Biogenic VOC emissions modeling: Implications for aerosol formation

Allison Steiner
University of Michigan
Atmospheric, Oceanic and Space Sciences Department

Workshop on Aerosol-Climate Interactions
Hurghada, Egypt
14 February 2008
Talk Outline

1. What are VOC and where do they come from?
2. How do we model these emissions?
3. Importance for atmospheric chemistry and climate
4. Case study - Isoprene measurements during the AMMA campaign
5. Biogenic aerosol-climate feedbacks
1. VOC Introduction

What are VOC?

VOC = Volatile Organic Compounds

Hydrocarbons (C+H)
- Alkanes
- Alkenes
- Aromatics

Oxygenated Hydrocarbons (C+H+O)
- Aldehydes
- Ketones
- Alcohols

\[R = \text{alkyl group} \quad -\text{CH}_3 \]
1. VOC Introduction

What are sources of VOC?

- Anthropogenic (caused by humans)
 - Wood-Burning Stoves
 - Power Plants
 - Cars and Trucks

- Biogenic (natural)
 - Forest Fires
 - Natural Sources
1. VOC Introduction

What are sources of VOC?

Globally, biogenic VOC are an order of magnitude greater than anthropogenic VOC.

<table>
<thead>
<tr>
<th>Emission (Tg yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic VOC</td>
</tr>
<tr>
<td>Biogenic VOC</td>
</tr>
</tbody>
</table>

Seinfeld and Pandis, 1998
1. VOC Introduction

Why do plants emit VOC?

- Different vegetation species emit different chemical species of VOC
- Examples:
 - Floral scents (blossoming trees, flowers)\(\text{\textbackslash oxygenated \textit{VOC}}\)
 - Pine needles \(\text{\textbackslash hydrocarbons (terpenes)}}\)

- Different chemical species have different emission mechanisms - no one-size-fits-all answer!
- Several biogenic VOC emissions that are atmospherically important…
1. VOC Introduction

Species of Biogenic VOC

Biogenic VOC = natural VOC emissions from vegetation

<table>
<thead>
<tr>
<th>Species</th>
<th>Emission (Tg yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoprene</td>
<td>503</td>
</tr>
<tr>
<td>Monoterpenes</td>
<td>127</td>
</tr>
<tr>
<td>Other reactive VOC</td>
<td>260</td>
</tr>
<tr>
<td>Isoprene (a monoterpene)</td>
<td>β-pinene</td>
</tr>
<tr>
<td>Other VOC</td>
<td>260</td>
</tr>
<tr>
<td>Total</td>
<td>1150</td>
</tr>
</tbody>
</table>

Seinfeld and Pandis, 1998
1. VOC Introduction

Biogenic VOC Emissions

Emissions are dependent on environmental factors

LIGHT

TEMPERATURE

LAND COVER (vegetation type)
1. VOC Introduction

Biogenic VOC Emissions

- Isoprene (C_5H_8)
 - Deciduous trees
 - Light and temperature dependent
 - Emissions linked to photosynthesis

- Terpenes (C_{10} compounds)
 - Coniferous trees and shrubs
 - Temperature dependent
 - Emitted from resin pools on needle leaves

- Methylbutenol (MBO)
 - Coniferous trees
 - Light and temperature dependent

- Other VOCs
 - Methanol
 - Acetone
 - Acetaldehyde
2. Modeling BVOC Emissions
Initial modeling method

\[Flux = EF \cdot D \cdot f(T) \cdot f(L) \]

EF = Emission factor
D = Foliar density
f(T) = Temperature dependence
f(L) = Light dependence
2. Modeling BVOC Emissions

MEGAN Model (Guenther et al., 1996)

\[Flux = \varepsilon \cdot \gamma \cdot \rho \]

\[\gamma = \text{LAI} \cdot \gamma_P \cdot \gamma_T \cdot \gamma_{age} \cdot \gamma_{sm} \]

\(\varepsilon\) = emission factor map (mg m\(^{-2}\) hr\(^{-1}\))
\(\gamma\) = activity factor
\(\rho\) = production and loss within the canopy

Or, emissions are a function of:
1. LAI (leaf area index)
2. Light (P=PPFD=photosynthetic photon flux density)
3. Temperature (T)
4. Leaf age
5. Soil moisture (sm)
2. Modeling BVOC Emissions

MEGAN - Isoprene Emission Factor Map (ε)

