RegCM3-CLM3: Land surface modeling in RegCM and impact on aerosols

Allison Steiner
University of Michigan
Atmospheric, Oceanic and Space Sciences Department

Jeremy Pal (Loyola Marymount University), Sara Rauscher, Filippo Giorgi (International Centre for Theoretical Physics), Noah Diffenbaugh (Purdue University), Jason Bell, Lisa Sloan (University of California, Santa Cruz)

Workshop on Aerosol-Climate Interactions

Hurghada, Egypt

13 February 2008
What it looks like in Michigan now…
Talk Outline

1. Overview of Land Surface Parameterizations
2. RegCM3-CLM3 simulation results: An improvement in the simulation of the west African monsoon
3. The land surface and aerosols
1. Introduction

Land Surface Parameterizations
1. Introduction

Generations of Land Surface Schemes

<table>
<thead>
<tr>
<th>Generation</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| First Generation | Basic surface energy & water balance
1. Radiation exchange
2. Latent & sensible heats
3. Surface drag
4. Soil "bucket" model | Simple LSPs (e.g., weather forecasting models) |
| Second Generation | Vegetation-soil interactions
1. Canopy radiation absorption
2. Vegetation/momentum interaction
3. Biophysical control of ET (empirical)
4. Canopy interception of precip
5. Soil moisture/root systems
6. Canopy insolation of surface | BATS |
| Third Generation | Interactive biochemistry
1. Biochemical model for photosynthesis
2. Coupled photosynthesis-stomatal conductance
3. Integration of satellite data | CLM |

Sellers et al., 1997
1. Introduction

RegCM Land Surface Schemes

RegCM Version

- **RegCM1**
 - Dickinson et al. (1989)

- **RegCM2**
 - Giorgi et al. (1993a,b)

- **RegCM2.5**
 - Giorgi & Shields (1999)
 - Pal et al. (2000)

- **RegCM3**

Land Model Options

- **BATS 1a**
 - Dickinson et al. (1986)

- **BATS 1e**
 - Dickinson et al. (1993)

- **CLM0**
 - (Steiner et al. 2005)

- **SUBBATS**
 - (Giorgi et al., 2003)

- **CLM3**
 - (Steiner et al., in prep)

Pal et al., 2007
1. Introduction

BATS: Biosphere-Atmosphere Transfer Scheme

Dickinson et al., 1993
1. Introduction

CLM0: Common Land Model v. 0

Figure 1. Biogeophysics and hydrology represented in the Community Land Model.

www.cgd.ucar.edu
1. Introduction

CLM0: Common Land Model v. 0

Subgrid land cover and plant functional types

Figure 2. CLM represents a grid cell as a mosaic of up to 5 primary land cover types. Vegetated land is further represented as a mosaic of up to 4 plant functional types. Each subgrid tile is represented as a separate soil-plant-atmosphere column.
1. Introduction

CLM3: Community Land Model v. 3

- Biogeophysics
- Biogeochemistry
- Hydrologic Cycle
- Dynamic Vegetation

www.cgd.ucar.edu
1. Introduction

Biogeophysical changes: BATS vs. CLM

BATS
- One canopy layer
- Simple stomatal conductance model
- No photosynthesis
- One snow layer
- 3 soil layers
 - Soil T: Force-restore
 - Soil moisture: Diffusive/gravitational

CLM3
- One canopy layer
- Sunlit/shaded leaves
- Stomatal conductance-photosynthesis model
- TOPMODEL-based runoff
- Up to five snow layers
- 10 uneven soil layers
 - Soil T and moisture: Solved numerically
 - Includes liquid H_2O/ice
2. RegCM3-CLM3 Simulation

Simulation details

- Regional Climate Model (RegCM3; Pal et al., 2007)
- Changed land surface scheme from BATS to CLM3
- 2 year spin-up + 10 year simulations (1992-2001)
- 120x125 grid at 60km resolution
- ERA-40 boundary conditions
- Emanuel precip scheme
2. RegCM3-CLM3 Simulation
Change to CLM3 substantially improves simulation of African monsoon precipitation

![Maps showing precipitation (mm/month) for May, June, July, Aug, Sept for BATS, CRU, CLM3]
2. RegCM3-CLM3 Simulation

Change to CLM3 substantially improves simulation of African monsoon precipitation.
2. RegCM3-CLM3 Simulation

Change to CLM3 substantially improves simulation of African monsoon precipitation.
2. RegCM3-CLM3 Simulation
Change to CLM3 substantially improves simulation of African monsoon precipitation
2. RegCM3-CLM3 Simulation

CLM3 is much drier than BATS simulations in the surface layer (first 10cm)
2. RegCM3-CLM3 Simulation

CLM3 is much drier than BATS simulations in the root zone (1-2 m)

- Drier soils have also been noted in global model comparisons with CLM2 (Bonan et al., 2002; Zeng et al., 2002)
2. RegCM3-CLM3 Simulation

Formation of the African Easterly Jet (AEJ)

Seasonal heating → surface T gradient → thermal wind → forms AEJ
2. RegCM3-CLM3 Simulation

Southern latitude surface temperatures are cooler in RegCM3-BATS simulations.
2. RegCM3-CLM3 Simulation

RegCM3-BATS simulations have stronger meridional surface T gradient
2. RegCM3-CLM3 Simulation

