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Topology and choice principles

It is well-known that some basic theorems classical topology use
(and require) the full Axiom of Choice:

Tychonov’s Theorem (AC): If (Xi )i∈I is a family of (covering)
compact spaces then the product topology

∏
i∈I

Xi

is compact.

Special case: The Cantor space C = {0, 1}N is compact.
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Constructive topology

To carry out topology on a constructive foundation it is necessary
to come to grips with compactness.

Brouwer’s solution: The compactness of the Cantor space follows
from the nature of choice sequences. This the Fan Theorem.
Moreover, it implies that the interval [0, 1] is compact.

Kleene: The Cantor space is not compact under a recursive
realizability interpretation.

E. Bishop: Restricting to metric spaces, covering compactness
should be replaced by total boundedness (Foundations of
Constructive Analysis, 1967).
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Point-free topology

A quite early idea in topology: study spaces in terms of the
relation between the open sets. (Wallman 1938, Menger 1940,
McKinsey & Tarski 1944, Ehresmann, Benabou, Papert, Isbell,...)

For a topological space X the frame of open sets (O(X ),⊆) is a
complete lattice satisfying an infinite distributive law

U ∧
∨
i∈I

Vi =
∨
i∈I

U ∧ Vi

(or, equivalently, is a complete Heyting algebra). The inverse
mapping of a continuous function f : X �� Y gives rise to a
lattice morphism

f −1 : O(Y ) �� O(X )

which preserves arbitrary suprema
∨

.
4 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Non-constructive aspects of topology
Locales
Formal Topology
Inductively generated formal topologies

Many important properties of topological spaces may be expressed
without referring to the points, but only referring to the relation
between the open sets. For example a topological space X is
compact if for any family of open sets Ui (i ∈ I ) in X we have

if
⋃

i∈I Ui = X , then there are i1, . . . , in ∈ I so that Ui1 ∪ · · · ∪ Uin = X

That is, every open cover of the space has a finitely enumerable
(f.e.) subcover.
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Recall: A lattice is a partially ordered set (A,≤) where every finite
list a1, . . . , an of elements has a supremum

a1 ∨ · · · ∨ an =
∨

i∈{1,...,n}
ai

and an infimum

a1 ∧ · · · ∧ an =
∧

i∈{1,...,n}
ai

For n = 0 these are respectively ⊥ (the smallest element) and T
(the largest element).
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A lattice (A,≤) is a distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(Exercise show that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) follows.)

A lattice A is complete if sup S exists for every subset S ⊆ A.

Proposition: In a complete lattice A the infimum of S ⊆ A, is
given by

∧
S =

∨
{x ∈ A : x is a lower bound of S}.
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Def A frame (or locale) is a complete lattice A which satisfies the
infinite distributive law:

a ∧ (
∨
i∈I

bi ) =
∨
i∈I

a ∧ bi

for any subset {bi : i ∈ I} ⊆ A.

Example

If X is a topological space, then its open sets (O(X ),⊆) ordered
by inclusion form a frame. Here

U ∧ V = U ∩ V
∨
i∈I

Ui =
⋃
i∈I

Ui .

However, ∧
i∈I

Ui = Interior(
⋂
i∈I

Ui ).
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A lattice A is a Heyting-algebra if there is a binary operation
(· ⇒ ·) : A× A �� A so that for all a, b, c ∈ A:

a ∧ b ≤ c =⇒ a ≤ (b ⇒ c).

(Cf. laws for implication.)

Theorem. Let A be a complete lattice. Then A is Heyting-algebra
iff A is a frame.

To prove the if-direction define

(b ⇒ c) =
∨
{a ∈ A : a ∧ b ≤ c}.
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In a Heyting algebra we can define a pseudo-complement

¬a = (a ⇒ ⊥).

We have
a ∧ ¬a = ⊥.

However a ∨ ¬a = T is in general false:

Example

Let R be the real line with the usual topology. Then for an open
subset U ⊆ R we have

¬U =
⋃
{V ∈ O(R) : V ∩ U = ∅}.

In particular, ¬(0, 1) = (−∞, 0) ∪ (1,∞) so

(0, 1) ∨ ¬(0, 1) 
= R = T.
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A frame morphism h : A �� B from between frames is a lattice
morphism that preserves infinite suprema:

(i) h(T) = T,

(ii) h(a ∧ b) = h(a) ∧ h(b),

(iii) h(
∨

i∈I ai ) =
∨

i∈I h(ai ).