Baseline isoprene emission fluxes ($\mu g m^{-2} hr^{-1}$)

Need to be modified for temperature, light, soil moisture, LAI, etc…
2. Modeling BVOC Emissions
MEGAN - LAI

Emissions increase with increasing LAI until saturation at around 5 $m^2 \cdot m^{-2}$
2. Modeling BVOC Emissions
MEGAN - Light (γ_P)
2. Modeling BVOC Emissions
MEGAN - Temperature (γ_T)
2. Modeling BVOC Emissions
MEGAN - Age (γ_{age}) and Soil Moisture (γ_{sm})

- **Age**
 - As leaves get older, photosynthesis (and emission processes become less efficient)
 - Divide the canopy into new (no emissions), growing (moderate emissions), mature (peak emissions) and old (reduced emissions)

- **Soil moisture**
 - emissions are reduced under soil moisture stress and cease during drought
 - couple emissions to CLM soil moisture
2. Modeling BVOC Emissions

MEGAN - Canopy loss and production (ρ)

- All species emitted from the canopy do not escape to the atmosphere
- Can react within the canopy before ever escaping

\[
\rho_{ISO} = 1 - \frac{D}{\lambda u^* \tau + D}
\]

$D =$ canopy depth (m)
u^* = friction velocity (m/s)
$\tau =$ above canopy isoprene lifetime (s)
$\lambda =$ empirical parameter
2. Modeling BVOC Emissions

MEGAN - Global Isoprene Emissions

Guenther et al., 2006
2. Modeling BVOC Emissions
Evaluating the model vs. ground-based data

- Emission factors based on ground-based measurements
 - Leaf level enclosures
 - Branch level enclosures
- Model evaluated versus measurements
 - Flux towers
 - Ambient concentrations

Flux tower at University of Michigan Biological Station (UMBS)
2. Modeling BVOC Emissions

Diurnal cycle of Light and T dependent Emissions (MBO)

- Five days in 2000 at location in California
- Emissions go to zero at night

Steiner et al., 2007
2. Modeling BVOC Emissions

Diurnal cycle of T dependent Emissions (terpenes)
3. VOC: Chemistry and Climate

Biogenic VOC and ozone

- Near urban regions, VOC are particularly important in ozone formation
- In forested urban regions, biogenic VOC are known to contribute to ozone formation
- Anthropogenic VOC control may be less effective
3. VOC: Chemistry and Climate

Biogenic VOC and ozone

\[\text{HOx} = \text{OH} + \text{HO}_2 + \text{RO}_2 \]

\[\text{OH} + \text{NO} \rightarrow \text{NO}_2 \]

\[\text{NO}_2 \rightarrow \text{HNO}_3 \]

\[\text{RO} \rightarrow \text{ROOH} \]

\[\text{NO}_2 + h\nu \rightarrow \text{NO} + \text{O}^{3P} \]

\[\text{O}^{3P} + \text{O}_2 \rightarrow \text{O}_3 \]
3. VOC: Chemistry and Climate
Impact of future climate change on biogenic VOC emissions

- T perturbation based on Snyder et al. (2002)
 - Regional climate model
 - Ensemble run
 - 40km resolution
 - 2xCO$_2$ scenario

- Allowed temperature to impact:
 - chemical kinetics
 - atmospheric water vapor
 - biogenic VOC emissions
3. VOC: Chemistry and Climate

Increased T increases BVOC
3. VOC: Chemistry and Climate

BVOC in high NOx regimes

\[\Delta \text{Ozone (ppb)} \]

\[\text{O}_3 \text{ increases in urban areas} \]

\[\begin{align*}
\text{NO} & \rightarrow \text{OH} \\
\text{RO} & \rightarrow \text{NO} \\
\text{RO}_2 & \rightarrow \text{HO}_2 \\
\text{O}_2 & \rightarrow \text{RO} \\
\text{RH},\text{O}_2 & \rightarrow \text{O}_3
\end{align*} \]

Steiner et al., 2006
3. VOC: Chemistry and Climate

BVOC in low NOx regimes

O₃ decreases in Sierras

\[\text{RO} \xrightarrow{\text{NO}} \text{ROOH} \]

\[\text{RO} \xrightarrow{\text{HO}_2} \text{RO}_2 \]

\[\text{OH} \xrightarrow{\text{RH}_2\text{O}_2} \]

Steiner et al., 2006
3. VOC: Chemistry and Climate

Secondary organic aerosols (SOA)

