

The Abdus Salam International Centre for Theoretical Physics

1960-26

ICTP Conference Graphene Week 2008

25 - 29 August 2008

Shot noise in ballistic and disordered grapheneShot noise in ballistic and disordered graphene

P. Hakonen Pertti Hakonen Helsinki University of Technology Low Temperature Laboratory Helsinki Finland

Shot noise in ballistic and disordered graphene

Pertti Hakonen

Helsinki University of Technology, Low Temperature Laboratory, TKK, Espoo

in collaboration with

Romain Danneau, Juha Salmilehto, Matti Tomi, and Fan Wu

Low Temperature Laboratory

Monica Craciun, Alberto Morpurgo, Jeroen Oostinga, and Saverio Russo

Kavli Institute of NanoScience - Delft University of Technology

and

Asta Kärkkäinen

Nokia Research Center

Graphene Week August 2008, Trieste **NOKIA** Connecting People

Outline

- Introduction to shot noise
- Theoretical background
- Experimental techniques
 - Noise measurement techniques
- Experimental results
 - Shot noise in graphene sheets
 - Shot noise in graphene nanoribbons
- Summary

Shot noise in electronic system

Classical shot noise: Poissonian process

$$S_P = 2q\langle I \rangle$$

uncorrelated emission events

Schottky, (1918)

Quantum shot noise: binominal process

$$S = \frac{q^3 |V|}{\pi \hbar} T(1-T)$$
$$= 2q \langle I \rangle (1-T)$$

Khlus (1987), Lesovik (1989)

Fano factor

$$S = \frac{e^3 |V|}{\pi \hbar} \sum_n T_n (1 - T_n)$$

$$S_P = 2e < I > \qquad G = \frac{e^2}{\pi \hbar} \sum_n T_n$$
$$= \frac{e^3 |V|}{\pi \hbar} \sum_n T_n$$

- Sum over quantum partition noise of the eigenchannels

$$F = S / S_P = \frac{\sum_{n} T_n (1 - T_n)}{\sum_{n} T_n}$$

- At finite temperature:

$$S = \frac{e^2}{\pi\hbar} \left[2k_{\rm B}T \sum_n T_n^2 + eV \coth\left(\frac{eV}{2k_{\rm B}T}\right) \sum_n T_n(1-T_n) \right],$$

A few examples

$$F = \frac{N_L N_R}{\left(N_L + N_R\right)^2}$$
$$F = \frac{1}{4} \exp\left(-\frac{t_E}{t_D}\right)$$

Graphene Week August 2008, Trieste

_{ste} Quantum vs. classical

Goes to zero in very asymmetric cavities

 $t_{\rm E}$ - Ehrenfest time $t_{\rm D}$ - dwell time

Agam, Aleiner, and Larkin 2000

Distribution of eigenvalues in ballistic graphene

J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, Phys. Rev. Lett. **96**, 246802 (2006).

M.I. Katsnelson, Eur. Phys. J. B **51**, 157 (2006).

Schematics of measurement setup

Shot noise in graphene

in

$\frac{W/L}{L} \sim 10$ L = 200 nm

mS

Sample with W/L=24

SAMPLE:

- Single layer
- $-W/L = 4.8 / 0.20 \sim 24$,
- Ti/Au contacts (10/40 nm)

minimum conductivity:

Seen also by:

F. Miao et al., Science 317, 1530 (2007).

 $\frac{4e^2}{\pi h}$

Current noise vs. bias at Dirac point

$$S(V,T) - S(0,T)$$

= $\frac{4k_BT}{R}F\left(\frac{eV}{2k_BT}\coth\left(\frac{eV}{2k_BT}\right) - 1\right)$

- T fixed, F only parameter Fit yields: F = 0.318

Fano factor: gate and bias dependence

 $F = \widetilde{F} = \frac{1}{I} \int_0^I F_d dI$ Graphene Week

in agreement with J. Tworzydło et al., Phys. Rev. Lett. **96**, 246802 (2006).

Graphene Week August 2008, Trieste

Summary of Fano factor

- F = 0.338 at the Dirac point (with W/L >> 3)

nearly ballistic at large carrier concentration

Sample with W/L = 2 (L = 0.5 μ m)

Fano factor: sample with W/L = 2

-F = 0.19 at the Dirac point

- Agreement with metallic armchair edge

Graphene Week August 2008, Trieste 12

M. Titov, EPL **79,** 17004 (2007); arXiv:cond-mat/0611029v1.

C.H. Lewenkopf, E.R. Mucciolo, A.H. Castro Neto Phys. Rev. B **77**, 081410R (2008).

Ribbons

Gra

August 2008, Trieste

11

Ribbons: R4 (*L* ~ 600 nm, *W* ~ 110 nm)

Ribbon R4 (*L* ~ 600 nm, *W* ~ 110 nm)

Ribbon R4 (*L* ~ 600 nm, *W* ~ 110 nm)

Graphene Week August 2008, Trieste - Not simple zero bias anomaly Conductance peaks at zero bias!?

Ribbon R4 (*L* ~ 600 nm, *W* ~ 110 nm)

Graphene Week August 2008, Trieste - Not simple zero bias anomaly Conductance peaks at zero bias!?

Ribbon R11 (*L* ~ 200 nm, *W* ~ 90 nm)

Comparison of conductance gap

Graphene Week August 2008, Trieste *M.* Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim PRL **98**, 206805 (2007).

Summary

R. Danneau, et al., Phys. Rev. Lett. **100**, 196802 (2008) + unpublished.

F_{max} = 0.338 for samples with W/L >> 3

close to predicted universal value F_{max} = 1/3

Ballistic far from Dirac point: F_{min} = 0.02, no oscillation found as a function of gate
F_{max} = 0.19 for a sample with W/L = 2
Disorder effects in longer samples: F_{max} = 0.23
F small for ribbons with large "gap"
Unknown correlations in nanoribbons?

ACKNOWLEDGEMENTS

Discussions:

S. Haque, T. Heikkilä, M. Laakso, R. Lehtiniemi, M. Paalanen, P. Pasanen, and P. Virtanen

www.cardeq.eu

Graphene Week August 2008, Trieste