The frames and frame morphisms form a category, Frm.

Example

A typical frame morphism is the pre-image operation f −1 : O(Y )
�� O(X ), where f : X �� Y is any continuous function.
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For conceptual reasons one considers the opposite category of the
category of frames:
Def Let A and B be two locales. A locale morphism f : A �� B
is a frame morphism f ∗ : B �� A.
The composition g ◦ f of locale morphisms f : A �� B and g : B

�� C is given by
(g ◦ f )∗ = f ∗ ◦ g∗.

Denote the category of locales and locale morphisms by Loc.

The locale (frame) (O({�}),⊆) that comes from the one point
space {�} is denoted 1. It is the terminal object of Loc. Here
T = {�} and ⊥ = ∅.

12 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Non-constructive aspects of topology
Locales
Formal Topology
Inductively generated formal topologies

Since the points of an ordinary topological space X are in 1-1
correspondence with the maps {�} �� X (necessarily continuous)
we may define what a point of locale is by analogy:
Def. Let A be a locale. A point of A is any locale morphism p : 1

�� A.
Note that such point is a frame morphism p∗ : A �� 1, which is
completely determined by the elements

Fp = {a ∈ A : p∗(a) = T}

sent to T. Thus we may identify points with completely prime
filters F on A, i.e. F ⊆ A containing T such that

� a ∈ F , a ≤ b =⇒ b ∈ F ,

� a, b ∈ F =⇒ a ∧ b ∈ F ,

�
∨

i∈I ai ∈ F =⇒ (∃i ∈ I ) ai ∈ F .
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Fundamental adjunction

Theorem The functor Ω : Top �� Loc is left adjoint to the
functor Pt : Loc �� Top, that is, there is an bijection

θX ,A : Loc(Ω(X ), A) ∼= Top(X , Pt(A)),

natural in X and A.

Here Ω(X ) = (O(X ),⊆) and Ω(f )∗ = f −1 : Ω(Y ) �� Ω(X ) for
f : X �� Y .

Pt(A) is the set of points of the locale A, and Pt(f )(x) = f ◦ x .
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A locale is spatial if it has enough points to distinguish elements of
the locale i.e.

a∗ = b∗ =⇒ a = b.

A space X is sober if every irreducible closed set is the closure of a
unique point. (A nonempty closed C is irreducible, if for any closed
C ′, C ′′: C ⊆ C ′ ∪ C ′′ implies C ⊆ C ′ or C ⊆ C ′′.)

The adjunction induces an equivalence between the category of
sober spaces and category of spatial locales:

Sob � Spa

Remark Ω gives a full and faithful embedding of all Hausdorff
spaces into locales (in fact of all sober spaces).

15 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Non-constructive aspects of topology
Locales
Formal Topology
Inductively generated formal topologies

Locale Theory — Formal Topology

Standard Locale Theory can be dealt with in an impredicative
constructive setting, e.g. in a topos (Joyal and Tierney 1984).

The predicativity requirements of BISH requires a good
representation of locales, formal topologies. They were introduced
by Martin-Löf and Sambin (Sambin 1987) for this purpose.

(A,≤, � ) is a formal topology if (A,≤) is a preorder, and � is an
abstract cover relation which extends ≤. It represents a locale
(Sat(A),⊆) whose elements are the saturated subsets U ⊆ A, i.e.

a � U =⇒ a ∈ U

(A formal topology corresponds to Grothendieck’s notion of a site
on a preordered set. )
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More in detail: A formal topology X is a pre-ordered set (X ,≤) of
so-called basic neighbourhoods. This is equipped with a covering
relation a � U between elements a of X and subsets U ⊆ X and so
that {a ∈ X : a � U} is a subset of X . The cover relation is
supposed to satisfy the following conditions:

(Ext) If a ≤ b, then a � {b},
(Refl) If a ∈ U, then a � U,

(Trans) If a � U and U � V , then a � V ,

(Loc) If a � U and a � V , then a � U ∧ V .

Here U � V is an abbreviation for (∀x ∈ U) x � V . Moreover
U ∧ V is short for the formal intersection U≤ ∩ V≤, where
W≤ = {x ∈ X : (∃y ∈ W )x ≤ y}, the down set of W.
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A point of a formal topology X = (X ,≤, � ) is a subset α ⊆ X
such that

(i) α is inhabited,

(ii) if a, b ∈ α, then for some c ∈ α with c ≤ a and c ≤ b,

(iii) if a ∈ α and a ≤ b, then b ∈ α,

(iv) if a ∈ α and a � U, then b ∈ α for some b ∈ U.

