Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Understanding El Nino in ocean-atmosphere general circulation models: progress and challenges

GUILYARDI Eric
LOCEAN Laboratoire d'Oceanographie Experimentation et Approches Numeriques, IPSL Institut Pierre Simon LaPlace
Universite' Pierre et Marie Curie, BP 100, 4, Place Jussieu
75252 Paris Cedex 05
FRANCE
Understanding El Niño in coupled GCMs: progress and challenges

Eric Guilyardi
IPSL, Paris & NCAS-Climate, Univ. Reading

Andrew Wittenberg, Alexey Fedorov, Mat Collins, Chunzai Wang, Antonietta Capotondi, Geert Jan van Oldenborgh, Tim Stockdale

Conference on Teleconnections in the Atmosphere and Oceans, ICTP, Trieste, Nov. 2008
El Niño

Ocean-atmosphere coupled anomaly in the tropical Pacific

Historical Sea Surface Temperature Index

Normal Conditions

El Niño Conditions

Teleconnections Workshop, ICTP, Nov. 2008
El Niño

IPCC (2007)

« All IPCC AR4 models show continued ENSO interannual variability in the future no matter what the change in average background conditions, but changes in ENSO interannual variability differ from model to model. Based on various assessments of the current multi-model archive, in which present-day El Niño events are now much better simulated than in the TAR, there is no consistent indication at this time of discernible future changes in ENSO amplitude or frequency. »

IPCC AR4 report, WG1, Chap. 10, Executive Summary
Outline

1. ENSO in coupled GCMs
2. Attributing ENSO errors
3. Community strategies to improve ENSO in models
El Niño in coupled GCMs – mean state

Zonal wind stress in central Pacific

Trade winds too strong
Both mean and annual cycle

CMIP3 models used for IPCC AR4

Guilyardi et al. (BAMS 2008a)
El Niño in coupled GCMs - amplitude

ENSO amplitude in IPCC AR4: much too large diversity!
El Niño in coupled GCMs - frequency

Maximum power of Niño3 SSTA spectra

IPCC AR4: improved towards low freq. but still large diversity

IPCC TAR: to high frequency

El Niño in coupled GCMs – seasonal phase lock

Monthly Niño3 SSTA std. dev.

Half of the models do not display a seasonal phase lock

Observations

Even fewer models have the spring relaxation and the winter maximum

Subset of CMIP3 models
El Niño in coupled GCMs - structure and timing

Westward zonal extension

Too small meridional extension

With impacts on periodicity

(Capotondi et al. 2007)

Time sequence of El Niño/La Niña also has errors

e.g.: Model events terminate in West rather than in East Pacific

Leloup et al. 2008

Teleconnections workshop, ICTP, Nov. 2008
El Niño in coupled GCMs - teleconnections

Tropical teleconnections:
- Well established
- Via modulation of Walker circulation and/or equatorial waves
- ENSO influence over-dominant in models (e.g. IO, Saji et al. 2006, WAM, Joly et al. 2008, SAM, Annamalai et al. 2007, Cai et al. 2008)

Extra-tropical teleconnections:
- Atmospheric bridge via Rossby wave train
- Still a debate on robustness (Sterl et al. 2007)

Much more during this workshop!

Timing/amplitude/structure of events all key
El Niño in coupled GCMs - summary

Clear improvement since ~15 years

- some models get Mean and Annual cycle and ENSO right!

but:

- **Amplitude**: models diversity much larger than (recent) observed diversity
- **Frequency**: progress towards low frequency/wider spectra but still errors
- **SPL**: very few models have the spring relaxation and the winter variability maximum
- **Structure and timing**: westward extension and narrowing around equator, issues with time sequence (onset, termination)
- **Modes**: very few model exhibits the diversity of observed ENSO modes; most are locked into a S-mode (coherent with too strong trade winds)
- **Teleconnections**: ENSO influence over-dominant

van Oldenborgh et al. (2005), Guilyardi (2006), Guilyardi et al. (2008a)
El Niño in a warming climate

