Workshop on Supersolid 2008

18 - 22 August 2008

Microscopic studies of He-4 solid systems via Path Integral projection methods

D.E. Galli
University of Milano, Italy
Microscopic studies of 4He solid systems via Path Integral projector methods

D.E. Galli
Università degli Studi di Milano, Italy

In collaboration with
L. Reatto
M. Rossi
E. Vitali
F. Tramonto

Outline

Path Integral T=0 K projector methods:

- Study of pure 2D solid 4He:
 - Perfect crystal
 - Crystal with increasing number of vacancies
- 3D: hcp solid 4He
- Dynamics form QMC a genetic algorithm approach
 - Excited states in liquid 4He also with one 3He impurity
 - Excited states in solid 4He also with vacancies and with one 3He impurity
- Conclusions
Projector QMC methods:
Path Integral Ground State

- **Aim** of projector Quantum Monte Carlo (QMC) methods: evaluate "exact" (within statistical uncertainty) T=0 K, i.e. ground state, averages
 \[\langle \psi_0 | \hat{O} | \psi_0 \rangle \]
 being \(\psi_0 \) the ground state wave function

- **How?** First \(\psi_0 \) is expressed formally as the imaginary time evolution of a trial variational state
 \[\psi_0(R) = \lim_{\tau \to \infty} \int dR' \langle R | e^{-i\hat{H} \tau} | R' \rangle \psi_1(R') \]

- Then one uses the exact property \(e^{-i\hat{H} \tau} = (e^{\frac{i}{\tau} \hat{H}})^\tau \) to obtain the Path Integral representation of \(G(R,R',\tau) \):
 \[\psi_0(R) = \lim_{\tau \to \infty} \int dR \cdots dR_p \langle R \rangle e^{\tau \hat{H}} | R_1 \rangle \cdots \langle R_{p-1} | e^{\tau \hat{H}} | R_p \rangle \psi_1(R_p) \]

Approximation 1: finite imaginary time propagation

\[\psi_0(R) = \psi_1(R) = \int dR \cdots dR_p \langle R \rangle e^{\tau \hat{H}} | R_1 \rangle \cdots \langle R_{p-1} | e^{\tau \hat{H}} | R_p \rangle \psi_1(R_p) \]

Approximation 2: if \(\delta \tau = \tau/M \) is small, use accurate approximations for the short-time propagator \(G(R,R',\delta \tau) \): e.g. Pair-Product (Ceperely, RMP '95)

This second approximation is exactly the one used in any finite temperature PIMC calculation

Therefore any PIGS calculation is characterized by two numbers:
- Value of \(\tau \): the total imaginary-time
- Value of \(\delta \tau \): the "elementary" imaginary-time evolution/projection step

\[\psi_0(R) \to \psi_1(R) \to \tilde{\psi}_1(R) \]

Usually, one first determines how small must be \(\delta \tau \) in order to use approximation 2, then increases \(\tau \) until convergence is reached: if \(\delta \tau \) and \(\tau \) are properly chosen the exact value will be within the statistical uncertainty.
Projector QMC methods: Path Integral Ground State

- Classical-Quantum mapping:

\[
\frac{\langle \psi_0 | \hat{O} | \psi_0 \rangle}{\langle \psi_0 | \psi_0 \rangle} = \int dr_1 \ldots dr_{2P+1} G(r_j, r_{j+1}) \psi_1(r_1) \frac{\psi_1(r_{2P+1})}{\langle \psi_1 | \psi_1 \rangle}
\]

Ground state averages are equivalent to canonical averages of a classical system of special interacting linear polymers:

Variational theory of a quantum solid

In the framework of variational theory of quantum solids the wave functions fall in two categories:

1. \(\Psi \) has explicit translational broken symmetry, for instance by localizing the atoms around the assumed lattice sites \(\{ \hat{r}_i \} \):

\[
\psi_{JN}(\hat{r}_1, \ldots, \hat{r}_N) = \psi_J(r) \times \prod_i e^{-\frac{1}{2} (\hat{r}_i - \hat{R}_i)^2} \quad \text{Jastrow-Nosanow}
\]

