
1977-12

First ICTP Regional Microelectronics Workshop and Training on
VHDL for Hardware Synthesis and FPGA Design in Asia-Pacific

KLUGE Alexander

16 June - 11 July, 2008

PH ESE FE Division
C E R N

385, rte Meyrin
CH-1211 Geneva 23

SWITZERLAND

FPGA applications in High Energy Physics.

FPGA applicationsFPGA applications
in High Energy Physicsin High Energy Physics

Alexander KlugeAlexander Kluge
CERNCERN

Outline

• CERN – electronics system concepts
a project cycle

• Application: Data selection

• Application: Data processing

CERN

Application overview CERN
• CERN, experiments

•Aim
•General detector concept
•Examples

Principle of data acquisition & data flow

• data selection: trigger
• data processing

CERN

Experiments

Detector: ALICE

Principle of detectors

tracking calorimetry muon chamber

time of flight

position and momentumprecision position (missing) energy

particle identification

100 million sensors

22 m diameter

position resolution: > 10 µm

4T magnet field

Principle of Data
acquisition

collision

particle

detector electronics

40 MHz

L1 Trigger

100 kHz
zero suppression &

event builder L2 Trigger

data storage

100 Hz

100 Tbyte/s

100 Gbyte/s

100 Mbyte/s

Data selection

Data selection

precision detector

Sensor-elektronics

collision 40 MHz

particle

trigger detector

DAQ

readout-electronics

Principle of data acquisition

central
trigger

10-11

Trigger processor

Challenge/Specifications
• Fast

– the faster, the less data needs to be pipelined/stored
• Compact

– Many data channels are going into one processor system
• Connectivity

– High number
– Transmission delay on cables (5ns/m -> 200 m -> 1µs)

• Reliability
– Physics processes with a probability of 10-11 need to recorded
– Processing and data transmission error rate >> 10-11

• Quality control
– Processes are verified in hardware and software processors

• Radioactive environment

Challenge/Specifications

– Many (100.000) parallel inputs in 25 ns intervall
– Parallel processing – pipelined processing
– FPGA

• highly parallel because of many IOs and interconnectability
– Example (Tracal Trigger)

• Specifications
– Calculate how many out of 1000 binary sensor inputs

are active
– Each 25 ns a new set of 1000 bits
– Result required within 100 ns

• Solution possibilities
• Today and 5 and 10 years ago

Challenge/Specifications

• high number of inputs ->
– operation to simplify data and reduce data amount

• reduced number of inputs ->
– connected to more complex processing units

• at the end of processing chain ->
– interest to integrate as much information into 1

FPGA to reduce interconnection

System topology

Challenge/Specifications

• Interconnection:
– delay

• (clock to pin, transmission outside FPGA, setup time)
– Parallel interconnection:

• high number of IOs, problem moved to board level
• reliability impact due to solder joints or connectors

– Serial interconnections at high speed
• reduce reliability impact but increase delay (trigger needs

to be fast)

System topology

Muon Track Finder
Trigger Processor

Muon track finder trigger

precision detector

Sensor-elektronics

collision 40 MHz

particle

trigger detector

DAQ

readout-electronics

Principle of data acquisition

central
trigger

10-1110-11100 m = 0.5 µs

100 m = 0.5 µs

Muon track finder trigger
• Size of detector system

– r = 14 m, length = 20 m
• cable delay ~ 5 ns/m -> synchronisation

• Each 25 ns new data set
• 240 detector modules – 200.000 detector

cells
• Identify particles (muons)
• Measure curvature = momentum of

particles within 400 ns
• Find 4 particles with highest momentum

Muon track finder trigger

Muon track finder trigger

200.000 sensors ->

240 chambers x 2 track segments =
480 track segments

1 track segment
position (phi): 12 bits
angle (phib): 10 bits
quality code: 3 bits

25 bits * 480 track segment = 12000 bits
12000 bits * 40 MHz = 480 Gbit/s

Muon track finder trigger

Muon track finder trigger

Muon track finder trigger

Muon track finder trigger

Muon track finder trigger

Result of all extrapolation units is 180 bits
-> data reduction
Track assembly units is combinatorial and looks for the longest possible
track combination

Muon track finder trigger

Parameter assignment unit: momentum (5 bits)
based on difference in position of layer 1 and 2