The collection of points in X is denoted Pt(X ). It has a point-set
topology given by the open neighbourhoods:

a∗ = {α ∈ Pt(X ) : a ∈ α}.
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We shall often consider different cover relations � , � ′, � ′′, . . . on
one and the same underlying pre-ordered set (X ,≤). There is an
natural ordering of cover relations

� ⊆ � ′

which holds iff for all a ∈ X and for all subsets U of X , a � U
implies a � ′U. We say that � is smaller than � ′. On a given
preorder (X ,≤) there is a smallest cover relation given by

a � sU ⇐⇒def a ∈ U≤.

(Check this as an exercise.) If ≤ is = on X , this correspond to
(X ,≤, � s) being the discrete topology. There is also a largest
cover relation

a � tU ⇐⇒def true,

which gives the trivial topology.
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Many properties of the formal topology X can now be defined in
terms of the cover directly. We say that X is compact if for any
subset U ⊆ X

X � U =⇒ (∃ f.e. U0 ⊆ U) X � U0.

For U ⊆ X define

U⊥ = {x ∈ X : {x} ∧ U � ∅},
the open complement of U. It is easily checked that U⊥ ∧ U � ∅,
and if V ∧ U � ∅, then V � U⊥.
A basic neighbourhood a is well inside another neighbourhood b if
X � {a}⊥ ∪ {b}. In this case we write a ≪ b. A formal topology
X is regular if its cover relation satisfies

a � {b ∈ X : b ≪ a}.
(Compact Hausdorff = Compact regular.)
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For motivation we start with the extended example of the Cantor
space.

Let S be a set. Denote by S<ω the set of finite sequence of
elements in S : 〈a1, . . . , an〉. Concatenation of sequences u, v is
denoted u � v . Order the sequences by saying that w ≤ u iff
w = u � v for some v .

Denote by Sω the set of infinite sequences of elements in S , i.e. of
functions N �� S . We define a topology on Sω by declaring the
basic open sets to be

B〈a1,...,an〉 = {x ∈ Sω : (∀i = 1, . . . , n) x(i − 1) = ai}.

We have B〈〉 = Sω.
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By letting S = {0, 1} we get the so-called Cantor space
C = {0, 1}ω of infinite binary sequences. By letting S = N we
obtain the Baire space Nω.

Classically we can show that Sω is compact iff S is finite. This
uses König’s lemma.

Brouwer’s Fan Theorem implies that the Cantor space, and in fact
every subspace of the form Bv , is covering compact: For any
subset M ⊆ {0, 1}<ω:

⋃
u∈M

Bu = Bv =⇒ (∃ f.e. F ⊆ M)
⋃
u∈F

Bu = Bv .

However this “theorem” is really an axiom as it is false under many
natural constructive interpretations, for instance recursive
realizability interpretations.
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For a finite F = {u1, . . . , um} ⊆ {0, 1}<ω the covering relation⋃
u∈F Bu = Bv can be checked by considering sequences of length

n = max(|u1|, . . . , |um|). We have

⋃
u∈F

Bu = Bv ⇐⇒ (∀w ∈ {0, 1}<ω)(|w | = n, w ≤ v ⇒ w ∈ F≤).

We abbreviate the righthand side as the property K (v , n, F ). This
property is clearly decidable given v , n and F .
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We shall now define a formal topology corresponding to the Cantor
space. Let C = ({0, 1}<ω,≤, � ) where ≤ is as above and � is
given by

v � U ⇐⇒def (∃ f.e. F ⊆ U)(∃n) K (v , n, F ).

Now compactness is built-in to the cover relation.

Thm. C is a compact formal topology and Pt(C ) ∼= C.
Note: for any u

u � {u � 〈0〉, u � 〈1〉}.
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The formal topology C = (C ,≤, � ) is inductively generated by
the following axiom

u � {u � 〈0〉, u � 〈1〉}

in the sense that

Thm If � ′ is another cover relation so that (C ,≤, � ′) is a formal
topology and

u � ′{u � 〈0〉, u � 〈1〉} (u ∈ C )

then
a � U =⇒ a � ′U.

