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Abstract 

 

In this article we describe the summit sets in 3-Braid Group B_3, the smallest  element in 

a  Summit set and we compute the Hilbert series corresponding to conjugacy  

 

Classes. The Results will be related to Birman-Menesco classification of knots with braid 

index 3 or less than three. 
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The protein folding  problem has been attracting the attention of scientists from various disciplines 

for several decades. Although the physical principles are known, the complex energy profile of 

proteins and peptides makes the analysis of realistic proteins extremely difficult. Therefore, one of 

the most important questions in this field is how much detailed information can be neglected to 

establish effective, coarse-grained models yielding reasonable, at least qualitative, results that allow 

more global view an a funnel-like energy minimum in a rugged energy lansdcape [1]. One of the 

most known examples is the HP model of lattice proteins, which has been exhaustively investigated 

[2,3]. In this model, only two types of monomers are considered, with hydrophobic (H) and polar 

(P) character. Another off-lattice generalization of the HP model where the contact interaction is 

replaced by a more realistic distance-dependent Lennard-Jones type potential and an interaction 

accounts for the bending energy of any successive bonds [4]. 

In this study, we have performed multicanonical simulations [5] of hydrophobic-polar 

heteropolymers with  a simple effective, corse-grained off-lattice HP protein model to study the 

structure and the topology of the energy lansdcape and enables one to better understand the critical 

behaviors and visualize the folding pathways of the considered protein model [6,7]. 
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Abstract 

 

     Using the white noise path integral approach [1], biopolymer conformations are 

viewed as Brownian paths [2] modulated by a specific choice of the drift coefficient [3].  

In particular, the Fokker-Planck equation is solved to obtain the probability density 

function from which winding probabilities W(n,L) are calculated. The W(n,L) depends on 

the winding numbers n, the length of the polymer L, and a term of the form, � f(s) ds, 

where f(s) is a drift coefficient with 0� s � L.  Different forms of the drift coefficient 

acting as a modulating function have been investigated where the resulting winding 

probabilities mimic experimentally observed biopolymer conformations [3-5]. In this 

work, we examine a drift coefficient of the form 
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leads to a winding probability for long polymers of the form, 
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where D is the diffusion coefficient.  

 



     A graph of W(n,L) versus L for different winding numbers n exhibits the 

experimentally observed overwinding of biopolymers when stretched [4,5], as well as a 

sequence of helix-turn-helix motif [3].  Note also that if we designate a clockwise 

winding (n � -1) as a right-handed biopolymer, and counterclockwise winding (n � 0) as 

left-handed, we could see that W(-n,L) � W(n,L). The model, therefore, also incorporates 

the experimentally observed chirality of biopolymers [5].     
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In 1983, T. Hida and L. Streit introduced the use of white noise analysis in evaluating the Feynman
path integral[1]. The method has been successfully applied to several quantum mechanical problems,
e.g. [2, 3] and relativistic quantum systems [4]. In 2003, C.C. Bernido and M.V. Carpio-Bernido[5]
consider the application of white noise analysis to statistical mechanics by treating entangled polymers.
In addition to the work done in [5], we consider here the probability distribution in which a polymer
loop in a gel encloses an algebraic area A = 1

2

∫ N

0

(
xdx

dν − y dx
dν

)
dν.

In obtaining the probability distribution in which a polymer will enclose an algebraic area, A, in the
context of white noise analysis , we follow the model presented by Khandekar and Wiegel in [6, 7] that is:
(1) represent a polymer by a continuous random walk;(2) approximate the steric and topological effects
of other polymers in the system by a constraint that this walk encloses a fixed area.

In the framework of white noise analysis, the probability distribution can be obtained by first
parametrizing the paths of the polymer in terms of the Brownian motion Bx =

∫ N

0
ωxdν and By =∫ N

0
ωydν, that is

x(L) = x0 + lBx(L), and

y(L) = y0 + lBy(L)

where ωx and ωy are the white noise variables and L is the length of the polymer loop. The end points
of the polymer are then fixed by means of a Donsker delta function. With the parametrizations and
expressing the Donsker delta function in its Fourrier representation , the probability distribution for the
area enclosed by a polymer loop can then be written, in the language of white noise analysis, as
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where dμ(ων) is a well defined white noise Gaussian measure, N is a normalization constant and
FS(ν, ν′) = 1
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[a,b] denotes an

integration over c from a to b. Explicitly evlauting Eq.(1) and using the T−transform in white noise
analysis in the integration over dμ(ω), yields the result