Muon track finder
trigger

Muon track finder trigger

Muon track finder trigger

Extrapolation units: EP20k400EFC672
Data pipeline: 3 x EP1k100FC484
Track segment linker: EP20k300

16 layer PCB
no pin level back annotation
no board level simulation
Soldering problems with ball grid

Muon track finder trigger

Muon track finder trigger

All in EP1S40F1020C7

8 layer PCB
pin level back annotation
board level VHDL simulation
full JTAG boundary scan
FPGA on daughter card

Muon track finder trigger
• Conclusion track finder:

• Data reduction
• Pipelining
• Feasibility study on possible algorithms
• Back annotation of Pins in FPGA after routing
• Full board – multiple FPGA VHDL simulation
• Stimulus files from (costumer) simulation
• Planning at FPGA level has impact on system

implementation

Example FPGA
processors

Processor board with optical inputs

• 12 channels
– Parallel optical receiver

module
– 12 closely packed G-link

deserializer ASICs

Control FPGA

DDL SIU

OPTIN boards

Processing FPGA

Optical fan-in
cable

400 mm

Trigger
processor

Trigger system crate

Design cycle

• System – Specifications

• Different approaches - possibilities
• ASICs, CAM -> FPGA
• Pattern recognition / Analytical approach =>

Mixture

• Simulation - Feasibility - Forecast to future
technologies

• Data flow simulation/calculation
– buffer sizes
– dead times

Design cycle

• System – Specifications

• Different approaches - possibilities
• ASICs, CAM -> FPGA
• Pattern recognition / Analytical approach => Mixture

• Simulation - Feasibility - Forecast to future technologies

• Data flow simulation/calculation
– buffer sizes, dead times

Design cycle

• Implementation scheme – propose technology independent
architecture
– Do not push problems to a higher level - IO pins, PCB, system

• Technology independent Simulation
• Full system: system input patterns –

Qualification of data process
• implement/integrate into system surrounding -

work on FPGA code
• Simulation together with environment

• other FPGA
• input data

Design cycle

Design cycle
• Implementation - technology dependent

• Selection of components
• Performance, features, evaluation, availability
• price, age/phase in product cycle,

• if very new -> support and access to high quantity difficult
-> close connection to distributor

• Define strategy on Maintenance and upgrades
• FPGA might get too full & slow after

implementation of more and more functions

Design cycle
• FPGA simulation/synthesis/place&route/back-

annotation
• Board Placing/routing

• FPGA -> board -> FPGA
• FPGA Back annotation/Board level of pin position-

Feedback on board layout
• behavioral simulation of HDL code

– back annotated gate level after routing with
board/system level

– SEU simulation

Design cycle
• Problems which are not solved on component

level (ASIC/FPGA)
• are pushed to the system level,

become expensive and time consuming

• System level considerations ->
• System level simulation
• Multi designer environment
• Multi component environment

Design cycle
• Example layout

• Prototype no internal design constraints on pin
assignment for board layout -> 16 layer board ->

• with assignment clean and 8 layer board
• Missing board level simulation with two FPGAs

• simulation of each FPGA is OK
together setup and hold time violations
board delay (mealy/moore)

• Evolution of FPGA technology:
• more than 1 FPGA with board routing ->
• 1 FPGA no board routing

Design cycle
• Software/Hardware development must go hand in

hand
• Debugging features in

FPGAs/system/history/status
• Remote control is often required

• how to implement
• always one FPGA not reprogrammable as

communication processor

Design cycle
• Board production

– JTAG boundary scan is mandatory for BGA
• Full system JTAG especially with multiple

FPGAs on board
• reduces turn around time
• gives proof of problems to manufacturer
• X-ray test are not always conclusive (example

not even copper on pads)
– Soldering problems with prototype series
– Test points

Design cycle
• Define strategy on Reliability

– which date may be corrupted and which data must
not be corrupted

– radiation, SEU, cosmic rays on ground level
– sub micron ASICs/FPGA

Starting to make an
FPGA project

FPGA specifications
• How to make an FPGA?

– What should it do?
– How should it do it?

• Systems / Requirements define detailed implementation
scheme/architecture

• Specification need to be worked out before even one thinks
about the FPGA type or code.
– Specification: understand user needs
– define specification of system together with user/costumer

• re-discuss, re-negotiate
– understand
– task of designer to understand and translate specifications

FPGA specifications
• Costumer/boss says:

“I need a system which can calculate the value each
100 ns.”