This gives an induction principle for the cover relation which is an
important proof method.
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For a given preorder (X ,≤) an cover axiom is a pair (a, G ) where
a ∈ X and G is a subset of X . We suggestively write this pair as

a � G .

A formal topology X = (X ,≤, � ) is (inductively) generated by a
family {ai � Gi}i∈I of cover axioms, if � is the smallest cover
relation on (X ,≤) which satisfies all the axioms, i.e. ai � Gi for all
i ∈ I .
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We may define the formal Baire space as B = (N<ω,≤, � ) where
is � is inductively generated by

u � {u � 〈n〉 : n ∈ N} (u ∈ N<ω)

Proposition: B is a regular formal topology.
Proof: We have u ≪ u, since N<ω � u ∪ u⊥.

NB: Such covers can be shown to exist using strong induction
axioms. In fact for any set of cover axiom, there is a cover relation
generated by them.

27 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Non-constructive aspects of topology
Locales
Formal Topology
Inductively generated formal topologies

Set-presented vs inductively generated formal topologies

Def. A formal topology X = (X ,≤, � ) is set-presented if there is
a family of subsets C (a, i) ⊆ X (a ∈ X , i ∈ I (a)) so that

a � U ⇐⇒ (∃i ∈ I (a))C (a, i) ⊆ U.

Example

1. Impredicatively, every formal topology X is set-presented by
I (a) = {U ⊆ X : a � U} and C (a, U) = U.
2.The Cantor space is set-presented by

I (a) = {(F , n) ∈ Pf.e.(X )× N : K (a, n, F )}
C (a, (F , n)) = F

Theorem. A formal topology is set-presented iff it is inductively
generated by some set of cover-axioms.
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Induction on covers

As a simple illustration of the method of induction on covers we
give alternative characterisation of points in an inductively
generated formal topology A = (A,≤, � ). Suppose that A is
generated by the axioms

R = {ai � Vi}i∈I .

We call α ⊆ A an R-splitting filter, if it satisfies conditions (i)-(iii)
for a point but instead of (iv), only the more restrictive condition
that for any i ∈ I

ai ∈ α =⇒ (∃b ∈ Vi ) b ∈ α. (1)

(This is often easier to check.)
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Induction on covers (cont.)

Proposition. Each R-splitting filter is a point.

Proof. We need to prove that for each R-splitting filter α, the
condition (iv) holds. The crucial observation is that (iv) can be
expressed as:

a � U =⇒ [a ∈ α ⇒ (∃b ∈ U)b ∈ α].

Since � is the smallest cover relation satisfying R it is now
sufficient to prove that

a � ′U ⇐⇒def [a ∈ α ⇒ (∃b ∈ U)b ∈ α].

defines a cover relation satisfying R.
By (1) it clearly satisfies R.

30 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Non-constructive aspects of topology
Locales
Formal Topology
Inductively generated formal topologies

Induction on covers (cont.)

It remains to check that � ′ satisfies (Ext), (Refl), (Trans) and
(Loc).
(Ref) is immediate. (Ext) follows by (ii). (Loc) follows by (iii).
(Trans): Suppose a � ′U and U � ′W . We want to show a � ′W :
suppose a ∈ α. Hence there is b ∈ U with b ∈ α. Thus b � ′W ,
and hence (∃c ∈ W )c ∈ α, which was to be shown.

For an inductively generated formal topology A, the collection of
points Pt(A) is in generally only a class.
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A point-wise cover which is not a formal cover.

In realizability models the so-called Church Thesis (better named
Church-Turing Thesis) is valid. It says that every function on
natural numbers is computable by a Turing machine:

(CT) (∀f : N �� N)
(∃e ∈ N)(∀x ∈ N)(∃y ∈ N)(T (e, x , y) ∧ U(y) = f (x)).

Here T is the Kleene predicate and U is the result extracting
function.

Assuming (CT) we shall prove that there is a set of basic opens
V ⊆ C so that C =

⋃
v∈V Bv but C � V fails.
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Let
V = V0 ∪ V1,

where

Vk = {〈a0, . . . , an−1〉 : (∃i , j < n)(ai = k ∧ T (i , i , j) ∧ U(j) = k)}.
Note that Vk is decidable and (Vk)≤ ⊆ Vk .
To prove C ⊆ ⋃

v∈V Bv , take an arbitrary f ∈ C. We show f ∈ Bv

for some v ∈ V . Let e be the Kleene index for f , i.e.

f (n) = k ⇔ (∃y)T (e, n, y) ∧ U(y) = k. (2)

We evaluate f (e). Suppose T (e, e, u). We have f ∈ Bv for
v = 〈f (0), . . . f (e + u)〉. For f (u) = k ∈ {0, 1} we have U(u) = k
by (2). Then by definition v ∈ Vk , so v ∈ V as required.

