Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Influence of El Nino on the upper-ocean circulation in the tropical Atlantic in different ocean estimates

KRÖGER Jürgen and DEWITT Dave
International Research Institute for Climate and Society
The Earth Institute Columbia University
61 Route 9W, Monell Building
Lamont Campus Palisades 10964-8000, NY
U.S.A.
Influence of El Nino on the upper-ocean circulation in the Tropical Atlantic in different ocean state estimates

Jürgen Kröger and Dave DeWitt

International Research Institute for Climate and Society (IRI)
The Earth Institute, Columbia University,
Lamont Campus, New York
Influence of El Nino on the upper-ocean circulation in the Tropical Atlantic in different ocean state estimates

- NCEP – GODAS
- UMD - SODA
- ECMWF - ORA-S3
- Gent & Cane

Circulation in the upper subtropical and tropical Atlantic

Wind-driven zonal flow system superimposed on western boundary current regime

Schematic diagram of the surface and thermocline flow field in the subtropical and tropical Atlantic; Schott et al. (2002)
Circulation in the upper subtropical and tropical Atlantic

this complex flow field forms 3-dim shallow cells …

… involved in modulating eq. SST

Schematic diagram of the surface and thermocline flow field in the subtropical and tropical Atlantic; Schott et al. (2002)
Tropical Atlantic Ocean-Atmosphere Circulation

Hadley - W. cells

Shallow Tropical Cells

upwelling zone

(courtesy A. Lazar)
Zonally integrated flow field & shallow cell strength index in an OGCM

Common means to give insight into net meridional transports

low-pass filtered vertical stream function (VSF) [Sv] in 1984 in Gent & Cane, with the local extreme value (between surface and 100 m) indicated by the thick black line;

Kröger et al. (2005)
Zonally integrated flow field & shallow cell strength index in an OGCM

Influence of El Nino on the Atlantic shallow cell variability

VSF anomaly composite based on Pacific Nino3 (4 months lead) in MPI-OM (NCEP forcing, all months, no phase locking with the seasonal cycle);

Lohmann & Latif (2007)
Sketch of the zonally integrated flow field in the Atlantic

Subtropical and Tropical Cells (STC,TC) superimposed on the MOC
OGCM exps. elucidate the role of shallow cells in modulating eq. SST

(i) remote vs. local forcing

Kröger et al. (2005)
OGCM exps. elucidate the role of shallow cells in modulating eq. SST

(ii) dynamical vs. thermo-dynamical forcing

(1) $\bar{v} T'$

Kröger et al. (2005)
OGCM exps. elucidate the role of shallow cells in modulating eq. SST

(ii) dynamical vs. thermo-dynamical forcing

\(\tau'\)

\(0m\)

MOC

\(~200m\)

MOC

STC

TC

TC

STC

(1) \(\bar{v} T'\)

(2) \(\nu'\bar{T}\)

Kröger et al. (2005)
Relation between VSF index, heat transport and equatorial SSTA

SST variability in Atl. Nino region is dominated by local, dynamical forcing

Low-pass filtered (6-year-running mean) time series of VSF index anomaly (black), heat transport anomaly (blue), and equatorial SSTA (red, mean over 1S-1N, 25W-Africa) in Gent & Cane with observed momentum and climatological heat flux forcing (NCEP)
Zonally integrated flow field: regression on the Atl. Nino in Gent & Cane

warm eq. SST related to spin-down of TCs and vice versa
Zonally integrated flow field: regression on the Atl. Nino in the ODAs

eq. SSTA related to spin-up and spin-down of TCs, especially in the north
Zonally integrated flow field: regression on Pacific Nino34 in Gent & Cane

warm Pacific SSTs related to spin-up of Atlantic TCs and vice versa
Zonally integrated flow field: regression on Pacific Nino34 in Gent & Cane

regressions for all individual months reveal phase locking with seasonal cycle

exp8.1.1: Reg[nino34 (lead 0), Atlantic VSF index (a=0:80)], IC: annual_cycle (ens)
Zonally integrated flow field: regression on Pacific Nino34 in the ODAs

regressions for all individual months reveal phase locking with seasonal cycle
Influence of El Nino on the upper-ocean circulation in the
Tropical Atlantic in different ocean state estimates

- El Nino (La Nina) leads to spin-up (spin-down) of TCs
- TC response reveals phase locking with the seasonal cycle
- southern TC dominates in spring, northern TC in summer
Zonally integrated flow field: regression on Pacific Nino34 in CFS

regressions for all individual months reveal phase locking with seasonal cycle

cfs: Reg[nino34 (lead 0), Atlantic VSF index (a=0.8)], IC: annual_cycle (ens)
Zonally integrated flow field: regression on Pacific Nino3 in Gent & Cane

warm Pacific SSTs related to spin-up of Atlantic TCs and vice versa