P (A,N) =
[
2Nl2 cosh2

(
2πA

Nl2

)]−1

, (2)

which agrees with the result obtained by Khandekar and Wiegel [6].
One can also consider the application of white noise path integral method in doing analytical modeling

of biopolymer conformation [8] and in determining how chirality can influence the three dimensional
structure of a polymer [9].
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On braidings Bϕ and link invariants
Castillo Pérez, Maŕıa1

Knot theory belongs to a branch of mathematics called topology. Topol-
ogy deals with objects that can be continuously deformed from one to an-
other; e.g. a torus (a donut) is equivalent to a mug. A knot is a single
knotted circle, while a link is composed of two more entangled circles. In
biology knots occur in the ribbon like structure DNA. This makes it possible
for a molecule of DNA to knot. Molecules of DNA are large; this allows them
to have the necessary stretching and bending abilities to form knots. Using
knot theory, biologists are able to predict how more complex structures will
look like. Researchers have tested such predictions and found they hold true.
To experimentally verify results they examine knotted DNA using electron
microscopes.

In this work I deal with knots from the abstract point of view. I present
some examples of knot invariants, which arise from algebraic structures called
”braids”. These structures are important due to their relationship with links.
It is very well known that each braid gives rise to an (oriented) link via
closing. Now, according to a theorem of J. Alexander, any link is isotopic to
the closure of some braid. A theorem of Markov asserts that the closure of
two braids are isotopic if and only if these braids are equivalent with respect
to the so called ”Markov moves”.

1Bonn University
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 Minimalist models can provide important insights on protein evolution.  In this work we propose a 

new approach using topological aspects.   The model uses a 3x3x3 cubic lattice and a connection map 

between different conformations is found in the sequence and structural phase space.   For each of 

103,346 maximally compact conformations we designed the best unfrustrated sequence using an 

algorithm that maximizes the number for monomer types in the sequence.   The maximum number of 

monomer types is 5.  The desired properties for a protein are based on “protein-like”
1,2

 concepts: the 

existence of a unique lowest energy conformation as well as high accessibility and robustness. 

 Out of all maximally compact conformations, only 4.75% generated protein-like sequences. This 

study focuses on these sequences and their corresponding conformations.   Monte Carlo (MC) 

simulations are performed to probe for better sequence-structure relationships based on Zscore. The 

simulation first selects an initial conformation from a randomly selected sequence of 2 monomer types.   

Next, each MC step generates a new sequence by the following procedure: monomers at two positions 

are exchanged or a monomer is replaced at one position by anyone of 4 alternative types. If the Zscore of 

the new sequence increases, it is considered more stable than before, and the optimal sequence-

conformation is chosen.   This process is repeated until the sequence with the highest Zscore is reached.   

Keeping track of all MC trajectories, a map of connectivity of sequence-conformation is obtained.   

Different trajectories show connections between structures with low Zscore.   A map of connections is 

presented for all trajectories obtained.   The increase of Zscore along the simulation leads to a small 

group of preferred conformations with varying connection densities. The model suggests funnel-like 

structures for folding evolution, in which the structure or structures at the bottom of the funnel are 

associated with the “motif” of a protein.   This result is a possible explanation for the restricted number 

of conformations despite of the large number of sequences in the Protein Data Bank (PDB).      
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The scaling properties of homo- or heterogeneous mixture of DNA knot types were studied by Atomic 

Force Microscopy (AFM) [1]. DNA knots were deposited onto mica in regimes of (i) strong binding 

(deposition on 3-aminopropyltriethoxy silane vapors modified mica) that induces a kinetic trapping of 

the three-dimensional (3D) configuration, and of (ii) weak binding (deposition from a solution 

containing Mg
2+

 ions), that permits relaxation on the surface. The contour of each knotted molecule 

was analyzed by a box counting algorithm, giving the number of boxes containing a part of the 

molecule, N(L), as a function of the box size, L, allowing to recover the relation N(L) � L
-d

f, where df 

is the fractal dimension and � = 1/df is the scaling exponent. This relationship is complicated by the 

presence of a persistence length of DNA (about 50 nm) which introduces a crossover from a rigid rod 

behavior to a self-avoiding walk behavior. In (i) the radius of gyration of the adsorbed DNA knot scales 

with the 3D Flory exponent � � 0.58 within error. In (ii), the value � � 0.66, intermediate between the 

3D and 2D (� = 3/4) exponents, was found, indicating an incomplete 2D relaxation or a different 

polymer universality class. A different analysis, where the fractal dimension was determined by a mass 

counting algorithm giving the knot mass as a function of the box size, yielded compatible results. 