→ Sum over permutation to get Bose Symmetry by construction this wave function describes a commensurate solid

2. Translational invariant \(\Psi \), first example:

\[
\psi_J(\hat{r}_1, \ldots, \hat{r}_N) = \prod_{i<j} f(\hat{r}_i - \hat{r}_j) \quad f(r) = e^{-b/r} \quad \text{Jastrow}
\]

- b: variational parameter, minimize (H)
- at high density \(\Psi_J \) describes a solid (spontaneous broken symmetry)

Second example: Shadow Wave Function

The Abdus Salam International Centre for Theoretical Physics - Workshop “Superfluid 2008” - 21.08.08
Our “exact” tool: Projector QMC from SWF to SPIGS

- **SWF**: single (variationally optimized) projection step of a Jastrow wave function

 \[\psi_T^{\text{SWF}}(R) = \int dS F(R, S) \psi_T(S) \]
 - Implicit correlations (all orders)
 - Bose symmetry preserved

- **SPIGS**: “exact” T=0 projector method which starts from a SWF

 \[\psi_0(R) = \int dR_1 \cdots dR_N dS \langle S | e^{-\frac{i}{\hbar}H} | R_1 \rangle \times \cdots \times \langle R_N | e^{-\frac{i}{\hbar}H} | F(R_0, S) \psi_T(S) \]
 - Notice: unlike PIMC at finite T here no summation over permutation is necessary, this \(\psi_0(R) \) is Bose symmetric if \(\psi_T \) is symmetric

Calculation of \(\langle \psi_0 | \hat{O} | \psi_0 \rangle \)

The whole imaginary time evolution is sampled at each MC step

QMC: calculation of the one-body density matrix with SWF and SPIGS

\[\rho_1(\vec{r}, \vec{r}') = N \int d\vec{r}_2 \cdots d\vec{r}_N \psi_0^*(\vec{r}, \vec{r}_2, \cdots, \vec{r}_N) \psi_0(\vec{r}', \vec{r}_2, \cdots, \vec{r}_N) \]

- One of the open polymers is cut and the histogram of the relative distance of the two cut ends is computed
- We have studied commensurate and incommensurate solid \(^4\text{He}\) with SPIGS: the periodic boundary conditions forces the structure of the solid.
- No “mixed”, only pure estimator (exact ground state \(\rho_1 \) if \(\tau \) is large enough!)

Classical analogy:

- N atoms
- SWF
- SPIGS
- N open polymers
S)PIGS: Permutation sampling

- Projection procedure preserves the Bose symmetry if Ψ_T is Bose symmetric
- No topological sampling problems
- It is important for off-diagonal properties in the solid phase
- Sampling scheme: Boninsegni JLTP (2005)
- "swap" moves allowed in off-diagonal calculations: very high acceptance frequency also in the solid phase: about 15%

Off-diagonal calculation:

Frequency of an accepted permutation cycle with N polymers

![Graph](Image)

hcp solid 4He, $\rho=0.0293$ Å$^{-3}$

F is only about 5 times lower than in the liquid phase

Commensurate 2D 4He crystal

- We have studied pure 2D 4He at T=0 K
- Propagator: pair-product with $\delta\tau=1/40$ K$^{-1}$
- Eq. of state in agreement with previous GFMC calculations

Example: whole imaginary time evolution: $\tau=0.8$ K$^{-1}$

- each polymer counts 64 particles
- well defined crystal

Analysis at a particular (imaginary) time:

- Delaunay triangulation
- Voronoi diagram

On average, about 18% of the atoms have a wrong (≠6) coordination number

![Graph](Image)
"Exact" ground state methods use a trial function

2D solid 4He $\rho=0.0765$ Å$^{-2}$, triangular lattice

- Is this biasing the results?
- We project on ψ_0 starting from two completely different wave functions:
 a) a Jastrow-Nosanow:
 - not Bose symmetric
 - not translationally invariant
 b) a SWF:
 - Bose symmetric
 - translationally invariant

From the τ evolution one can get the overlap $|\langle \psi_0 | \phi_{\text{trial}} \rangle|^2$

Overlap per particle: 99.8% for SWF, deviation 0.2%
97.9% for JN, deviation 2.1%

SWF is closer to ψ_0 by one order of magnitude

One-body density matrix

- Calculation of ρ_1 along nearest neighbor direction
- Triangular lattice, $N=240$
- Convergence of ρ_1 computed with SPIGS and PIGS for increasing projections in imaginary time
- Conclusion: convergence both for diagonal and non diagonal quantities from two radically different wave function
- The 2D commensurate crystal has no BEC
- No size effect ($N=180, 240, 480$)
- With PIGS we observe exponential decay up to 60 Å
- No ergodicity problem: study at fixed τ with decreasing $\delta\tau$ (increasing number of particles in the polymers) gives the same results
Results: full ρ_1 and the momentum distribution

Jastrow-Nosanow:

$$\psi_r = e^{-\sum_{r<R} |r-r|} e^{-\sum_{r<R} |r-r|}$$

x-x'<0 : PIGS
x-x'>0 : SPIGS
PIGS & SPIGS indistinguishable within statistical uncertainty

Bumps over the exponential decay: vacancy-interstitial pairs

Deviation of the momentum distribution from the Gaussian
There is an excess of particles at low momenta up to $k=1.2$ Å$^{-1}$ whereas there is a deficit in the k-space region around $k=1.6$ Å$^{-1}$

We find NO BEC, ρ_1: dominant exponential decay in the large distance range.

Question: can we get away from using a trial wave function? Yes!

- Path Integral projector methods: the propagator does not depend on ψ_T
- Path integral ground state starting from an ideal gas wave function:
 $$\psi_0 = \lim_{T\to\infty} e^{i\hat{H}T}$$ when ϕ = constant
- Even in the solid phase we found again convergence of diagonal and off-diagonal properties!
ODLRO–Commensurate state: one-body density matrix SPIGS results

3D hcp solid 4He

- Calculations of the one-body density matrix at $T=0$ K near melting density $\rho=0.0293$ Å$^{-3}$
- $N=360$
- Propagator: pair-product $\delta\tau=1/40$ K$^{-1}$
- Sampling along nearest neighbour direction
- Plateau dramatically reduced by the projection procedure
- Exponential decay up to about 27 Å
- Convergence essentially reached between SPIGS and PIGS

Solid 4He: the end of the Andreev-Lifshitz-Chester scenario

Boninsegni et al. PRL 97, (2006): study of hcp solid 4He

- A uniform dilute gas of vacancies is thermodynamically unstable against separation into a vacancy–rich and a perfectly crystalline vacancy–free phase, which does not melt
- Three vacancies cluster easily and form a tight bound state

Recently we have started a systematic study of multiple vacancies in 2D and 3D solid 4He

How can we identify where a vacancy is located?

1. Given a configuration $\{r_i\}$, find the best reference regular lattice $\{R_i\}$ which maximizes a Gaussian local density (In our algorithm the centre of mass is not fixed)

$$\rho_0 = \sum_{j=1}^{N} \sum_{i=1}^{M} e^{-d(r_j-R_i)^2}$$

2. Find the vacancies with a coarse-graining procedure which associate particles to the nearest non "occupied" lattice sites

3. In the end vacancies are defined as unoccupied lattice positions
Vacancy–vacancy correlation functions

3D hcp solid 4He $\rho=0.0293 \text{Å}^{-3}$
(Propagator: pair-product, $\delta \tau = 1/40 \text{K}^{-1}$)
$g_{\nu \nu}(r)$ for a crystal with 3 vacancies with increasing projection-time $g_{\nu \nu}(r)$: exponential decay + vanishing plateau with τ
⇒ probable bound state

2D triangular solid 4He $\rho=0.0765 \text{Å}^{-2}$
(Propagator: pair-product $\tau=0.75 \text{K}^{-1}$ $\delta \tau = 1/40 \text{K}^{-1}$)
$g_{\nu \nu}(r)$: exponential decay
⇒ bound state up to 6 vacancies

Putative many vacancy states: do we still have vacancies?