Isoprene
OxVOCs
Terpenes
Sesquiterpenes

Gas Phase
Oxidation products

Particle Phase
Secondary Organic Aerosol

These processes are still not well understood
3. VOC: Chemistry and Climate

Secondary organic aerosols (SOA)

As with emissions, SOA formation depends on chemical species

<table>
<thead>
<tr>
<th>Flux</th>
<th>Yield</th>
<th>Isoprene</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>Originally not thought to produce SOA by gas-particle conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud-processing (aqueous chemistry) can lead to SOA (Ervens et al. 2004; Lim et al. 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yields could be NOx dependent (Kroll et al., 2005,6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yields of a few percent</td>
</tr>
<tr>
<td>Terpenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxidation products have low enough volatility to condense to vapor phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yields on the order of 10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flux</th>
<th>Yield</th>
<th>Sesquiterpenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
<td>Yields on the order of 20-30%</td>
</tr>
</tbody>
</table>
4. Case study: AMMA Campaign

The Fate of Carbon From Isoprene Over West Africa

Jennifer Murphy*, Graham Mills, Brian Bandy, David Oram, Claire Reeves
University of East Anglia, *now at University of Toronto
Gerard Capes, Hugh Coe
University of Manchester

AGU Fall 2007 Meeting Presentation
4. Case study: AMMA Campaign

AMMA-UK flight campaign

- 100 flight hours on BAe-146 between 17 July – 17 Aug, 2006
- NH ‘wet’ season
- Monsoon flow is southwesterly at surface
4. Case study: AMMA Campaign

Measured species

Measurements of Focus
- Isoprene, [MVK+MACR] – PTR-MS
- HCHO – Hantzsch/fluorescence
- Aerosol composition – Q-AMS
- NO – chemiluminescence (UEA)
- OH, HO₂ – FAGE (Leeds)
- VOC - WAS (York)
4. Case study: AMMA Campaign

Altitude profiles over forest
4. Case study: AMMA Campaign

Predicting isoprene SOA

Isoprene + OH → MVK + CH₂O → MACR + CH₂O → SOA

Yield per isoprene

15%\(^a\)
18%\(^a\)
3%\(^b\)

If \(\tau\) of SOA is comparable to MVK+MACR, or at least > residence time in BL

Isoprene-derived SOA = \([\text{MVK+MACR}] \times \frac{Y_{\text{SOA}}}{Y_{\text{MVK+MACR}}}\)

= 400 ppt \times 3% / 33%
= 200 ppt C \times 1.6 \text{ OM/OC}
= 0.16 \mu g/m\text{³}

\(^a\) Rupert and Becker, 2000 \(^b\) Kroll et al., 2006
4. Case study: AMMA Campaign
Daytime boundary layer layer concentrations

Latitude 7-13 N excluding biomass burning and urban
4. Case study: AMMA Campaign

High isoprene fluxes, low SOA

• Observations are consistent with <5% SOA yield from isoprene and with global model results\(^1\) predicting <0.3 \(\mu g \text{ m}^{-3}\) of SOA in the region

• Observations are possibly inconsistent with studies over vegetated areas with more anthropogenic influence\(^2\) Why?
 – Insufficient seed aerosol for condensation (~0.5 \(\mu g \text{ m}^{-3}\) inorg)
 – SOA could exist in >PM\(_1\) size range
 – SOA lifetime could be significantly shorter in tropics
 – Lower OH in tropical boundary layer (less NO\(_x\)) significantly reduces processing rate of product gases

*No evidence of high OA in cloud layers where isoprene was enhanced

1. Chung and Seinfeld, 2005
2. e.g. Lewis et al., 2004, Weber et al., 2007
5. Biogenic aerosol-climate feedbacks

SOA reduces direct sunlight at surface

bVOC emissions form SOA

cooling

less radiation, cooler leaf T

Warmer T, more radiation, more bVOC

cooling

cooler T, less radiation less bVOC and SOA

warming

Less SOA, more radiation reaches the Earth
Conclusions

• Different vegetation types emit various biogenic VOC species
• These are controlled by environmental factors and will significantly increase under future warming scenarios
• Impacts
 - gas phase chemistry and ozone (air quality impact)
 - secondary organic aerosol formation (climate)
• Still a lot to learn about SOA formation in the atmosphere and its relative importance for regional and global aerosol burdens…