AFM images of weakly adsorbed simple knots show the localization behavior, which was predicted for 

2D self avoiding chains [2]. 
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Intrinsic curvature of biopolymers is emerging as an essential feature in various 

biological phenomena. They control the structure of the cell and play functional role in 

important cellular processes like cell division. Microtubule in animal cells and FtsZ 

filaments in Prokaryotic cells are important examples of intrinsically curved polymers. 

We study the general model for such polymers and report how intrinsic curvatures 

influence their statistical properties. We give exact results for the tangent-tangent spatial 

correlation function  both in 2D and 3D, and numerically compute 

the distribution function P(R) of the end to end distance R using transfer matrix method 

and monte carlo techniques. Contrary to the mean field theory predictions, in three 

dimensions C(r) does not show any oscillatory behavior. 
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Abstract 

 

Hepatitis C virus (HCV) translation initiation is mediated by an internal ribosome entry site 

(IRES) located in the 5´ unstranslated region (5´- UTR) of the viral mRNA. This sequence 

can functionally replace both the cap and also many of the proteins needed to recruit the 

ribosome to the start codon in a process that is RNA dependent. The HCV IRES region 

adopts a three dimensional folded structure composed by IV domains that has been 

characterized by cryo-electron microscopy, X-ray crystallography and NMR spectroscopy. 

In this study, the dynamic behavior of IRES domain IIId was analyzed by means of 

molecular dynamic (MD) simulations. The simulations were carried out in explicit water 

environment with mono- and divalent counterions using particle-mesh Ewald summation to 

account for the electrostatic interactions. The obtained results allow the characterization of 

IRES domain IIId dynamic behavior, the effects of counterions, hydrogen bond patterns 

and electrostatic properties. Within this context, IRES domain IIId mutations that hinder 

HCV IRES activity in both in vitro and ex vivo assays, identified in viral populations 

isolated from chronically infected patients, were analyzed through MD simulations and 

compared with the wild type reference structure. Comparative analysis showed the diverse 

effects of mutations and provided an explanation to the inhibition of HCV IRES activity.     
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The equilibrium configurations of the closed ring DNA molecule on the basis of elasticity 

theory are obtained: from the closed relaxed ring to the first supercoil. Distribution of bend and torsion 

energies and stress on length of the closed ring molecule are investigated. 

 

Geometric features of the DNA double helix in the supercoiled state are considered. Influence of a 

strand corner on differential-geometric and topological characteristics of DNA molecule is 

investigated. The depending force characteristics on winding angle in DNA are calculated. 
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ABSTRACT 

 

 Nonlinear molecular excitations in alpha helical proteins are governed by soliton modes as 

proposed by Davydov [1,2]. He suggested that nonlinear self-trapping could serve as a method of 

energy transport along quasi-one dimensional chains of protein molecules through the formation of 

solitons moving without loss of energy. A soliton along the hydrogen bonding spines in alpha helical 

proteins is formed as a result of the dynamical balance between the dispersion due to the resonant 

interaction of intrapeptide dipole vibrations and the nonlinearity provided by the interaction of these 

vibrations with the local displacements of the equilibrium positions of the peptide groups. Davydov’s 

method is to guess a functional form for the trial wave function which has a number of parameters 

[1,2]. By identifying these parameters and momenta conjugate to other co-ordinates in the problem, he 

was able to write the equations of motion for the parameters in the form of the classical Hamiltonian 

equations.  