Model biases dominate over scenario

Observations

Evolution of mean state has little impact

SRES A2 vs. pdcntrl

IPCC (2007), Guilyardi et al. (2008a)

Teleconnections workshop, ICTP, Nov. 2008
Attributing ENSO errors: physical mechanisms

Atmosphere response to SSTA

• Bjerknes wind stress feedback (van Oldenborgh al. 2005, Guilyardi 2006)
• Radiative and cloud feedbacks (Sun al. 2006, Bony al. 2006)

Ocean response to τ and HF anomalies

• Upwelling, mixing, ("thermocline feedback", "cold tongue dynamics") (Meehl al. 2001, Burgers & van Oldenborgh 2003)
• Zonal advection (Picaut al. 1997)
• Wave dynamics
• Energy Dissipation (Fedorov 2006)

Non linear processes:

• NL dynamical heating ($\nabla_x T + U$ in phase, An & Jin 2004)
Attributing ENSO errors: the role of the ocean

Thermocline feedback depends on thermocline properties

Coupled models show large diversity

Brown and Fedorov (2008)
Atmosphere feedbacks during ENSO

Multi-model and sensitivity studies show that AGCM has a dominant role

Two types of feedbacks:

Dynamical: Bjerknes feedback μ
- East-west SST gradient
- Trade winds
- Equatorial upwelling in the east

Heat flux feedback α
- SST increase in the east
- Modified heat fluxes (SHF, LHF)

Guilyardi et al. (2004)
Evaluating the atmosphere feedbacks

Bjerknes feedback μ (+ve)

Heat Flux feedback α (-ve)

• Large diversity in coupled CGCMs
• Both feedbacks usually too weak

focus on one model
Impact of atmosphere convection scheme on ENSO

Observations (0.9 C) - HadiSST1.1

IPSL (KE) Kerry Emanuel (1.0 C) - in IPCC

IPSL/Tiedke (TI) (0.3 C) – old scheme

IPSL-CM4 model

ENSO has disappeared!

What role for α and μ?

Guilyardi et al. (2008b)
Impact of deep convection scheme on atmosphere feedbacks during ENSO

<table>
<thead>
<tr>
<th></th>
<th>(\mu)</th>
<th>(\alpha)</th>
<th>El Niño Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>~10</td>
<td>-18</td>
<td>0.9</td>
</tr>
<tr>
<td>KE</td>
<td>4</td>
<td>-5</td>
<td>1.0</td>
</tr>
<tr>
<td>TI</td>
<td>4</td>
<td>-20</td>
<td>0.3</td>
</tr>
</tbody>
</table>

10\(^{-3}\) N.m\(^{-2}/\)C \quad W.m\(^{-2}/\)C \quad \circ C

Error compensation!

Too weak (improves with atmosphere resolution)

Due to shortwave feedback difference (convection too strong in TI)

→ Need to get the right ENSO amplitude for the right reasons!
Community strategies to improve ENSO in models

The challenges lying ahead:

• Improve the quality and utility of historical records
• Maintain present ENSO observing system into the future
• Continue promoting intercomparison studies (ENSO metrics)
• Isolate the main sources of model error, guided by theory, observations, and rigourous evaluation of the models, including tests in seasonal forecast mode
• Better understand the response of ENSO to climate change
• Better represent unresolved processes and coupled feedbacks.

Guilyardi et al. (BAMS 2008a)
Community strategies to improve ENSO in models

Example: the Climate Forecast Historical Project (CFHP):
- initialise coupled system and perform hindcast ensembles
- identify mechanisms responsible for error growth
- (joins near term IPCC AR5 simulation strategy)

Example of simple nudging for initialisation

Black: HadISST
Orange: wind stress nudged to ERA40

Joly et al. 2008
Community strategies to improve ENSO in models

Example: the Climate Forecast Historical Project (CFHP):
- initialise coupled system and perform hindcast ensembles
- identify mechanisms responsible for error growth
- (joins near term IPCC AR5 simulation strategy)

Example of simple nudging for initialisation

Luo al. 2004
Summary

• El Niño in IPCC-class GCMs:
 • significant progress in CMIP3 vs. previous generations
 • still major errors (too much diversity)