• What you might understand is:
“The calculation needs to be finished within 100 ns”

• What he means is:
“A new value needs to be processed every 100 ns.
How long it takes to present the result does not
matter”

• First case: might be impossible, maybe not.
Second case: Processors in parallel or in pipeline

Adder

• Example:
– add 16 16-bit values every 25 ns;

data0

data_int
(15 downto 0)

data1 data2 data3 data4 data5 data6 data7 data15

adder

sum(19 downto 0)

Adder

• 533 logic elements, 6%
• 278 pins, 74%
• 29.7 MHz => 33.6 ns

FPGA specifications
• Costumer/boss says:

“I need a system which can calculate the value each
100 ns.”

• What you might understand is:
“The calculation needs to be finished within 100 ns”

• What he means is:
“A new value needs to be processed every 100 ns.
How long it takes to present the result does not
matter”

• First case: might be impossible, maybe not.
Second case: Processors in parallel or in pipeline

Pipeline architecture

Adder with pipeline
• Example:

– add 16 16-bit values within 25 ns;
data0

data_int
(15 downto 0)

data1 data2 data3 data4 data5 data6 data7 data15

adder

sum(19 downto 0)

adder adder adder adder adder

reg reg reg reg reg

Adder with pipeline

• Adder with pipeline
• 526 logic elements, 6%
• 278 pins, 74%
• 45.4 MHz => 22 ns

• Adder without pipeline
• 533 logic elements, 6%
• 278 pins, 74%
• 29.7 MHz => 33.6 ns

FPGA specifications

• re-discuss, re-negotiate
– understand
– task of designer to understand and translate

specifications

Readout Processors

Read-out processors
• Specification

– Challenge - many parallel inputs –
25 ns intervall - short processing time

– Storage during trigger decision time

– Data reduction/encoding (zero suppression)

– pipelining, buffering (FIFO, dual port RAM)

Sept 3-7, 2007 A. Kluge

Pixel detector

Image:INFN(Padova)

1 sensor

1 sensor

10 readout chips

Sept 3-7, 2007 A. Kluge

Pixel detector

Image:INFN(Padova)

1 sensor = 40960 pixels

1 sensor

10 readout chips

Pixel detector

000010000000000000
000000000000000000
000000000000100000

each detector module (10 chips)2560 x 32 bits @ 10 MHz

full detector 120 x 2560 x 32 bits @ 10 MHz (100 ns) = ~100 Gbit/s

separate read-out for each detector module

Data funnel

Data generator

Data preprocessor

Data processor

Data merging

Data funnel

Data generator

Data preprocessor

Data processor

Data merging

1200 x 256 x 32 bits @ 10 MHz (100 ns) = ~100 Gbit/s

120 x 2560 x 32 bits @ 10 MHz (100 ns) = ~100 Gbit/s

60 x 2 x 2560 x 32 bits @ 10 MHz (100 ns) = 60 x 1.6 Gbit/s

20 x 6 x 2560 x 32 bits * 0.02 @ 10 MHz (100 ns) = 20 x 10 kbit/s

Read-out ASIC

Read-out
controller ASIC

Link receiver
FPGA

Router FPGA

Pixel detector

Data generator
2560 x 32 bits

000010000000000000
000000000000000000
000000000000100000

Pixel detector

serializer

de-serializer

FIFO
zero suppress & address decoder

dual port memory

channel multiplexer

channel1-5

Pixel detector

serializer

de-serializer

FIFO
zero suppress & address decoder

dual port memory

Pixel detector data processing
0 0 0 0 0 0 0 0 0 0 0 0 0

check if any hits

if no hits -> load new value from FIFO if available

if 1 only -> decode the hit & request new value
from FIFO

if more than one hit -> decode the hits

Pixel detector data processing

0 0 1 0 0 0 0 1 0 0 0 0 0

How to decode the address:
this line has two hits
the state machine must send two hits into the dual port memory

hit position = 5

0123456781011..31

row address

hit position = 11row address

Pixel detector data processing

0 0 1 0 0 0 0 1 0 0 0 0 0

FIFO
read

parallelLoad
shiftEnable serialOutshiftRegister

countercntEnable

dual port memorywriteEnable

control

Position decoder – shift register

Position decoder – shift register

Position decoder – shift register – VHDL code

state machine
with case
statement

• Shift register is a parallel load register

Position decoder – shift register

0 0 1 0 0 0 0 1 0 0 0 0 0

0123456781011..31

"00001000001000001100000000011010"