- Vacancies in 2D form a bound state
 (binding energy for 2 vacancies $\approx 1.5 \text{ K}$)
- Bosons with attractive interaction collapse
- Can vacancies be present in solid 4He at low T?
 N–3 Bosons are not equivalent to 3 Bosons
 ⇒ Why? Many body interactions

Stochastic dynamics of a cluster of vacancies:
first 1000 MC steps; only the reference lattice is shown (c. of mass is not fixed) and vacancies with black spheres where these are found every 50 MC steps

The Abdus Salam International Centre for Theoretical Physics - Workshop “Supersolid 2008” - 21.08.08
Many vacancies: two different regimes for 2D triangular crystal

- **Regime 1**: Up to $n_v \approx 5$
 - large energy ≈ 5 K per vacancy
 - strong depression of crystalline order
- **Regime 2**: for $n_v \geq 10$
 - small energy ≈ 0.6 K per additional vacancy
 - small effect on crystalline order

Formation of linear structures,
Line of atoms locally collapse
\Rightarrow edge dislocations

Stochastic dynamics: many vacancies

12 vacancies
- Initial stochastic dynamics of two different clusters of vacancies:
- first 1000 MC steps
- 1 snapshot every 50 MC steps

21 vacancies

Graph: Height of main Bragg peak vs n_v

For $n_v > 12$ the crystalline order starts to increase
Edge dislocations in 2D solid 4He

- Many vacancies: linear structures of vacancies are found unstable against the formation of edge dislocations (point like defects in 2D)
- These different kind of defects are found stable and very mobile

- Open question for a similar mechanism in 3D: are clusters of many vacancies unstable against the formation of dislocation loops?
- New 3D simulations under way

Few vacancies and the condensate

- 2D solid 4He, $\rho=0.0765$ Å$^{-2}$
 ($\tau=0.775$ K$^{-1}$, pair-prod. br>1/40 K$^{-1}$)
- 1 vacancy induces a condensate (but not in the thermodynamic limit)
- Few vacancies suppress the condensate
Few vacancies and the condensate

- Few vacancies suppress the condensate
- 2D solid 4He, $\rho=0.0765$ Å$^{-2}$
 ($\tau=0.775$ K$^{-1}$, pair-prod. $\delta\tau=1/40$ K$^{-1}$)

\[n_v=1 \, X_v=0.012 \quad n_0=3.3\times10^{-3} \]
\[n_v=1 \, X_v=0.004 \quad n_0=1.7\times10^{-3} \]

Strong correlation effects

Many vacancies (⇒ edge dislocations) and the condensate

- Dominant contribution to the tail of ρ_1
 2D solid 4He, $\rho=0.0765$ Å$^{-2}$
 ($\tau=0.775$ K$^{-1}$, pair-prod. $\delta\tau=1/40$ K$^{-1}$)

\[n_v=2 \, X_v=0.012 \quad n_0=3.3\times10^{-3} \]
\[n_v=2 \, X_v=0.004 \quad n_0=1.7\times10^{-3} \]

10 vacancies in a box with 240 lattice sites

⇒ Phase correlation transmitted from one dislocation to another
ODLRO & edge dislocations

- Off-diagonal long range order \((in\ the\ plane)\) induced by the presence of edge dislocations
- Open questions: dependence on concentration of dislocations; relevance in 3D?

