

1960-14

ICTP Conference Graphene Week 2008

25 - 29 August 2008

EFE-Raman Study of Graphene Thin Films

J. Yan Columbia University, New York, U.S.A.

EFE-Raman Study of Graphene Thin Films

Jun Yan

Collaboration:

- Y. Zhang
- E. Henriksen
- S. Golar
- P. Kim
- A. Pinczuk

Charge-tunable electron-phonon coupling in graphene

J.Yan, Y.Zhang, P.Kim, A.Pinczuk **PRL 98, 166802 (2007)** J.Yan, Y.Zhang, S.Goler, P.Kim, A.Pinczuk **SSC 143, 39 (2007)**

Observation of phonon anomaly in bilayer graphene

J.Yan, E.Henriksen, P.Kim, A.Pinczuk arXiv:0712.3879

On-going work of magneto-phonon resonance in graphite and graphene

EFE-Raman investigation of graphene

G band in gated graphene

G band vibration of graphene

G band in gated graphene

G band in gated graphene

Symmetry in G band line-width and energy: optical determination of charge neutral point

G phonon life-time: Landau damping

Charge-tunable G phonon stiffness

Monolayer \rightarrow bilayer

monolayer

EFE-Raman result: bilayer graphene

Monolayer vs bilayer

Stories from theorists: phonon anomaly

PRL 97, 266407 (2006)

T. Ando JPSJ 75, 124701 (2006)

Stories from theorists: phonon anomaly

Bilayer graphene

T. Ando JPSJ 76, 104711 (2007)

Caudal et al PRB 75, 115423 (2007)

Comparison with Kohn anomaly

	Kohn anomaly	Phonon anomaly
generality	General phenomenon	General phenomenon
Non-analytic behavior	Log- singularity	Log- singularity
<i>Quantity of interest</i>	dω/dk (phonon group velocity)	ω (phonon energy)
Happens at	q=2k _F	E _F = ω /2 (~100meV for graphene)

More results of monolayer graphene

Stampfer et al. APL, 91, 241907, (2007)

See also Pisana et al. Nature Materials 6, 198 (2007)

Experimental results of carbon nanotubes

Farhat et al PRL 99, 145506 (2007)

Das et al PRL 99, 136803 (2007)

See also Tsang et al Nature Nanotech. 2, 725 (2007)

Monolayer vs bilayer: band structure

monolayer

Bilayer vs monolayer: $E_F(n)$

Electron and hole puddles in graphene films

Martin et al Nature Phys. 4, 144 (2007)

Bilayer vs monolayer: $E_F(n)$

Monolayer vs bilayer

Phonon anomaly vs. charge non-uniformity

Effect of magnetic field: motivation

Motivation:

Experimental geometry:

- Effect of Landau level formation on phonon spectra
- Interaction of magneto-exciton with lattice vibration

Effect of magnetic field: motivation

Goerbig et al PRL 99, 087402 (2007)

T. Ando JPSJ 76, 024712 (2007)

Preliminary results of magneto-phonon resonance

1600

Intensity

Conclusion:

- Some changes were observed in graphite phonon spectra which might be indicative of magnetophonon resonance.
- In graphene, however, almost no changes have been observed up to 12 Tesla.

Thank you!