Position decoder – shift register

Position decoder – shift register

Position decoder – shift register

0 0 1 0 0 0 0 1 0 0 0 0 0

Shift register & counter (if then)
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
81 out of 8320 logic elements
44 registers

11% (41/376) of pins

10.6 ns (94.5 MHz) position_count-> position_count

tco: 8.0 ns: data_word_reg -> data_word
tsu: 7.0 ns: new_value_available -> data_encode

0123456781011..31

Position decoder – shift register

0 0 1 0 0 0 0 1 0 0 0 0 0

Shift register & counter (case)
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
50 out of 8320 logic elements (with case statement)
44 registers

11% (41/376) of pins

9.1 ns (109.9 MHz) position_count-> data_encode

tco: 7.0 ns: data_word_reg -> data_word
tsu: 6.3 ns: new_value_available -> data_encode

0123456781011..31

Position decoder – shift register

• Task fulfilled?
– Few logic cells
– Timing constraints fulfilled

• User requirements fulfilled?
– Processing per 32 bit line takes:

• 32 bits * 25 ns = 800 ns
• Data comes each 100 ns -> 1 out of 2560 32 bit line
• Decoding time for all lines is: 2560 * 800 ns => 2 ms
• Within 2 ms => 20480 data lines arrive

– input FIFO would need to be at least 20k * 32 bit deep
• During 2 ms no other trigger acquisition can take place

– dead time => max trigger rate: 488 Hz
• User requirements not fulfilled

Position decoder – priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

How to decode the address:
this line has two hits
the state machine must send two hits into the dual port
memory

hit position = 5

0123456781011..31

row address

hit position = 11row address

Position decoder – priority encoder

1 1 0 1 1 1 1 1 1 1 1 1012345678910..31

0 0 1 0 0 0 0 1 0 0 0

FIFOread

load register

priority encoder

address decoder

control
012345678910..31

10

1

1 1

mux

dual port memorywriteEnable

sel

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

Position decoder – priority encoder

0 0 1 0 0 0 0 1 0 0 0 0 0

Priority encoder
Result in an FPGA from 2002: (Altera EP20k200FC484-3)
172 (out of 8320) logic elements
33 registers

addressDecoder: 16
prior32: 54

11% (41/376) of pins

20.8 ns (48.0 MHz) data_encode -> state_encoding

tco: 17.1 ns:data_encode -> data_word
tsu: 14.9 ns:new_value -> state_encoding

0123456781011..31

Position decoder – priority encoder

• Task fulfilled?
– Many logic cells
– FPGA Timing constraints fulfilled

• User requirements fulfilled?
– Processing per 32 bit line takes:

• numbHits per line * 25 ns = ?
• Data comes each 100 ns -> one out of 2560 32 bit line
• Decoding time for all lines is: 2560 * ? ns => ? ms
• Within ? ms => ? data lines arrive

– input FIFO would need to be at least ? * 32 bit deep
• During ? ms no other trigger acquisition can take place

– dead time => max trigger rate: ? Hz
• User requirements fulfilled ?

Position decoder – priority encoder

• Task fulfilled?
– Physics simulation:

• max 2% of all pixels will be hit in one acquisition
• User requirements fulfilled?

– Processing per 32 bit line takes:
• (numbHits per line) * 25 ns = (32 * 0.02) * 25 ns = <25 ns
• Data comes each 100 ns -> one out of 2560 32 bit line
• One line with up to 4 hits can be decoded before the next line

arrives
• Input FIFO of 1000 * 32 bits implemented to buffer statistical

fluctuations or calibration sequences
• Dead time defined by transmission of data stream

– 2560 lines each 100 ns => 256 µs => 3900 Hz
– dead time => max trigger rate: 3900 Hz

• User requirements fulfilled: yes

Position decoder – priority encoder

• User requirements fulfilled: yes
• Can we do better?
• Can we do faster or with less logic?
• Do we know something which the synthesizer

does not know?

