

1960-21

ICTP Conference Graphene Week 2008

25 - 29 August 2008

Uniaxial strain on graphene: bandgap opening

T. Yu Nanyang Technological University Singapore

Z. Ni Nanyang Technological University Singapore

Z. Shen Nanyang Technological University Singapore

Y. Feng National University of Singapore Singapore

Uniaxial strain on graphene: bandgap opening

Ting YU, Zhenhua Ni, Zexiang Shen, Yuanping Feng (NUS)

Outline:

- Introduction of graphene
- Motivation
- Experimental
- Results & discussion
- Summary

Introduction to graphene

Novoselov KS *et al.* Science 2004, **306**, 666 Zhang YB *et al.* Nature 2005, **438**, 201 Geim AK and Novoselov KS Nature Materials 2007, **6**, 183

High crystal quality

- Ballistic transport under ambient condition
- The massless Dirac fermions like charge carriers

Application of Graphene

3 December 2007

Graphene Fabrication : Mechanical cleavage from graphite (MCG) High temperature epitaxial growth graphene (EG)

Motivation:

- High pressure Raman of graphene
- Strain effects on graphene
- Strained engineering, i.e. strained Si
- Strained graphene

"

High pressure effects probed by Raman Spectroscopy

www.physics.iisc.ernet.in/~asood/res.htm 8

Schematic of Raman system

Near-field Raman imaging using optically trapped dielectric microsphere

$$I(x) = \frac{P}{2} \left\{ 1 - erf\left(\frac{\sqrt{2}(x - x_o)}{w}\right) \right\}$$
 Spot size = $FWHM = \sqrt{2\ln 2}w = 80 \text{ nm}$

P: power of laser beam; *x*: scanning edge position; x_0 : centre of beam; *w*: $1/e^2$ half width

J. Kasim, T. Yu, et al Optics Express 16, 7976 (2008).

Visualizing stress in 45 nm Strained Si device

Near-field Raman of graphene edge???

Kasim J, Yu T, et al. Optical Express, 16, 7976 (2008).

Strained graphene on flexible substrate

Graphene on polyethylene terephthalate (PET) substrate

J.-H. Chen et al Adv Mater 19, 3623, (2007).

Yu T, Ni ZH et al. Journal of Physical Chemistry C 112, 12602 (2008) 12

Part I: bending substrate

(a) Raman images of (a1) unstrained graphene,(a2-a5) strained graphene, (a6) relaxed grapheneby extracting G' mode frequency.

(b) Mean of G' mode frequency from the interested part of graphene as a function of strain. Scale bar = 2 um.

Strain coefficient: -7.8 cm⁻¹/%strain

>Immediate recover after strain relax

C. Thomsen, et al PRB 65, 073403 (2002).

0.5

0.6

0.4

0.3

Strain (%)

0.2

Û

20

0.0

0.1

(a) The mean of G' mode frequency from the edge of graphene as a function of strain. The scale bar is 2 um.

(b) The mean of G' mode linewidth from the corresponding edges as a function of strain. The data points in green are from the relaxed graphene.

Yu T, Ni ZH et al. Journal of Physical Chemistry C 112, 12602 (2008) ¹⁴

Strained graphene on flexible substrate

Part II: stretching substrate

1- and 3- layer Graphene on PET substrate

Ni ZH, Yu T, et al. ACS Nano (to be published) 16

Part II: stretching substrate

Raman images (G' mode position) of (a1) unstrained (a2) 0.18% (a3) 0.35% (a4) 0.61% (a5) 0.78% (a6) released graphene.

G' mode frequencies of single- and three-layered graphene plotted as a function of strain. The strain sensitivity of G' band of graphene is very high, and comparable to that of CNTs.

The red-shift: elongation of the carbon-carbon bonds, which weakens the bonds and therefore lowers their vibrational frequency.

Lager shift of SLG compared to 3 layer graphene might because strain is more effectively applied on thinner graphene sheet. (no shift is observed on bulk graphite in the strain experiment)

Opening bandgap of graphene

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors

Xiaolin Li, et al.

Science **319**, 1229 (2008);

Bandgap in quantum dots Ponomarenko et al. Science 320, 356 (2008)

Bandgap in graphene nanoribbon

Han et al. Phys. Rev. Lett. 98, 206805 (2007)

Break the symmetry

Bandgap on bilayer graphene by electric field effect

Oostinga et al. Nature Materials 7, 151 (2008) McCann et al. PRB 74,161403 (2006) Castro et al. PRL 99,216802 (2007)

Graphene on BN substrate

Giovannetti et al. Phys. Rev. B 76, 073103 (2007)

Uniaxial Strain on Graphene to open bandgap

Opening bandgap by strain

- •First-principles calculations: VASP code
- •Local spin density approximation (LSDA): exchange-correlation function
- •Cutoff energy: 400 eV
- •The lattice constant of perfect graphene structure: 0.242nm

Conclusion

- Graphene on flexible transparent substrate
- Strain coefficient of graphene = 27.8 cm^{-1} /%
- A bandgap opening of ~300 meV for graphene under 1% uniaxial tensile strain

? Strain engineering on graphene: strained graphene

Graphene Week 2009

AsiaNANO 2008

The 2008 Asian Conference on Nanoscience and Nanotechnology 3rd - 7th November 2008 • Biopolis, Singapore

Symposium C: Graphene: Materials and Devices

Chair

н

Ozyilmaz BARBAROS (NUS, Singapore)

Department of Physics, NUS 2 Science Drive 3, Singapore 117542 Tel: (65) 6516 6979 Email: phyob@nus.edu.sg

ICMAT 2009

International Conference on Materials for Advanced Technologies

IUMRS - ICA 2009 Int'l Union of Materials Research Societies -International Conference in Asia 2009

Suntec Singapore International Convention & Exhibition Centre

School of Physical and Mathematical Sciences

A School of the College of Science

Ting YU yuting@ntu.edu.sg