 Recently it was observed a N-H stretching mode self-trapping in the poly-�-benzyl-L-glutamate 

helix by applying ultra fast infrared pump-probe spectroscopy [3]. Two positive bands in the transient 

absorption spectrum have been assigned to self-trapped two exciton states [3]. Motivated by this, the 

two exciton states in alpha helical proteins is studied in this paper. For this purpose the Davydov 

Hamiltonian is  modified by including higher order excitations and interactions using the second 

quantized operators. A suitable two-exciton trial wave function is used to construct the equations of 

motion. Under coherent representation, in the continuum limit, the collective molecular excitations are 

found to be governed by a perturbed Nonlinear Schrödinger equation. A multiple scaling perturbation 

analysis is used to construct the soliton solution to the resulting equation which shows the that the 

velocity and amplitude of the soliton do not change. The perturbed soliton is also constructed. 
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ABSTRACT 

 

In this paper we study different time-dependent evolutions of filament coiling for 

modeling DNA proteic coding, viral spooling and chromosome packing. For this, we 

introduce the concept of hierarchical kinematics to describe the super-position of 

curve evolutions of increasing complexity, starting from a base (primary) curve and 

evolving towards secondary and tertiary structures, to capture higher-order coiling. 

Preliminary work [1, 2] has been gradually extended to model mechanisms of proteic 

coding and viral spooling [3], and here we extend these results further to investigate 

the role of geometric quantities such as writhing, curvature and torsion localization, 

and relative rates, in relation to elastic deformation energy, filament compaction and 

packing efficiency. 
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Abstract:
In a recent experiment (D. A. Heller et. al. SCIENCE, 311, 508, (2006)) a conforma-

tional transition from the B form to the Z form of DNA on a carbon nanotube has been
monitored as a function of time. This transition is thermodynamically identical for DNA
on and off the nanotube. We propose a theory for the selected uniform velocity of this
propagation.
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DNA circles of sizes ranging 90-356 base pairs with various levels of over and 
under winding have been simulated using atomistic molecular dynamics.  These 
computer simulations have shown that writhing depends on salt concentration, 
circle size, and superhelical density.    Sequence dependence effects, including 
denaturation, have also been analysed in an attempt to discover their role.  In 
addition a mesoscopic model has been developed to investigate supercoiling on 
a much larger scale. 
 



Topological Methods for Measuring the
Entanglement of Polymers
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Abstract

Linear polymer chains are long flexible molecules that impose topo-
logical constraints, called entanglements, that affect the conformation
and motion of the chains in a polymer melt. In this research, we ex-
tend the notions of self-linking and linking from closed chains to open
chains. We study the scaling of the average writhe, self-linking and
linking number of uniform and equilateral random walks and polygons
as their length increases. We prove that the mean squared writhe of
an oriented uniform random polygon of length n in a confined space
is of the form O(n2). For a fixed simple closed curve in the confined
space, we rigorously show that the mean absolute value of the linking
number between this curve and a uniform random polygon of n ver-
tices is of the form O(n). Our numerical study confirms those results
and indicates that the mean absolute value of the linking number be-
tween two oriented uniform random polygons of length n each is of
the form O(n). In the case of equilateral random walks and polygons
our numerical simulations suggest that the mean absolute value of the
linking number between two oriented equilateral random walks whose
starting points coincide shows the scaling exponent of ∼ 0.44, and
the self-linking number for an oriented equilateral random walk shows
the scaling exponent of ∼ 0.5. We introduce a new measure of en-
tanglement for collections of open chains that can be used to measure
the entanglement of polymer melts, the linking matrix. We demon-
strate that the self-linking of the chains is the most important factor
of entanglement of the collection of polymer chains.

∗Department of Mathematics, National Technical University, Athens, GR 15780,
Greece, lnpanagiotou@yahoo.com

1



Ropelength of Knots 

 

Teresita Ramirez-Rosas 

University of California, Santa Barbara 

 

 

 

Abstract 

 

 The ropelength of a knot is the minimal length of rope we need to tie a knot subject to maintaining an 

embedded normal tube of fixed radius around the knot. 

 

 An interesting question is to find a lower bound for the ropelength of a nontrivial knot in general 

position. The best known lower bound for the ropelength of a nontrivial knot is 31.32 proved by 

Elizabeth Denne, Yuanan Diao and John Sullivan. This work presents some of the ideas used to get this 

lower bound and a new technique that shows that a lower bound for the ropelength of a trefoil knot is 

more than 31.32. 

 

 We expect to extend this result for any nontrivial knot using the fact that any knot has an essential arc. 

 

 

 

References 

 

The Lower Bounds of the Lengths of Thick Knots, Yuanan Diao; Journal of Knot Theory and its Ramifications, 

Vol. 12, no. 1: 1–16 (2003). 