Known soil moisture-precipitation feedbacks

- Wetter soils
- Increased Moist Static Energy (MSE)
- Position of African Easterly Jet (AEJ) at 600 mb
- Increased precipitation

Philippon & Fontaine, 2002
2. RegCM3-CLM3 Simulation

Greater Moist Static Energy (MSE) in northern latitudes in RegCM3-BATS

Surface MSE (kJ/kg)
2. RegCM3-CLM3 Simulation
MSE leads to a northward shift in the RegCM3-BATS African Easterly Jet (~600mb)
2. RegCM3-CLM3 Simulation

RegCM3-CLM3 simulation produces jet more like the driving ERA-40 conditions.
2. RegCM3-CLM3 Simulation

AEJ location impacts large scale circulation

BATS JJA 600mb winds

CLM JJA 600mb winds
2. RegCM3-CLM3 Simulation

RegCM-CLM3 circulation looks more like ERA-40 winds

CLM JJA 600mb winds ERA-40 JJA 600mb winds
2. RegCM3-CLM3 Simulation
Also impacts the 200 mb level (Tropical Easterly Jet)
2. RegCM3-CLM3 Simulation

What drives the difference in soil moisture?

- Water balance terms are different
 - BATS has greater precip, greater evapotranspiration and greater runoff than CLM3
 - When normalized to incoming precip, terms are similar
- Difference in soil column description
 - soil texture (% sand, silt, clay)
 - sandier soil allows more drainage
 - clayey soil has more surface area, holds more water
 - BATS = old FAO dataset (1980s)
 - CLM3 = IGBP Global Soil Data Task 2000
2. RegCM3-CLM3 Simulation

Soil texture is driving most of the land surface differences - CLM3 more sand

BATS % Sand

CLM3 % Sand
2. RegCM3-CLM3 Simulation

Soil texture is driving most of the land surface differences - CLM3 less clay
2. RegCM3-CLM3 Simulation

Conclusions

• Changing the RegCM3 land surface parameterization from BATS to CLM3 caused:
 - drier soils
 - improved timing of African monsoon
 - reduced magnitude of precipitation during monsoon
 - improved simulation of large scale circulation

• Differences in soil moisture due to new and revised soil texture description of CLM3

• Selection of land surface parameterization can have significant impacts on regional climate simulations in regions of strong land-atmosphere coupling
3. Land Surface-Aerosol Interactions

Aerosol types

• Natural or biogenic emissions
 - Dust
 - Primary biogenic particles
 - Secondary biogenic particles

• Anthropogenic emissions
 - Urban and industry (function of land cover type)
 - Biomass burning
3. Land Surface-Aerosol Interactions

Impact of land surface on dust

Dust emissions are a function of:
1. Soil texture
 - c.f. Zakey et al., 2006 Table 1
2. Wind shear
 - wind speed
 - boundary layer conditions (friction velocity)
3. Soil moisture

Optical properties are also likely affected by soil color
3. Land Surface-Aerosol Interactions
Potential dust emission changes due to change to CLM3

1. Soil texture
 • CLM3 more sandy in northern Africa, less clay
 • Could shift to larger size distribution (clay particles are smaller)

2. Soil moisture
 • CLM3 drier soils, more dust emissions

3. Wind shear
 • CLM3 slower surface winds, less dust
Biogenic Primary Particles: Pollen

- Size range >10 µm
- Composition: organic carbon
- Emitted seasonally from trees, grasses & crops
- Human health impacts
- Radiative impacts
 - Direct
 - Indirect (CCN ability unknown, proven to be ice nuclei)
3. Land Surface-Aerosol Interactions

Biogenic Primary Particles: Pollen

- Pollen count = number of grains/cm3 of a particular species (24 hour average)
3. Land Surface-Aerosol Interactions

Biogenic Primary Particles: Bacteria & Fungi

- **Bacteria** (unicellular microorganisms)
 - Size range 0.25-8 μm
 - Emitted from desert and crop areas
 - Can act as CCN and IN

- **Fungi**
 - Can cause chemical transformations in the atmosphere
 - Can act as CCN

- Don’t know very much about these emissions or their impact on atmospheric processes!
3. Land Surface-Aerosol Interactions

Secondary organic aerosols (SOA)

Isoprene
OxVOCs
Terpenes
Sesquiterpenes

\[
\text{Oxidation products} \quad \text{Nucleation} \quad \text{Condensation} \quad \text{Coagulation} \quad \text{Particle Phase Secondary Organic Aerosol}
\]

Gas Phase

\[
\begin{align*}
\text{OH} & \quad \text{O}_3 \\
\text{NO}_3 & \end{align*}
\]
3. Land Surface-Aerosol Interactions

Biosphere-Atmosphere Feedbacks

SURFACE FLUXES
- Evapotranspiration
- Sensible heat flux
- Soil moisture

ATMOSPHERE
- Radiation
- Air temperature
- Relative humidity
- Cloud
- Precipitation

DIRECT

INDIRECT

Biogenic POA
- Pollen, Fungi, Spores

Biogenic SOA

Biogenic VOC
- Isoprene
- Monoterpenes

Biogenic AEROSOLS

FORCINGS

FEEDBACKS
Conclusions

• Land surface parameterization plays an important role in atmospheric dynamics

• Change of land surface parameterization can have significant impacts on regional climate simulations (e.g., case of the west African monsoon)

• Land surface will also impact emissions of natural aerosols and need to be considered on the regional scale