Suppose C � V . By definition there is a finite F ⊆ V and m so
that w ∈ F≤ for every w with |w | ≥ m. (In particular C � F .) We
show this is impossible.
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Define a finite sequence w = 〈d0, . . . , dm−1〉 ∈ C by letting

di = 1 ⇐⇒def i < m ∧ (∃j < m)(T (i , i , j) ∧ U(j) = 0). (3)

Then w ≤ v for some v ∈ F . Since F ⊆ V = V≤ we have
w ∈ V = V0 ∪ V1. Suppose w ∈ V0. By (2) there are i , j < m
with di = 0, T (i , i , j) and U(j) = 0. According to (3) this implies
di = 1 which is a contradiction. Thus w ∈ V1. Hence there are
i , j < m with di = 1, T (i , i , j) and U(j) = 1. But by (3) it follows
that U(j) = 0. A contradiction again. Hence C � V is false.

The example is a straightforward adaptation of a Theorem which
shows that the Fan Theorem is incompatible with CT. The original
result is due to Kleene.
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This example shows that the Fundamental Adjunction

Ω � Pt : Top �� Loc

cannot be used without further ado to transfer results from spaces
to locales in a constructive setting.

It is necessary to develop point-free techniques to obtain
constructive results.
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Point-free proofs are more basic

Theorem (Johnstone 1981): Tychonov’s Theorem holds for
locales, without assuming AC.

Slogan of B. Banaschewski:

choice-free localic argument
+ suitable choice principles = classical result on spaces

In fact, Tychonov’s theorem for locales is constructive also in the
predicative sense (Coquand 1992).
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This suggestive slogan can be generalised

constructive localic argument
+ Brouwerian principle = intuitionistic result on spaces.

However, since the work of the Bishop school (BISH) on
constructive analysis it is known that there is often a basic

BISH constructive argument
+ Brouwerian principle = intuitionistic result on metric spaces.

A natural question: how does BISH constructive topology and
constructive locale theory relate? For instance on metric spaces.
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Formal reals R

The basic neighbourhoods of R are {(a, b) ∈ Q2 : a < b} given
the inclusion order (as intervals), denoted by ≤. The cover � is
generated by

(G1) (a, b) � {(a′, b′) : a < a′ < b′ < b} for all a < b,

(G2) (a, b) � {(a, c), (d , b)} for all a < d < c < b.

The set of points Pt(R) of R form a structure isomorphic to the
Cauchy reals R. For a point α with (a, b) ∈ α we have by (G2) e.g.

(a, (a + 2b)/3) ∈ α or ((2a + b)/3, b) ∈ α.

38 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

G1:
(—————————————)

...
(——————————————–)

...

(———————————————–)

G2:
(———–)

(———–)

(——————)
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An elementary characterisation of the cover relation on formal reals
is:

(a, b) � U ⇐⇒ (∀a′, b′ ∈ Q)(a < a′ < b′ < b ⇒
(∃finite F ⊆ U) (a′, b′)∗ ⊆ F ∗)

Note that for finite F the pointwise inclusion (a′, b′)∗ ⊆ F ∗ is
decidable, since the end points of the intervals are rational
numbers. (Exercise)
This characterization is crucial in the proof of the Heine-Borel
theorem (see Cederquist, Coquand and Negri).
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Closed subspaces

Let X be a formal topology. Each subset V ⊆ X determines a
closed sublocale X \ V whose covering relation � ′is given by

a � ′U ⇐⇒def a � U ∪ V .

Note that V � ′∅ and ∅� ′V , so the new cover relation identifies
the open set V with the empty set. What remains is the
complement of V .

Theorem If X is compact, and U ⊆ X a subset of neighbourhood,
then X \ U is compact.
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We define [0, 1] = R \ V where V = {(a, b) : b < 0 or 1 < a}.
Denote the cover relation of [0, 1] by � ′.

Heine-Borel theorem [0, 1] is a compact formal topology.

