

1960-2

ICTP Conference Graphene Week 2008

25 - 29 August 2008

Graphene Quantum Electronics: p-n Junctions and Atomic Switches

C. N. Lau University of California, U.S.A.

Chun Ning Lau (Jeanie)

UNIVERSITY OF CALIFORNIA Riverside

Graphene Quantum Electronics: *p-n* Junctions and Atomic Switches

Acknowledgement

Graduate Students

Feng Miao

Wenzhong Bao

Gang Liu

Hang Zhang

Discussion With

Shan-Wan Tsai, Antonio Castro-Neto, Michael Fogler, Gil Refael, Dmitri Abanin, Chandra Varma, Leonid Pryadko, Dmitri Novikov, Alex Bratkosvki

Two-Dimensional Crystal

- Honeycomb lattice, two sub-lattices
- Unique Dispersion Relations: massless Dirac Fermions
- First experimental isolation by Geim's group in 2004
- New model system for condensed matter research
 Veselago lensing, Klein tunneling, Spin transport, Supercurrent transistor...
- Surface 2DEG with tunable charge density and type
 Optical, STM and mechanical measurements
 Easily coupled to special electrodes (superconductors, ferromagnets)

Science (2004).

Applications

- Post-silicon electronic material
 - •With advantages of carbon nanotubes
 - ✓ high thermal conductivity (~5000 W/mK) Balandin et al, Nano Lett. (2008)
 - \checkmark high current density (~ mA/µm width)
 - ✓ high mobility (~10,000 cm²/Vs in as-prepared samples)
 - •2D → compatible with lithographic techniques, e.g. nanoribbon FET Han *et al*, PRL (2007); Chen *et al*, Physica E (2007); Li *et al*, Science (2008)
 - •Potential for large scale synthesis
- Transparent electrodes for solar cells, LCD, etc
- Robust, non-volatile, atomic switches (Bockrath+Lau+Bruck group, see also Echtermeyer *et al*, cond/mat 2008)
- Chemical and biological sensors
- Electronics, Spintronics, and Valley-tronics Experiments: van Wees group, Kawakami group, Fuhrer group

Blake *et al*, cond/mat (2008)

Ultra-sensitive gas sensors Schedin *et al*, Nature Materials (2006).

Extraction of Single- and Bi-Layer Graphene

- Mechanical exfoliation -- rub natural graphite flakes onto SiO₂ substrate
- Identify the number of layers by
 - Raman spectroscopy
 - Transport measurement
 - Color contrast in optical microscope
- AFM images reveal mesoscopic features

Device Fabrication

Two steps of E-beam lithography

- Alignment Marks
- Electrodes (3-10 nm Ti or Pd + 70 nm Al or Au)

Bi-layer graphene device

Back gate controls charge density and type.

Single-layer graphene device

Graphene Week, Trieste

Half Integer Quantum Hall Effect

Hall conductivity of single layer graphene quantized at half-integral values of $4e^2/h$ at high field.

-> confirmed selection of single layer graphene

Measurement performed at B=8T and T=260mK

Coherent Charge Transport in Graphene

Graphene Coupled to Normal Electrodes at 260mK.

•Periodic conductance oscillation in both gate voltage and bias.

•Graphene electron resonator -- interference of multiply-reflected electron and hole waves between partially transmitting electrodes.

Outline

- Introduction
- Graphene *p-n* junctions
- Graphene Atomic Switches

Graphene *p-n* Junctions

- Unique advantage: local control of charge density and type
- Graphene p-n junctions with top gate(s):
 - allow *in situ* tuning of junction polarity and dopant levels
- Novel Phenomena and Applications
 - Veselago lensing (optics-like focusing of electron rays)
 - Klein tunneling (perfect transmission of relativistic particles across high barrier) recently observed by Kim's group, Goldhaber-Gordon's group, & Savchenko's group.
 - Band gap engineering of bi-layer graphene
 - Particle collimation
 - Valley polarization

