally bounded spaces is totally bounded.



Total boundedness is very important in constructive analysis because

� it helps us to compute suprema and in�ma in many important situations,
and

� coupled with completeness, total boundedness gives the only one of three
classically equivalent notions of compactness that can be used BISH.



Proposition: If S � R is totally bounded, then supS and inf S exist.

Recall that a mapping f : X ! Y between metric spaces is uniformly contin-
uous if for each " > 0 there exists � > 0 such that

8x;x02X
�
�(x; x0) < � ) �

�
f(x); f(x0)

�
< "

�
.

Proposition: If X is totally bounded, and f : X ! Y is a uniformly contin-
uous mapping of X into a metric space Y , then f(X) is totally bounded.



Another extremely important, though classically vacuous, property: located-
ness.

An inhabited subset S of a metric space X is located in X if for each x 2 X
the distance

� (x; S) � inf f�(x; s) : s 2 Sg

exists.

Proposition: A totally bounded subset of a metric space is located. A located
subset of a totally bounded metric space is totally bounded.



The proposition

Every inhabited subset of R is located

implies LEM. How?

Let P be any proposition, and

S � f0g [ fx 2 R : (x = 1) ^ Pg :

If S is located, then either �(1; S) > 0 or �(1; S) < 1.

In the �rst case we have :P . In the second, choosing s 2 S such that
�(1; s) < 1; we see that s =2 f0g ; so s = 1 and P holds.



Let X be a totally bounded metric space. The next results provide us with a
rich supply of totally bounded, and hence located, subsets of X.

Lemma: For each x0 2 X and each r > 0, there exists a closed, totally
bounded subset K of X such that

B(x0; r) � K � B(x0; 8r):

Proposition: For each " > 0 there exist totally bounded subsets K1; : : : ;Kn
each of diameter 6 ", such that X =

nS
i=1

Ki.



A property P; applicable to certain elements of a set S; is said to hold for all
but countably many x in S if there exists a sequence (xn)n>1 in S such that
P (x) holds whenever x 2 S and x 6= xn for each n: The sequence (xn)n>1
is then called the excluded sequence, and the elements x such that x 6= xn

for each n are said to be admissible, for the property P:

Theorem: If f : X ! R is a uniformly continuous mapping, then for all but
countably many r 2 R the set

f�1(�1; r] � fx 2 X : f(x) 6 rg
is either totally bounded or empty.



A complete, totally bounded metric space X is said to be compact.

The bounded closed intervals [a; b] in R; and the closed balls in C; are compact.

The product of �nitely many compact spaces is compact.

A compact subset of a metric space is both closed and located.

A closed, located subset of a compact space is compact.



An inhabited metric space X is said to be

I locally totally bounded if each bounded subset of X is contained in a
totally bounded subset;

I locally compact if it is both locally totally bounded and complete.

Every compact space is locally compact.

The spaces R and C; and the product spaces Rn and Cn, are locally compact.

A metric space X is locally compact if and only if every bounded subset of X
is contained in a compact set.



Proposition: Let Y be an inhabited subset of a metric space X.

(i) If Y is locally totally bounded, then it is located.

(ii) If X is locally totally bounded and Y is located, then Y is locally totally
bounded.



Normed linear spaces

Let X be a linear space over the �eld K (either R or C). An inequality
relation 6= on X is said to be compatible with the linear structure on X if, for
all x; y 2 X and t 2 K,

x 6= y , x� y 6= 0;
x+ y 6= 0 ) x 6= 0 _ y 6= 0;
tx 6= 0 ) t 6= 0 ^ x 6= 0:

Then

x 6= y ) 8z2X (x+ z 6= y + z) :

From now on, �linear space�means �linear space with a compatible inequality�.



A seminorm on a linear spaceX is mapping x kxkofX into the nonnegative
real line R0+ such that for all x; y in X and all t in K;

� kxk > 0) x 6= 0;

� ktxk = jtj kxk ; and

� kx+ yk 6 kxk+ kyk :

Then (X; k k)� or just X itself� is a seminormed (linear) space over K. If
the inequality satis�es

x 6= 0, kxk > 0;

then k k is called a norm on X:



Let X be a normed space. Then the mapping (x; y)  kx� yk of X �X
into R is provides the associated metric � on X.

The unit ball of X is the closed ball with centre 0 and radius 1;

BX = BX(0; 1) = B(0; 1) = fx 2 X : kxk 6 1g ;
relative to that metric. This ball, like any open or closed ball in a normed
space, is located.

We pass over most of the standard examples, notions, and elementary proper-
ties familiar from the classical theory of normed spaces.