Proof. Suppose X � ′U, where X is the basic nbhds of R. Thus in
particular (0− 2ε, 1 + 2ε) � ′U and thus (0− 2ε, 1 + 2ε) � V ∪ U.
By the elementary characterisation of � there is a finite
F ⊆ V ∪ U with (0− ε, 1 + ε)∗ ⊆ F ∗. As F is finite, we can prove
(0− ε, 1 + ε) � F using G1 and G2. Also we find finite
F1 ⊆ F ∩ U ⊆ U so that (0− ε, 1 + ε) � V ∪ F1. Hence
(0− ε, 1 + ε) � ′F1. But X � ′(0− ε, 1 + ε) so X � ′F1.
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Open subspaces

Let X be a formal topology. Each subset V ⊆ X determines an
open sublocale X|V whose covering relation � ′ is given by

a � ′U ⇐⇒def a ∧ V � U.

Note that U1 � ′U2 iff U1 ∧ V � U2 ∧ V . Hence only the part
inside V counts when comparing two open sets.

Example

For two points α, β ∈ R the open interval (α, β) is R|V where

V = {(a, b) : α < a & b < β}

where α < a means that there is (c , d) ∈ α with d < a. (b < β is
defined analogously.)
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Continuous maps relate the covers

Let X = (X ,≤, � ) and Y = (Y ,≤′, � ′) be formal topologies. A
relation F ⊆ X × Y is a continuous mapping X �� Y if

� U � ′V =⇒ F−1U � F−1 V , (”preservation of arbitrary sups”)

� X � F−1 Y , (”preservation of finite infs”)

� a � F−1V , a � F−1W =⇒ a � F−1 (V ∧W ).

� a � U, x F b for all x ∈ U =⇒ a F b,

Each such induces a continuous point function f = Pt(F ) given by

α �→ {b : (∃a ∈ α)R(a, b)} : Pt(X ) �� Pt(Y)

and that satisfies: a F b ⇒ f [a∗] ⊆ b∗.
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The category of formal topologies.

The inductively generated formal topologies and continuous
mappings form a category FTop, which is classically equivalent to
Loc.
They both share many abstract properties with the category of
topological spaces which can be expressed in category theoretic
language.
This makes it possible to describe topological constructions
without mentioning points.

45 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

Recall: A product of objects A and B in a category C is an object
A×B and two arrows π1 : A×B �� A and π2 : A×B �� B in
C, so that for any arrows f : P �� A and g : P �� B there is a
unique arrow 〈f , g〉 : P �� A× B so that π1〈f , g〉 = f and
π2〈f , g〉 = g .

A A× B�� π1
A

c

��

f
��

��
��

��
��

��
� A× B B

π2 ��A× B

c

��

〈f ,g〉

B

c

��

g

��
��

��
��

��
��

�
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The dual notion of product is coproduct or sum.

A coproduct of objects A and B in a category C is an object A + B
and two arrows ι1 : A �� A + B and ι2 : B �� A + B in C, so
that for any arrows f : A �� P and g : B �� P there is a
unique arrow

(f
g

)
: A + B �� P so that

(f
g

)
ι1 = f and

(f
g

)
ι2 = g .

A A + B
ι1 ��A

c

f

���
��

��
��

��
��

��
A + B B�� ι2
A + B

c

(f
g

)
��

B

c

g

		��
��

��
��

��
��

�
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A equalizer of a pair of arrows A
f ��
g

�� B in a category C is a

object E and an arrow e : E �� A with fe = ge so that for any
arrow k : K �� A with fk = gk there is a unique arrow t : K

�� E with et = k.

E A
e ��E

K

��

t

A

K

��

k

��
��

��
��

��
��

B
f ��

B
g

��

In Top: E = {x ∈ A : f (x) = g(x)}.

Dual notion: A coequalizer of a pair of arrows A
f ��
g

�� B in a

category C is a object Q and an arrow q : B �� Q with qf = qg
so that for any arrow k : B �� Q with kf = kg there is a unique
arrow t : Q �� K with tq = k. 48 / 65
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Categorical topology. As the category of topological spaces has
limits and colimits, many spaces of interest can be built up using
these universal constructions, starting from the real line and
intervals.
The circle

{(x , y) ∈ R× R : x2 + y2 = 1}
is an equaliser of the constant 1 map and (x , y) �→ x2 + y2.
It can also be constructed as a coequaliser of s, t : {�} �� [0, 1]
where s(�) = 0, t(�) = 1. (Identifying ends of a compact interval.)