 

 

Quadrisecants give new bounds for Ropelength, Y. Diao, J.M. Sullivan. Geometry and Topology Vol. 10, 2006 

p.1–26. 

 

 

Alternating Quadrisecants of Knots, Elizabeth Denne; Geometry & Topology.  

 

 

 

 



��������		
�
������
��
����	������
�����
���
������������������������������� ���!"�

��� �
����
���	�#����$�!�%��&'����(��)
����!�����&*���+",--!�'���
��
"�� .���&��
�������
�
��$��/
�
�!� '���0
��	�.���
$��������������)��$
��

��
�����!�%��&'����(��)
����!�����&*���+",--!�'���
��
�
1
��
)
���
��������������&��0��
���������������2���3&�������
�����0��������$���
����
��
���	������2$���
��$0�)
�34�5��6�
�����������0�
������
���$���������������
�
�
��
����	���
��&������$0�)
���1
����7����0����
��
����!�$�����������$���
���
����0$�����1���&8��
&/�����218/3���
���$0�)
��7�������
��������
�������
�
�
	��
���
�$���
9�
$������������18/��
�
��
�
��
� �
���	�$0�)
��7�����		
�
��
�����$�������
��
��4"5��1
�	�0�������
���
��
���		
�
�$
����������
��!�������	��
�
����
��
���	��
�7��
��
� �
��$���$��
��:�7
)
�!�7
������	�0���������������		
�
�$
;�
7���
��������
�$���
�������
�����
�$�� 
���
�����
��
���	�18/!�7����		
�
���
�����
��
��

�
�����
�$�� 
��
�
��
� �
��	��������
�
��
�� �������1
����7�����
�
���
����$
��	�7��$���
�������
������$$0����0
����
�������
����	��
����
���'��
���
�����
�
��
�
��
� �
��	�����
��������
���7
�0�
����:����������7��$������
�
$�����$�18/�7������������������218/63��
�
�
4�5������������������!���������� ���������
9���
���0��*��� 
���<1���&���
�
#����
��8�����������0��
������<�=�����������	
��������>��2"--?3!�8+-@��
�
4"5�������������������������������� ���<��		
�
�����*
��
����	�#����
�����
��;�
1���&���
�/�����!���  ����������0��
������<�=�����������	
��������A��2"--@3���++&
��??��



Conformation of Circular DNA in 2 Dimensions 
 

Kristian Rechendorff, Guillaume Witz, Jozef Adamcik, and Giovanni Dietler 

Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique 

Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 

 

The conformation of circular DNA molecules of various lengths adsorbed in a 2D conformation 

on a mica surface is studied using Atomic Force Micoscopy (AFM) [1].  

The results for the radius-of-gyration, the end-to-end distance, and the bond correlation function are 

compared to theoretical findings [2,3], and confirm the conjecture that the critical exponent � is 

topologically invariant and equal to the self-avoiding walk (SAW) value (in the present case � = 3/4). It 

is also found that the topology and dimensionality of the system strongly influences the cross-over 

between the rigid regime and the self-avoiding regime at a length L � 9lp, lp being the persistence 

length. In accord with theoretical predictions [2] we do not observe a Gaussian behaviour of the chain 

between the rigid-rod and SAW regimes, the reason being that for circular molecules confined in 2D, 

self-avoidance is a strong constraint, and will thus influence the molecular conformation at relatively 

short scales compared to the finding for linear DNA molecules in 3D. 

The bond correlation function scales with the molecular length L as predicted; in the case of long and 

intermediate molecular lengths we find good agreement with the scaling theory from Ref. [3], while for 

short molecular lengths, L � 5lp, circular DNA behaves like a stiff molecule with approximately elliptic 

shape. 

 

[1] G. Witz, K. Rechendorff, J. Adamcik, and G. Dietler, submitted to Phys. Rev. Lett., 

arXiv:0806.0514v1. 

[2] C.J. Camacho, M.E. Fisher, and R.R.P. Singh, J. Chem. Phys. 94, 5693 (1991). 

[3] A. Baumgärtner, J. Chem. Phys. 76, 4275 (1982). 



