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SLR and GRACE
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Gravity Anomalies (from 
GRACE)
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Geoid Variation - August 2002



Geoid Variation - October 2002



Geoid Variation - November 2002



Geoid Variation - February 2003
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The Map of Mass Variation
Trend - Filtered



Details: Greenland and 
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The Post Glacial Rebound: Geoid Rate
νUP = 5x1020 Pa s νLW = 2.5x1021 Pa sLambeck (ANU)



The Map of Mass Variation
Trend - Filtered



Mass Distribution 



Mass Distribution over Oceans



GRACE up 30 - Sea Removed
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GRACE up 30 - Nearby
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GRACE up 30 - West Antarctica
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Upper Mantle Viscosity νUP = 1019-6x1021 Pa s

Incompressible, Viscoelastic Maxwell Rheology

Lower Mantle Viscosity νLW = 1021-6x1023 Pa s



Global Problem - Search for best viscosity

Cleaned GRACE
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Polar Region Mass Balance from GRACE

Antarctica 38 ± 7 Gt/yr

Greenland -107± 47 Gt/yr
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Implementation of  numerical and analytical forward and inverse modeling of 
crust and lithosphere deformation

Marotta, A. M. et al., JGR 2004 – Combined effects of tectonics and glacial isostatic 
adjustment on intraplate deformation in central and northern Europe: Application 
to Geodetic baseline analysis.

















Seismicity (Ms, NEIC 1903-1999)
and calculated seismic strain rate



SAR: data acquisition

• Pulse transmission

• Propagation, interaction with surface echoes 

• Acquisition of echoes, with a delay:     t = 2 R / c
the system measures distances

• Transmission of pulses along the orbit 2D sampling of terrain





Methodology for detecting the vertical movements during the 

pre-seismic, co-seismic and post-seismic phases in earthquake prone areas
(Crippa B.  et al., An advanced slip model for the Umbria-Marche earthquake sequence: coseismic displacements 

observed by SAR interferometry and model inversion, GJI, 2005, in press).









GPS Umbria-Marche network
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Dalla Via, G. et al., Lithospheric rheology in southern Italy inferred from postseismic
viscoelastic relaxation following the 1980 Irpinia earthquake, JGR, 2005





Dalla Via, G. et al., Lithospheric
rheology in southern Italy
inferred from postseismic
Viscoelastic relaxation following
the 1980 Irpinia earthquake, 
JGR, 2005



CONCLUSIONS (1)

• Although the seismic classification of the Italian territory has been recently revised, 
the evaluation of seismic hazard continue to be based on the traditional 
probabilistic approach, i.e. on the probabilistic analysis of earthquake catalogue 
and of ground motion information, retrieved by macroseismic observations and 
instrumental recordings, that may lead to severe underestimations of seismic 
hazard. 

• Recently this approach showed its limitation in providing a reliable seismic hazard 
assessment, possibly due to the insufficient information about historical seismicity, 
which can introduce relevant errors in the purely statistical approach mainly based 
on the seismic history. Indeed, some areas where low seismic hazard was foreseen, 
and consequently were not included in the seismic classification, have been 
subsequently struck by relatively strong and damaging earthquakes (e.g. the Sicily, 
September 2002, and the Molise, October 2002, earthquakes).



CONCLUSIONS (2)

• To overcome the mentioned limitations and, above all, to improve the pre-seismic 
information which may lead to an effective mitigation of seismic risk, we are 
proposing an innovative approach, that combines EO data and new advanced 
approaches in seismological and geophysical data analysis. 

• The proposed system, in fact,  is proposing a deterministic approach to the 
estimation of seismic ground motion, integrated with the space and time 
dependent information provided by EO data analysis through geophysical 
forward modeling. The reason of the proposed integration of different 
geophysical observables appears almost obvious analyzing the earthquake “life 
cycle”, i.e. its process of preparation and occurrence: the lithosphere 
accumulates stress, according to strain and strain rates fields due to tectonic 
movements, which is partly released during the earthquake occurrence. 
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