Regional climatic impact of dust aerosol over west Africa

F. Solmon
Laboratoire d’Aérologie Toulouse
solf@aero.obs-mip.fr

ICTP

A. S. Zakey, F. Giorgi …

Abidjan and Niamey University

A. Konaré, S. Ibrah

ICTP

B. Guillaume, M. Mallet

C. Liousse

LA
Motivations

- Large and increasing emissions and burdens in Africa
- Aerosol forcing important at regional (and for global) scale
- Diversity of emissions and complexity of tropical atmospheric chemistry (Natural and anthropogenic compounds)
- Sensitivity of societies and ecosystems to environmental change
- AMMA experiment (2005-2010)
Regional Climate Model

A modelling approach …

High resolution limited area models adapted to climatic simulations.

Forced by analysis or GCM outputs.

RegCM (ICTP/UNESCO, Trieste, it)

Giorgi and Mearns (1999), RegCM special issue of JGR (1999)

…

RegCNET

Special Issue of Theor., Apl., Clim., sep 2006
Aerosols in RegCM

- **Tracer model / RegCM3** (Solmon et al., 2006; Zakey et al., 2006)

\[
\frac{\partial \chi}{\partial t} = -\mathbf{V} \cdot \nabla \chi + F_H + F_V + T_{CUM} + S_\chi - R_{w,ls} - R_{w,cum} - D_{dep} + \sum Q_p - Q_l
\]

- **Particles and chemical species considered**

<table>
<thead>
<tr>
<th>SO(_2)</th>
<th>SO(_4^{2-})</th>
<th>BC (soot)</th>
<th>OC (total organic carbon)</th>
<th>DUST (4 bins)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aqueous and gaseous conversion (Qian et al., 2001)</td>
<td>Hydrophilic (20% at emission)</td>
<td>Hydrophilic (50% at emission)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrophobic (80% at emission)</td>
<td>Hydrophobic (50% at emission)</td>
<td>Hydrophobic (50% at emission)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01-1 i m</td>
<td>1-2.5 i m</td>
<td>2.5-5 i m</td>
</tr>
</tbody>
</table>

Presribed emission inventories
On line emissions
Dust emission parameterization

Surface properties
(roughness, humidity, vegetation)

Soil granulometry
10 µm – 10000 µm

Saltation
Sand-blasting

0.5 – 20 µm
Transport and removal

Environment
Threshold wind (mph)

Fine to medium sand in dune covered regions
10-15

Sandy areas
20

Fine material, desert flat
20-25

Alluvial fans and crusted salt flats (dry lake beds)
30-35

Well developed desert pavement
40

RegCM
Zakey et al., 2006
RegCM Dust simulation (February 2000)
DUST event March 2006 9-14 (AOD day av)
Seasonnal validation summer 2000

Dust AOD JJA 2000

Satellite Observations

Model / AERONET AOD at Cabo Verde JJA 2000
Key questions:

Dust storm forecasting.
Dust impact on meso-scale weather system (African Easterly Wave).
Dust impact on hurricane development over Atlantic.
Role of dust aerosol in the regulation of Sahelian climate?
Biogeochemical and health impacts …

This study focus on dust direct and semi-direct effects
Aerosol optical depth AOD describes the aerosol extinction due to the sum of absorption and scattering effects.

Scattered fraction R depends on surface albedo, incident radiation angle, AOD, absorption and scattering properties of aerosols.

Dust Short Wave radiative forcing

TOA SW Radiative forcing: difference of outgoing fluxes without and with aerosol

All other atmospheric and surface variables being fixed.

$> 0.$ = warming of the system

$< 0.$ = cooling of the system

SRF SW Radiative forcing: difference of net flux at the surface

Always $< 0.$ = cooling of the surface

Dust Refractive index

- Extinction cross section (Q_{ext}, m^2·g$^{-1}$)
- Single scattering albedo (SSA)
- Asymmetry parameter (g)

Mie theory
A: Dust impact on African Monsoon: SW forcing only

Experiment

RegCM

Control simulation: NODUST
Dust simulation: DUST Short Wave radiative impact
Simulation Period: 1969 to 2006, 60 km resolution
Boundary conditions: NCEP reanalysis
38 summer (JJAS) averages are discussed
Basic model climatology

1969–2002
RegCM3 SFC AIR TEMP (deg C)

CRU SFC AIR TEMP (deg C)

RegCM–CRU SFC AIR TEMP (deg C)

1969–2002
RegCM Precipitation (mm/day)

CRU Precipitation (mm/day)

RegCM–CRU Precipitation (mm/day)
Simulation of West African Regional Climate: jet dynamics.

JJAS 69-06 NCEP RegCM (NODUST) m.s-1

AEJ (670 hpa)

TEJ (195 hpa)
DUST SW radiative Forcing.

AOD

TOA (w.m-2)

SRF (w.m-2)

Effect on average temperatures, DUST -NODUST

JJAS 69-06

T10
Dust impact on mean monsoon circulation

Wind field (m.s-1) at 865 hpa
(NODUST simulation JJAS 69-2002)

Differential circulation
(DUST – NODUST)

JJAS 69-06
Decrease of Moist Static Energy gradient
Dust impact on mean Monsoon and jet dynamic

Effect of dust on wind field (JJAS, 1969-2006): Meridional cross section of differential circulation between DUST-NODUST, averaged between 15W and 15E.
Colors show the differential zonal wind component (warm colors show an intensification of Easterly circulation and cold colors a decrease of Easterly circulation)
Arrows show the meridional and and vertical differential wind components.
Dust impact on mean precipitation and comparison with dry year mode.

mm.d-1

DUST - NODUST

DRY _ WET Years

Based on WMO standardized mean Sahel rainfall
Conclusion on dust SW forcing effect

Dust shortwave radiative forcing leads to a significant weakening of monsoon penetration driven by a strong surface cooling over the Sahelian region.