Vacancy excitation spectrum:

Shadow Wave Function

- With the SWF technique we found a way to study the vacancy excitation spectrum \((Galli, Reatto, PRL 2003; JLTP 2004):\)
 - We associated one extra-shadow which localizes in the void of the vacancy in order to study the excitation at finite quasi-momentum

\[
\Psi^\text{SWF}_k (R) = \int dS d\vec{s}_v F(R,S) \Psi_T (S) L(S,\vec{s}_v) e^{i\mathbf{k} \cdot \vec{s}_v}
\]

- The inclusion of the extra-shadow improves the variational energy
- Integration over extra-shadow is a way to change locally the effective many-body correlations around the vacancy
Vacancy excitation spectrum (SWF result)

Galili, Reatto, PRL 90, 2003; JLTP 134, 2004

- Vacancy very mobile, in agreement with recent experiments Andreeva et al., JLTP 110, 1998
- Band width decreases at larger density

- Near melting density $\rho = 0.029 \ \text{Å}^{-3}$ only 4 (and 2 in bcc) time larger than the period of high frequency phonon in the crystal

Dynamics from Quantum Monte Carlo

- We wish to evaluate the dynamic structure factor of a collection of strongly interacting bosons at $T=0$ K in order to extract information about the elementary excitations spectrum of the system

$$S(\mathbf{q}, \omega) = \int_{-\infty}^{\infty} \frac{dt}{\omega N} \exp(i\omega t) \langle \hat{\rho}_\mathbf{q}(t) \hat{\rho}_{-\mathbf{q}}(0) \rangle$$

- The “exact” SPIGS method gives access to the imaginary time evolution of quantum particles at $T=0$ K:

$$\rho_\mathbf{q}(\tau) = \sum_{j=1}^{N} e^{ij\mathbf{q}\cdot \mathbf{r}_j(\tau)}$$

Density fluctuation

$$F(\mathbf{q}, \tau) = \frac{1}{N} \langle \hat{\rho}_\mathbf{q}(\tau) \hat{\rho}_{-\mathbf{q}}(0) \rangle$$

Intermediate scattering function

$$\langle |\psi_\tau|^2 \rangle \equiv \langle \psi_\tau | \psi_\tau \rangle \quad \Leftrightarrow \quad \tau = 0$$

Intermediate imaginary-time evolution: $|v_\tau|^2$
Dynamics from QMC

\[F(\tilde{q}, \tau) = \frac{1}{N} \langle \hat{\rho}_\tau(\tilde{q}) \hat{\rho}_0(0) \rangle \]

- Imaginary time formulation of QMC methods makes difficult to study the dynamical properties of a Bose fluid, allowing to evaluate correlation functions in imaginary time, only for a finite set of "instants" (which depends on the time step \(\delta \tau \) of the algorithm) with unavoidable statistical errors.
- The inversion formula is thus ill-defined:
 \[F(\tilde{q}, \tau) = \int_0^{\infty} d\omega e^{-i\omega \tau} S(\tilde{q}, \omega) \]

- Hence the necessity of recast the problem in the language of probability theory: what is the best prediction of \(S(\tilde{q}, \omega) \) when our knowledge is limited to the data coming from QMC (with errors) and to a few exact properties (non-negativity and sum rules)?
- No other constraining prior knowledge should be assumed (e.g. Maximum Entropy which it is know to force smoothness of the obtained \(S(\tilde{q}, \omega) \)).