Theories: Abanin *et al* 2006, 2007; Fogler *et al* 2007; Shytov *et al* 2007; Katsnelson *et al* 2006; Beenakker group, Cheianov *et al* 2006, 2007 Experimental demonstration: Huard *et al* 2007; Williams *et al* 2007, Ozyilmaz *et al* 2007, Oostinga *et al* 2007

Graphene p-n Junctions

- Challenge deposition of top gate tends to dope or damage the atomic layer
- Innovation: Suspended, contactless top gate
 - •Gentle process
 - •Graphene can be annealed to improve mobility and contact

Conductance of *p-n-p* **Junctions**

Half-integer Quantum Hall Effect

Quantum Hall States in graphene *p-n* Junctions

At high magnetic fields, quantum Hall plateau at fractional values of e²/h observed
Edge state equilibration, full mixing of propagation modes at interface

Abanin & Levitov, Science, 2007

Quantum Hall States in graphene *p-n-p* **Junctions**

- 2 interfaces in p-n-p junctions
- Full and partial edge state equilibration

Ozyilmaz et al 2007

 $2e^{2}/h$ plateau sensitive to disorder, not observed

Quantum Hall States in graphene p-n-p Junctions

- Quantum Hall plateaus at fractional values observed
- Edge state equilibration, full mixing of propagation modes at interface

Ongoing Work

• Effect of disorder, junction shape

Abanine & Levitov, PRB, 2008; Cheianov *et al* 2006, 2007, Fogler et al, 2008; Zhang & Fogler, 2008.

• Veselago Lensing?

Outline

- Introduction
- Graphene *p-n* junctions
- Graphene Atomic Switches

Brian Standley, Marc Bockrath (Applied Physics, Caltech)
Wenzhong Bao, Hang Zhang, Chun Ning Lau (Physics, UCR)
Jehoshua Bruck (Electrical Engineering, Caltech)

Device Fabrication

- Electrical breakdown to create nanoscale gaps
- + Typical breakdown current density ~ 1.6 mA/ μ m ~ 1 μ A/atom

Two Types of Nanogaps

Bias Dependent Conductance Switching

- 6V pulse \rightarrow "OFF", 4V pulse \rightarrow "ON"
- Reversible conductance switching by bias voltage

Device Operation

- **Robust**: Operates for thousands of cycles without degradation
- Non-volatile: maintains last written state without external voltage for >24 hours, possibly indefinitely

Recovery Steps

•Device conductance recovers in steps

•Conductance histogram shows peaks at $\sim 2e^2/h$

- •No gate dependence
- •Reminiscent of mechanically controlled break junctions

Distribution of waiting times to switch

•Wait times follow a non-Poissonian distribution at lower voltages.

•Wait times are strongly temperature dependent.

Switching Mechanism

•Formation and breaking of atomic chains of carbon atoms that bridge across the nano-size gap

Lang & Avouris PRL (1998).

Information Storage

B. Standley, W. Bao, H. Zhang, J. Bruck, C.N. Lau and M. Bockrath, *Nano Lett.*, to appear (2008).

- Rank coding: store information by the relative magnitudes of the memory elements
- Information capacity for an *N*-element cell is $log_2 N!$
- Demonstrated storage of 1-bit based on rank coding using 2 graphene atomic switches

Graphene Atomic Switches

Graphene

Extremely high mobility
Superior thermal conductivity
High current carrying capacity
Planar, CMOS compatible

Novel Operating Principles

Atomic scale switches

Non-VolatileBased on movement of

atoms, not charges

Novel Architecture

Rank coding

On-going: device optimization, ultra-high density integration

Other On-going Work and Collaborations

- Spin transport (with Kawakami at UCR)
- Thermopower (with Shi at UCR)
- Thermal conductivity (with Dames at UCR)
- STM (with Yeh at Caltech, LeRoy at U. Arizona)
- Photoconductivity (with Kalugin at New Mexico Tech)
- Raman spectroscopy (with Alex Balandin at EE, UCR)
- Graphene as an electronic material (with Bockrath at Caltech)

Thank You!