This reduction of Sahelian precipitations are associated with a strengthening of the AEJ and a weakening of the TEJ.

These are patterns observed during dryer years suggesting that dust could be a positive feedback in maintaining dry conditions over Sahel. These results in line with some recent global studies (e.g. Yoshioka et al., 2007) but in contradiction with others.

Limits of the study:

The main limit of this study is the lack of LW dust effect.

Over the ocean, SST are forced and do not react to dust radiative forcing.
Atmospheric layers absorb and emit (grey body) in thermal radiation range. Radiative equilibrium between layers

Dust Long Wave radiative forcing

TOA LW Radiative forcing: difference of outgoing fluxes without and with aerosol

All other atmospheric and surface variables being fixed

> 0. = relative warming of the system (in most situation)

(LW trapping by dust)

SRF LW Radiative forcing: difference of net flux at the surface

Always > 0. = relative warming of the surface (e.g. at night time)

LW dust relative warming could cancel the dust SW cooling effect over bright surfaces

Which is now the climatic impact?
Elevated heat pump hypothesis?

Monsoon strengthening by dust … An opposite conclusion to the previous result!
Lau et al. 2007, Miller et al. 2004;

Could we obtain elevated heat pump effect over West Africa within the regional model?
Introduction of the dust LW effect in RegCM

CCM LW radiation package

Absorptivity

\[1 - e^{-D.Qa.DP(z)} \]

Emissivity

DP(z), ‘dust path calculated’ from the dust scheme

Qa (wl) = 0.1 m².g⁻¹

From Mie Theory

LW scattering is not explicitly included in the radiation scheme

CASE STUDY: Simulation JJA 2000-2004
Dust Long Wave radiative forcing

TOA LW only (JJA 2000-2004)

SRF

Depends strongly on surface temperature and burdens

TOA LW forcing from Balkanski et al. 2007
How will react the monsoon system?
Can we obtain elevated heat pump effects?
Temperature difference JJA (DUST_NODUST)

Cooling of the Lower troposphere despite a positive TOA ...

Sensible heat flux difference (DUST-NODUST)

Role of the surface feedback to the SRF forcing
Measured Impact of dust on sensible heat flux during the March 2006 SOP
Dynamic response of the monsoon ...

Differential wind (DUST-NODUST) at 865 hpa (monsoon layer)

- Reduction of the mean monsoon flux
- Intensification of the convergence west of 15W
- Cyclonic circulation strengthening west of Senegal
- Still an intensification of AEJ and a weakening of TEJ
Impact on mean precipitation

mm\text{.d}^{-1}

SLP (DUST-NODUST)

hpa

Conclusions

Still a reduction of precip on Sahel despite the tropospheric LW heating effect.

Importance of surface forcing which drives a cooling of lower troposphere.

Precip reduction could be even more effective with LW because of an enhanced warming of Higher troposphere (convexion inhibition)…

No elevated heat pump effect over Sahel on climatic time scale. No ocean feedback in the present study.

Interesting signal of enhanced low pressure system activity (west of Senegal): Impact of dust on African Easterly Wave activity?

Added value of RCM compared to GCM on this domain
Optical properties of aerosols in this domain: A very sensitive issue

TOA net forcing (JJA 2003) $W.m^{-2}$

Dust SSA = 0.945
default in regcm

Dust SSA = 0.88
= more absorbing dust
Interesting feedback on dust radiative forcing: Soil color change with precip.

TOA net forcing (JJA 2003, wet year)

Dust SSA = 0.88
Bare soil albedo = fixed

Dust SSA = 0.88
Bare soil albedo modified by precip!
(default in RegCM)
• Longer simulations with LW effects are required.
• Variability of dust emissions and climate response, role in drought persistence.
• Role of land use change / dust emission. Significance of the signal?
• Dust response to future climate scenarios
• Impact of on regional dynamic and mesoscale weather system (intensity and frequency). Use of Meso-scale and Regional Climate model.

Improvement of the RegCM dust scheme:

New land surface scheme. Source function in some region.

Dynamic issues: vertical transport.

More constraints on optical properties from regional measurements (AMMA …)
 - Dust mineral content
 - Heterogeneous chemistry
Effect of aerosol mixture (DUST, OC, BC ...) on West African regional climate?

Seasonal BC (DJF – JJA 2006) emissions

contour = [0 0.01 0.1 1 5 10 15] mg.m$^{-2}$.day

RegCM AOD

Climatic signal of BB aerosol?

Megacities in West Africa, which impacts?
Aerosol mixing

RegCM, dust + BB aerosols, JJAS 2005-2006

Mixing state and optical properties? Needs more a more detailed chemistry scheme compatible with regional climate modelling
On going activities at Laboratoire d’Aérologie

- Coating formation
- Coating composition (mineral dissolution, ...)
- Optical and CCN properties

DEBITS IDAF activities

Validation and constraints
Regionalisation and impact studies
Promotion of modelling activities in Africa

RegCM
TM4 – ORISAM

Djougou (Benin)
Djougou (Benin)
TM4 – ORISAM vs OBS

Bulk experiment - relative abundance of:
- sulfate
- nitrates
- ammonium
- dust
- BC
- OC

Bulk modelling - relative abundance of:
- sulfate
- nitrates
- ammonium
- dust
- BC
- OC
THANK YOU !