                      Dodging the crisis of folding proteins with knots
                                                           Joanna I. Sulkowska

Center of Theoretical Biological Physics,Department of Physics, 
The University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093

Institute of Physics, Polish Academy of Sciences, 
Al. Lotnikow 32/46, 02-668 Warsaw, Poland

        

    We prove that proteins with nontrivial topology, containing knots and slipknots, have the ability to 
fold to their native states without any additional external forces invoked. Our studies are based on a 
simple coarse-grained model with interactions modeled only by the native contacts. We demonstrate 
that folding of knotted proteins YibK and YbeA proceeds through an intermediate configuration with a 
slipknot. Analysis of topological barriers and backtracking associated to these trajectories reveals to 
which extent various native contacts are responsible for a folding process. From this we conclude how 
to modify their strength to get more realistic model, with a higher ratio of properly folded structures. 
We also discuss dependence of folding properties on temperature, presence of side groups, and the 
extension of protein chain.



Base Flipping in DNA induced by Protein

V. Vasumathi and M. Daniel

Centre for Nonlinear Dynamics, School of Physics, Bharathidasan
University, Tiruchirapalli-620024, Tamil Nadu, INDIA

Abstract

Protein-DNA interaction plays an important role in a large number
of cellular processes such as gene expression, suppression, replication,
transcription, recombination, repair and few others. DNA participa-
tion in the above processes are mediated or catalyzed by DNA-binding
proteins like polymerases, helicases, nucleases, isomerases, ligases and
histones. During this process most of the proteins are known to change
the conformation of DNA when it binds to DNA [1, 2]. Therefore, it is
important to investigate the conformational changes in DNA through
nonlinear excitations when protein binds to DNA. We carry out the
analysis by considering DNA as a two coupled linear chain [3] and
protein as a single chain [4] interacting of DNA through linear har-
monic coupling. The equation of motion is derived from the Hamilto-
nian through a semi-classical approach using Glauber’s coherent state
method combined with Holstain-Primakoff (H-P) bosonic represen-
tation in the continuum limit. The dynamics of the DNA-Protein
system is found to be governed by the completely integrable nonlinear
Schrodinger equation which admits N-soliton solutions. Thus, the re-
sults indicate that the base pair opening in DNA that appears in the
form of a bubble is induced by the protein molecule and thus acts as
a zip runner.
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Physical Pseudo-knots: a new type of Entanglement 

 

F. Vistulo de Abreu
1
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It is generally accepted that Entanglements, as described by the reptation model, explain some 

mechanical properties of polymers, like viscoelasticity. According to the reptation model 

entanglements behave as dynamic links that are destroyed and created in time. Whether entanglements 

could alternatively produce local and stable links, with similar effects to chemical bonds, remains 

unclear. In this presentation I will discuss how a new type of entanglement produces local and stable 

links. We call these bonds physical pseudo-knots. They are formed with high probability in helical 

structures, and the energies required to create and destroy them can differ by at least one order of 

magnitude. Furthermore, they remain localized. As a result they are controllable and a wide range of 

potential applications could emerge in many fields: material science, nano- and biotechnology. Their 

implication in living systems should also be studied as they could be used for their normal functioning 

or instead be implicated in diseases.  

 

 

 

 

 

 

 

 



Numerical simulations of DNA catenanes: Energetical and topological influence of supercoiling 
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 DNA offers the possibility to study a great variety of topological problems. Until now, DNA 

knots attracted most of the attention in numerical simulations [1, 2]. But another class of topological 

entanglement involving DNA exists and was much less studied: DNA catenanes. These are produced 

during replication and are generally formed by two multiply linked chains. Simulations of catenanes [3] 

were, until now, limited to the case of nicked molecules (without torsional stress). We extend here the 

simulations to the case of covalently closed rings and try then to apply to catenanes the type of analysis 

already used for knots. First, we show how the topological constraint limits the extend of supercoiling. 

Second, we address topological mechanisms involving local geometry. As was shown for knots [2], 

local geometry properties, like chirality, are an important factor explaining the activity of 

topoisomerases. We try to show that these properties also have a central role in the decatenation 

process and that they are influenced by supercoiling. 

 

 

[1] Rybenkov V.V., Ullsperger C., Vologodskii A.V. and Cozzarelli N.R., Science, 1997, 277:690-693. 

[2] Burnier Y., Weber C., Flammini A. and Stasiak A., Nucleic Acids Res., 2007, 35:5223-5231. 

[3] Vologodskii A.V. and Cozzarelli N.R., J. Mol. Biol, 1993, 232:1130-1140. 
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