49 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

The categorical properties of the category FTop of set-presented
formal topologies ought to be same as that of the category of
locales Loc.
Theorem. Loc has small limits and small colimits.

However, since we are working under the restraint of predicativity
(as when the meta-theory is Martin-Löf type theory) this is far
from obvious. (Locales are complete lattices with an infinite
distributive law.)
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FTop has . . .
• Products
• Equalisers (straightforward, ind. gen. covers)
• (and hence) Pullbacks
• Coproducts (Sums)
• Coequalisers
• (and hence) Pushouts
• certain exponentials (function spaces): X I , when I is locally
compact.
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Further constructions using limits and colimits

1. The torus may be constructed as the coequaliser of the
followings maps R2 × Z2 �� R2

(x,n) �→ x (x,n) �→ x + n.

2. The real projective space RPn may be constructed as
coequaliser of two maps

Rn+1 × R 	=0
�� Rn+1

(x, λ) �→ x (x, λ) �→ λx.
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3. For A ↪→ X and f : A �� Y , the pushout gives the attaching
map construction:

X Y ∪f X��

A

X

� �

��

A Y
f �� Y

Y ∪f X
��

4. The special case of 3, where Y = 1 is the one point space, gives
the space X/A where A in X is collapsed to a point.
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Products of formal topologies

Let A = (A,≤A, � A) and B = (B,≤B , � B) be inductively
generated formal topologies. The product topology is
A× B = (A× B,≤′, � ′) where

(a, b) ≤′ (c , d) ⇐⇒def a ≤A c & b ≤B d

and � ′ is the smallest cover relation on (A× B,≤A×B) so that

� a � AU =⇒ (a, b) � ′U × {b},
� b � BV =⇒ (a, b) � ′{a} × V .

The projection π1 : A× B �� A is defined by

(a, b) π1 c ⇐⇒def (a, b) � ′A× {c}

(Second projection is similar.)
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Example

The formal real plane R2 = R×R has by this construction formal
rectangles ((a, b), (c , d)) with rational vertices for basic
neighbourhoods (ordered by inclusion). The cover relation may be
characterized in a non-inductive way as

((a, b), (c , d)) � ′U ⇐⇒
(∀u, v , x , y)[a < u < v < b, c < x < y < d ⇒

(∃finite F ⊆ U)(u, v)× (x , y) ⊆ F ∗]
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Subspaces defined by inequations

Let V ⊆ R2 be the set of open neighbourhoods aboove the graph
y = x i.e.

V = {((a, b), (c , d)) ∈ R2 : b < c}
Then L = (R2)|V ↪→ R2 has for points pairs (α, β) with α < β.
Let f , g : X �� R be continuous maps. Then form the pullback:

L R2� � ��

S

L
��

S X
� � �� X

R2

〈f ,g〉

��

Then the subspace S ↪→ X has for points those ξ ∈ Pt(X ) where
f (ξ) < g(ξ).
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Coequalizers in formal topology

As the category Loc is opposite of the category Frm the

coequalizer of A
f ��
g

�� B in Loc can be constructed as the equalizer

of the pair B
f ∗ ��

g∗
�� A in Frm.

As Frm is ”algebraic” the equalizer can be constructed as

E = {b ∈ B : f ∗(b) = g∗(b)} ↪→ B
f ∗ ��

g∗
�� A
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Coequalizers in formal topology (cont.)

A direct translation into FTop yields the following suggestion for a
construction:

{U ∈ P(B) : F̃−1U = G̃−1U}
for a pair of continuous mappings F , G : A �� B between formal
topologies. Here W̃ = {a ∈ A : a � W }.
Problem: the new basic neighbourhoods U do not form a set.

58 / 65



Part 1: Locales and formal topology
Part 2: Point-free construction of spaces

It turns out that can one find, depending on F and G , a set of
subsets R(B) with the property that

F̃−1U = G̃−1U, b ∈ U =⇒
(∃V ∈ R(B))(b ∈ V ⊆ U & F̃−1V = G̃−1V )

Now the formal topology, whose basic neighbourhoods are

Q = {V ∈ R(B) : F̃−1V = G̃−1V },

and where
U � QW iff U � B ∪W

for W ⊆ R(B), defines a coequaliser. Moreover the coequalising
morphism P : B �� Q is given by:

a P U iff a � BU.
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