• Atmosphere GCM is a dominant contributor:
 • Dynamical +ve (μ) and heat flux -ve (α) feedbacks both likely to control El Niño properties in CGCMs
 • Both feedbacks are usually too weak in models
 • Convection scheme has direct impact on α
 • Atmosphere GCM horizontal resolution improves Bjerknes feedback μ

• New community strategies keys to make progress

Thank you!
BJ index for KE and TI

\[
\frac{\partial (T)}{\partial t} = 2I_{BJ}(T) + F[h],
\]
\[
2I_{BJ} = - \left(\frac{\langle \bar{u} \rangle}{L_x} + \frac{-2\partial \bar{w}}{L_y} + \frac{\langle H(\bar{w}) \bar{w} \rangle}{H_m} \right) - \alpha
\]
\[
+ \mu_u \beta_u \left\langle \frac{\partial T}{\partial x} \right\rangle + \mu_w \beta_w \left\langle \frac{\partial T}{\partial z} H(\bar{w}) \right\rangle
\]
\[
+ \mu_u^* \beta_h \left\langle \frac{H(\bar{w}) \bar{w} a}{H_m} \right\rangle,
\]
\[
\beta_u = \beta_{uw} + \beta_{xs}, \quad F = - \left\langle \frac{\partial T}{\partial x} \right\rangle \beta_{ah} + \left\langle \frac{H(\bar{w}) \bar{w} a}{H_m} \right\rangle.
\]

<table>
<thead>
<tr>
<th></th>
<th>Dynamic damping</th>
<th>Thermodynamic damping ((\alpha))</th>
<th>Ocean feedbacks</th>
<th>BJ Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE</td>
<td>-0.46</td>
<td>-0.45</td>
<td>1.02</td>
<td>0.11</td>
</tr>
<tr>
<td>TI</td>
<td>-0.61</td>
<td>-1.33</td>
<td>0.52</td>
<td>-1.42</td>
</tr>
<tr>
<td>Change (%)</td>
<td>-30%</td>
<td>-200%</td>
<td>-50%</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The BJ Index and its components for KE and TI simulations. The ocean feedbacks sums the zonal advective feedback, the thermocline feedback and the Ekman feedback (see Jin et al. 2006 for details). Units are 1/Yr.

→ Linear theory: \(\alpha\) dominant factor in TI/KE difference
Can we suppress ENSO in KE?

- Perform KE run with increased α_{sw}
 - Interannual Flux Correction:
 - $SHF_0 = SHF_{SC}^{KE} + \alpha^{mod}_{sw} (SST_0 - SST_{SC}^{KE})$
 - $\alpha^{mod}_{sw} = -15 \text{ W.m}^{-2}$
 - Mean state (SC) unchanged

ELS0 gone as well!

<table>
<thead>
<tr>
<th>μ</th>
<th>α</th>
<th>El Niño Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>~ 10</td>
<td>-18</td>
</tr>
<tr>
<td>KE</td>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>TI</td>
<td>4</td>
<td>-20</td>
</tr>
<tr>
<td>KE mod TI</td>
<td>5</td>
<td>-21</td>
</tr>
</tbody>
</table>

Teleconnections workshop, ICTP, Nov. 2008
Seasonal evolution of feedbacks

- Shortwave HF feedback α_{SW} in second half of year explains most of the difference

-25 W.m$^{-2}$/C

1°C/month in SST cooling !!!

(MXL 50 m, SSTA of 2°C)
\(\alpha_{SW} \) feedback distribution

- **Point-wise regression of SHF anomaly vs. SSTA (correl. less than 0.2 blanked out)**
 - Negative feedback (blue) = convective regime
 - Positive feedback (red/orange) = subsidence regime
- ERA40 has large errors in East Pacific (Cronin et al. 2006)
- AMIP KE closer to ISCCP
- AMIP TI has too strong convection
- In KE, subsidence/+ve \(\alpha_{SW} \) invades central Pacific
- In TI, convection/-ve \(\alpha_{SW} \) invades east Pacific
- Coupled vs. forced (Yu & Kirtman 2007)