Dynamics from QMC: our statistical framework

- A functional space of step spectral functions satisfying the constraints of non-negativity and zero-momentum sum rule:
 \[A(\omega) = \sum_{i=1}^{N_r} a_i \chi_{\left(\omega, \omega_{i+1}\right)}(\omega) \]
 \[\int_0^{\infty} d\omega S(\tilde{q}, \omega) = \sum_{i=1}^{N_r} a_i \Delta \omega = S(\tilde{q}) \]
 \[a_i \in [0, +\infty) \]

- A statistical weight which accounts for the QMC data (and eventually for the f-sum rule) to be maximized:
 \[P(A) \propto \exp \left[-\sum_i a_i \left(F_i - \int_0^{\infty} d\omega e^{-i\omega \tau} A(\omega) \right)^2 - \beta \frac{\omega^2}{2m} \left(\int_0^{\infty} d\omega \omega A(\omega) \right) \right] \]
 \[\left(\int_0^{\infty} d\omega S(\tilde{q}, \omega) = |\tilde{q}| / 2m \right) \]

- An "averaging" strategy to take into account the role of the statistical noisy in the QMC data: given the data \(F_i \), new random data are generated as Gaussian random numbers with mean \(F_i \) and variance coming from the QMC errors estimation.
- An optimization algorithm: we use Genetic Algorithms; several optimizations are performed using such random sets as "input" data; the average of the results is taken as the best estimation of \(S(\tilde{q}, \omega) \).
Typical values: resolution $\Delta \omega \approx 0.25 \text{ K}/0.5 \text{ K}$; range in ω [0-200/500] K

$\Rightarrow 400/2000$ continuous parameters $(a_{i=1...N_\omega})$ to be optimized!

Constraints: non-negativity of a_i, zero-momentum sum rule

Multi-scope optimization:
- compatibility with QMC data
- f-sum rule

Our optimization technique relies on Genetic Algorithms:
- An individual (chromosome) is a vector $[a_1...a_{N_\omega}]$ of N_ω real numbers (genes) which take values in the codomains of the step spectral functions
- The genetic evolution of a starting random population of individuals, aiming towards maxima of the statistical weight $P(A)$, consists of:
 1) "fitness"-based selection (which depends on $P(A)$)
 2) recombination and mutation processes, suitably redistributing the spectral weight to increase the "fitness"
- Typical values: #individuals $= 5000$; #generations $= 6000$

Naturally, the finite set of available data, the unavoidable statistical errors of QMC data and the highly singular Laplace transform inversion operation induces to think that the number of features we may extract has to be limited

In order to realize what could be the maximum of information available we devised the test of studying inversion problems such that the analytical solution is known

Results in good agreement with the model:
- Essentially the optimized $S_{\text{GA}}(\omega) \neq 0$ only when $S(\omega) \neq 0$
- Slight underestimation of the width of the peaks
- Some overweight between peaks when they are near
\Rightarrow Very promising method to extract at least excitation energies
Dynamics from QMC: 4He liquid

- Our first application: liquid 4He, at equilibrium density $\rho=0.0218$ Å$^{-3}$ ($N_{^4\text{He}}=256$)
- Details: Pair-product propagator $\delta\tau=1/160$ K$^{-1}$; $\tau_{\text{TOT}}\approx0.6$ K$^{-1}$; $\tau_{\text{INT}}\approx0.2$ K$^{-1}$
- Sharp feature in $S(q,\omega)$ indicating the collective excitations
- Good agreement with the experimental excitation spectrum

Dynamics from QMC: 4He liquid + 1 3He atom

- We have studied also a liquid 4He system at $\rho=0.0218$ Å$^{-3}$ doped with one 3He impurity ($N_{^3\text{He}}=255$)

$$F^{(3)}_{33}(q,\tau) = \langle \hat{\rho}^{(3)}_q(\tau) \hat{\rho}^{(3)}_{-q}(0) \rangle$$

- Good agreement with experimental impurity branch

Fek et al. PRB '90

$\rho^{(3)}_q(\tau) = e^{iq\cdot\tau_{^3\text{He}}(\tau)}$
Dynamics from QMC: solid 4He

- The same technique can be easily extended to study longitudinal phonons in solid 4He (hcp solid at $\rho=0.0293$ Å$^{-3}$; $N_{\text{He}}=180$)
- Sharp feature only at small energies where we find good agreement with available experimental data
- Wide peaks at higher energies