A mapping u between vector spaces X;Y is linear if

u(x+ y) = u(x) + u(y) and u(tx) = tu(x)

whenever x; y 2 X and t 2 K.

If X = Y; then u is called an operator on X:

If Y = K, then u is called a linear functional on X:



A linear mapping u : X ! Y between normed spaces is continuous on X
if and only if it is bounded, in the sense that there exists c > 0 such that
ku(x)k 6 c kxk for each x 2 X.

This is not enough to ensure that u is normed/normable, in the sense that

kuk � sup fku(x)k : x 2 X; kxk 6 1g
exists.

There is a criterion for normability of nonzero bounded linear functionals.



Proposition: A nonzero linear functional u on a normed space X is normed
if and only if

ker u � fx 2 X : u(x) = 0g

is located in X:

Basic idea of the proof: for each x 2 X,

�(x; ker u) =
ju(x)j
kuk

;

provided either �(x; ker u) or kuk exists.



Finite-dimensional spaces

Let X be a linear space.

Vectors e1; : : : ; en in X are linearly independent if
nP
i=1

�iei 6= 0 for all scalars

�1; : : : ; �n such that
nP
i=1

j�ij > 0.

We say thatX is �nite-dimensional if eitherX = f0g or else it contains �nitely
many linearly independent vectors e1; : : : ; en such that for each x 2 X there
exist scalars �1; : : : ; �n for which x =

Pn
i=1 �iei:

In the �rst case, X is 0-dimensional :

In the second, X is n-dimensional and fe1; : : : ; eng is a basis of X. The
coordinates ui(x) � �i are uniquely determined by x, and the coordinate
functionals ui : X �! K are linear mappings.



Inducting on the dimension, we can prove, in turn, that

(i) the coordinate functionals on a �nite-dimensional normed space are bounded,
and

(ii) every linear mapping of a �nite-dimensional normed space into a normed
space is bounded and normed.



Proposition: A �nite-dimensional normed space is complete and locally totally
bounded (hence locally compact).

Proposition: A normed space is �nite-dimensional if and only if its closed unit
ball is compact.



A subspace Y of a metric space X is called proximinal if each element of X
has a best approximation in Y : that is, if for each a 2 X there exists b 2 Y
such that �(x; b) > �(x; y) for all y 2 Y . In that case, Y is located in X:

Classical fundamental theorem of approximation theory: a �nite-dimensional
subspace V of a real normed space X is proximinal.

This result implies LLPO.

For a constructive version of the theorem, we introduce a new notion: quasi-
proximinality.



We say that a has at most one best approximation in Y if for all distinct points
y; y0 in Y; there exists z 2 Y such that

max
n
�(a; y); �(a; y0)

o
> �(a; z):

We call Y quasiproximinal if each point of X with at most one best approxi-
mation in Y actually has a (perforce unique) best approximation in Y .

Proximinal implies quasiproximinal.

The converse cannot be proved in BISH but can be proved using LEM:

Suppose that a 2 X has no best approximation in a quasiproximinal
subspace Y of X. Then (classically!) a has at most one best approx-
imation in Y ; so, by quasiproximinality, a has a best approximation
in Y , which is a contradiction.



The next lemma is crucial for the proof of our approximation theorem, and
uses the extremely important �-technique (of which more later).

Lemma: Let x; e be elements of a real normed space X with e 6= 0, and let
d > 0. Suppose that

max
n
kx� tek ;

x� t0eo > d
whenever t; t0 are distinct real numbers. Then there exists � 2 R such that if
kx� �ek > d, then � (x;Re) > 0.

Constructive fundamental theorem of approximation theory: Every �nite-
dimensional subspace of a real normed space is quasiproximinal.

Proved by induction on the dimension n of the subspace. The case n = 0 is
trivial; the case n = 1 follows easily from the lemma. The lemma is also used
in the induction step.



Hilbert spaces

We assume familiarity with the elementary properties of an inner product and
the corresponding norm, an inner product space, and a Hilbert space (a com-
plete inner product space).

The classical proof of the proximinality of closed, located subspaces of a Hilbert
space is constructively sound.

Proposition: Let S be a closed, located subspace of a Hilbert space H:
Then for each x 2 H, there exists a unique element Px of S such that
kx� Pxk = �(x; S). Moreover, Px is the unique element y of S such that
hx� y; si = 0 for all s 2 S.

The mapping P is bounded and linear, and is called the projection of H on
the subspace S.