Position decoder – priority encoder

Position decoder – priority encoder

• Knowledge of implementation in target
technology is important

• Knowledge of what the synthesizer is
doing is important

Clock domains –
multiple FPGA design

Clock distribution: multiple FPGAs

clk

Main board

fpga0 fpga1

daughter board

Clock distribution: multiple FPGAs

clk

Main board

fpga0 fpga1

daughter board

different loading on clock drivers

TclockToOutput < Tperiod/2 Tsetup< Tperiod/2

Clock distribution

clk

clk_board0 clk_daughter

clk_main_fpga clk_board1

clk_fpga_int1

clk_fpga_int0

data_main_daughter

Main board daughter board

fpga0 fpga1

clock distribution/tco & ts /0-> 1

clk
clk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_main_daughter0
tclockToOutput tsetup

Clock distribution

clk

clk_board0 clk_daughter

clk_main_fpga clk_board1

clk_fpga_int1

clk_fpga_int0

data_daughter_main

Main board daughter board

fpga0 fpga1

clock distribution/tco & ts /1-> 0

cl
kclk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_main_daughter0
tclockToOutput tsetup

Clock distribution

clk

clk_board0 clk_daughter

clk_main_fpga clk_board1

clk_fpga_int1

clk_fpga_int0

data_main_daughter

Main board daughter board

fpga0 fpga1

clock distribution/slow output 0->1

clk
clk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_main_daughter
tclockToOutput tsetup thold

clock distribution/fast output 0->1
clk

clk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_main_daughter
tclockToOutput

Clock distribution

clk

clk_board0 clk_daughter

clk_main_fpga clk_board1

clk_fpga_int1

clk_fpga_int0

data_daughter_main

Main board daughter board

fpga0 fpga1

clock distribution/fast output 1-> 0

clk

clk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_daughter_main
tclockToOutput tsetup thold

clock distribution/slow output 1-> 0

clk

clk_board0

clk_daughter

clk_main_fpga

clk_fpga_int0

clk_board1

clk_fpga_int1

data_daughter_main
tclockToOutput

Constraints

• Fulfilling FPGA internal constraints is not
sufficient.

• Perform system simulations
• Logic can be too fast

Data selection & delay

collision

particle

detector electronics L0 Trigger

Event builder L2 Trigger

data storage

100 Tbyte/s

100 Gbyte/s

100 Mbyte/s

Data selection and delay

Data selection and delay
• Data (20 bits) every * 100 ns
• collision -> L0 (1µs)
• collision -> L2y or L2n (100 µs)

data

L0

L2yn

dataDelayed

Data selection and delay
• Data (20 bits) every * 100 ns
• collision -> L0 (1µs)
• collision -> L2y or L2n (100 µs)

• Options:
– Data pipeline with FIFO based on shift registers

@ 10 MHz
20 bits * 100 µs / 100 ns
20 bits * 1000
= 20 000 bits

Data selection and delay
• Data pipeline with FIFO with shift registers

@ 10 MHz
20 bits * 1000 = 20 000 bits

0

1

2

999

20 000 bits in logic cells are used

Data selection and delay
• Data pipeline with FIFO based on dual port

RAM @ 10 MHz
20 bits * 1000 = 20 000 bits

dual port RAM

data_in

data_out

addr_in

addr_out

counter

adder

+fifo_depth – delay

FPGAs have RAM cells in addition to logic blocks

Data selection and delay
Data pipeline with 2 FIFOs based on dual port RAM@ 10

MHz:
20 bits * 10 + 20 bits * 8 = 360 bits

dual port RAM
data_in

data_out

addr_in

addr_out

counter

adder

delay = 9

dual port RAM
data_in

data_out

addr_in

addr_out

counter

counter

write_pointer

read_pointer

L0

L2

write_enable

read_enable

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

Data selection and delay

System level
simulation

• 60 ASICs: simplified behavioral
• 40 ASICs: full behavioral
• 5 FPGA: full behavioral
• 7 SRAMs: full behavioral
• 4 PCBs

6 x 10

1 x

3 x

6 x

Conclusion
• What happens if we have speed problems:

– Often because of inadequate logic
architecture/coding style

• evaluate logic architecture
• rewrite HDL code to adapt structure to better data

throughput
• insert pipeline structure - often one clock cycle

more latency does not matter
• Understand the specifications
• look for systematics which can help to simplify logic
• adapt architecture and schematics/code
• only then optimize placing & routing

Conclusion
• What happens if we have speed problems:

– Often because of components too small and
routing congestion

• timing constraints
• Routing constraint - placement constraint
• Use bigger/faster component

Conclusion
• FPGA application at CERN

– data selection/trigger (muon track finder
trigger)

– data processing (pixel detector)
• Design cycle
• Defining Specifications
• Clock domains
• Data delay