Dynamics from QMC: incommensurate solid 4He (1 vacancy & 1 3He atom)

- We have studied also hcp solid at $\rho=0.0293$ Å$^{-3}$ with one impurity 3He atom with ($N_{\text{He}}=178$) and without ($N_{\text{He}}=179$) a vacancy in order to study the dynamics of the impurity induced by the presence of this defect
- Presence of a vacancy: no evident effect on impurity dynamics; 3He atom is essentially fixed on a lattice position

Experiments: courtesy of J. Bossy, H. Godfrin, and J. Goodkind

The Abdus Salam International Centre for Theoretical Physics - Workshop “Supersolid 2008” - 21.08.08
Once one has an algorithm which is able to find where vacancies are located it is possible to define their coordinates \(r^v \) which is a many-body variable because it depends on the positions of all the \(N \) \(^4\)He atoms.

With these vacancy-variables one can build a density fluctuation and an intermediate scattering function:

\[
\rho^v_q(\tau) = \sum_{j=1}^{N_v} e^{i \vec{q} \cdot \vec{r}_j^v(\tau)}
\]

\[
F_{\nu\nu}(\vec{q}, \tau) = \frac{1}{N_v} \langle \hat{\rho}^v_q(\tau) \hat{\rho}^v_{-\vec{q}}(0) \rangle
\]

which gives information on the imaginary-time evolution of these many-body degrees of freedom.

Excited state properties from \(S_\nu(q,\omega) \)

Dynamics from QMC: vacancy excitation spectrum (method)

- Excitation spectrum of 1 vacancy in hcp solid \(^4\)He at \(\rho=0.0293 \text{ Å}^{-3} \)
- Pair-product propagator:
 \(\delta \tau = 1/160 \text{ K}^{-1}; \tau_{\text{TOT}} = 0.6 \text{ K}^{-1}; \tau_{\text{INT}} = 0.2 \text{ K}^{-1} \)
- Old SWF results: not so different from SPIGS; band-width in SPIGS results is more isotropic
- Tight-binding hopping model analysis of the vacancy spectrum: worse agreement than with SWF
- lower band-width \(\Rightarrow \) higher effective mass:
 \(m_v/m_\ell = 0.43(-0.55) \)
- Evidence of roton-like modes at the reciprocal lattice wave vector

Dynamics from QMC: vacancy excitation spectrum (result 1)

- \(= \) SWF
- \(= \) SPIGS

Best reference lattice

= vacant site

\(\bigcirc \) atoms

3D diagram showing vacancy excitation spectrum.
Dynamics from QMC: vacancy excitation spectrum (result 2)

- Excitation spectrum of many (N_v=1-6) vacancies (clusters?)
- Roton-like modes with increasing energy with the number of vacancies
- Open question: connection with recent roton-like modes recently measured with neutron scattering?

Dynamical structure factor at the ΓA reciprocal lattice vector.

\[S_{\text{dyn}}(\Omega, \mathbf{k}) \]

E. Blackburn et al. arXiv:0802.3587

Conclusions

Path Integral projector methods (T=0 K)

a T=0 K simulation method as unbiased as the finite T PIMC

- 2D and 3D Solid \(^{4}\text{He}:\) commensurate crystal has NO BEC
- 2D Solid \(^{4}\text{He}:
 - Few vacancies [1-6] form a bound state
 - More vacancies: formation of linear structures
 \[\Rightarrow \text{local collapse of the crystal} \quad \text{&} \quad \text{formation of edge dislocations} \]
 - Different dislocations induce particle permutations across the system and this induces phase coherence
 - Open question: relevance for the 3D case? (dislocation loops from clusters of vacancies: study underway)
- New method based on Genetic algorithms to obtain dynamics from QMC:
 - Evidence for roton-like vacancy modes in hcp solid \(^{4}\text{He}\)

The Abdus Salam International Centre for Theoretical Physics - Workshop "Supersolid 2008" - 21.08.08