Two subsets S; T of an inner product space are said to be orthogonal if
hx; yi = 0 for all x 2 S and y 2 T ; we then write S ? T .

The orthogonal complement of a subset S of X is

S? = fx 2 X : x ? Sg ;

a closed linear subspace of X.

If S is a closed, located subspace of a Hilbert space H; with P the correspond-
ing projection, then I�P is the projection of H on S?, where I is the identity
operator x x on H.



A family (ei)i2I of vectors in a Hilbert space H is said to be orthonormal if

B ei ? ej whenever i 6= j; and

B for each i; either keik = 1 or ei = 0:

Such a family is an orthonormal basis if each vector x 2 H can be written
uniquely in the form

x =
X
i2I

�iei

where for each i 2 I, �i 2 K and if ei = 0, then �i = 0.



Classically, using (an equivalent of) the axiom of choice, we can prove that
every Hilbert space has an orthonormal basis of unit vectors.

Constructively we avoid the axiom of choice by adding separability to the hy-
potheses on H; by relaxing the requirements to allow basis vectors to be 0;
and by using the Gram�Schmidt orthogonalisation process to prove that every
separable Hilbert space has a countable orthonormal basis.



We say that a normed space X is in�nite-dimensional if the complement of
each �nite-dimensional subspace of X is inhabited.

Proposition: Let (en)n>1 be an orthonormal basis of a separable Hilbert
space H. Then

(i) H is �nite-dimensional if and only if en = 0 for all su¢ ciently large n:

(ii) H is in�nite-dimensional if and only if en 6= 0 for in�nitely many n:



The Riesz representation theorem for linear functionals on a Hilbert space uses
the classically redundant condition of normability:

Theorem: A bounded linear functional u on a Hilbert space is normed if and
only if there exists a unique vector a 2 H such that u(x) = hx; ai for each
x 2 H.

Proving �only if� is the harder part, in which the classical argument goes
through if kuk > 0. For the general case, we use a little trick.



We consider the direct sum H �K, a Hilbert space with the inner productD
(x; �) ;

�
x0; �0

�E
�
D
x; x0

E
+ ��0;

on which we de�ne a nonzero bounded linear functional v by

v(x; �) = u(x) + �:

A little work shows that v is normed. By the �rst part of the proof, there exists
a 2 X such that

v(x; �) = h(x; �) ; (a; 1)i

for each (x; �) 2 H �K. Then u(x) = hx; ai for each x 2 H.



An operator on a Hilbert space H is a linear mapping of H into itself.

The set of bounded operators on H is denoted by B(H):

For any not-necessarily-bounded operator T on H; we de�ne the adjoint T �,
if it exists, by the equation

hTx; yi = hx; T �yi (x; y 2 H) ; (1)

in which case we refer to T as jointed.



Classically, the Riesz representation theorem enables us to prove the existence
of T � for any element T of B(H).s

Constructively, the universal existence of adjoints implies LPO.

Can we characterise those operators for which the adjoint exists? Yes, by the
following result of Ishihara and Richman.

Proposition. A bounded operator on a Hilbert space H is jointed if and only
if it maps the unit ball of H to a located set.



If T is jointed, then T � is an operator and T is its adjoint.

Any bound (in particular, the norm if it exists) for T is one for T �; and vice
versa.

Moreover, if S; T are jointed operators, then for each � 2 K; so are �S + T
and ST; and

(�S + T )� = ��S� + T �;

(ST )� = T �S�:



An operator T is selfadjoint, or Hermitian, if T � exists and equals T:

Projections are selfadjoint.

Conversely, if P is any bounded, idempotent, selfadjoint operator on H; then
P is the projection of H on the (located) subspace

fy 2 H : Py = yg :



A linear mapping T between normed spaces X;Y is said to be compact if
T (BX(0; 1)) is a totally bounded subset of Y .

In that case, the norm of T exists, sincen
kTxk : x 2 BX(0; 1)

o
is a totally bounded subset of R.

Every bounded linear mapping on a �nite-dimensional normed space is com-
pact.



We end this part of the lectures with two early results of Ishihara. The proof
of the �rst uses the Riesz representation theorem to cut things down to a
�nite-dimensional subspace of the Hilbert space.

Proposition: Let T be a bounded linear mapping of a Hilbert space H into
Cn; and for 1 6 k 6 n let Pk : Cn ! C be de�ned by

Pi (z1; : : : ; zn) � zk:

Then T is compact if and only if Pk � T is normed for each k.

The second result is easily proved classically by a sequential compactness ar-
gument.

Proposition: The sum of two compact operators on a Hilbert space is com-
pact.
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