
1875-2

First Latin American Regional Workshop on Distributed Laboratory
Instrumentation in Physics

Anthony J. Wetherilt

7 January - 4 February, 2008

Director, Administration
UNIDO-ICHET,

Sabri Ulker Sok, 38/4,
Cevizlibag, Zeytinburnu,

34015 Istanbul

TINI Platform.

The TINI Platform

A.J. Wetherilt

UNIDO,
International Centre for Hydrogen Energy

Technologies,
Istanbul,
Turkey

The TINI Platform
• Introduction
• The TINI hardware
• The Runtime Environment
• The TINI boot sequence
• Using TINI for the first time
• Programming TINI
• The native packages
• Serial port programming
• Networking with the ethernet adapter
• The 1-Wire network

The TINI Hardware (1)
The DS90C390

DS90C390 hardware comprises:
• Extended 8051 operating at 120MHz (40MHz

xtal)
• Up to 4Mbytes address space (22 bits)
• 4 kbytes internal SRAM
• Dedicated maths accelerator for 32 bit

arithmetic (40 bits accumulator)
• 3 Timers, 2 serial ports, Watchdog, IrDA, 2

CAN controllers

The TINI Hardware (2)
DSTINI1

External components:
• 2 x 512 kbyte static RAM

• 512k Flash (expandable to 1M)

• 10Base-T Ethernet controller

• Serial communications (RS232, 1-wire)

• Battery SRAM non-volatiser

• Fits on to card with 72 pin SIMM
connector

The TINI Hardware (3)
DSTINI1 - A

The TINI Hardware (4)
DSTINI1 - B

The TINI Hardware (5)
DSTINI1-functionality

The TINI Hardware (6)
DSTINI1 – Memory map

The TINI Hardware (7)
DSTINI1

• Variety of expansion boards
commercially available

• We use ones provided by Dallas
Semiconductor (DSTINIs-500/600)

• Single dc power supply with on-board
regulation (s-600 only)

• RJ45 Ethernet, RJ11 1-wire, 2xDB9
connectors

The TINI Hardware (8)
The DS90C400
The DS90C400 extends the 390:

• Max operating frequency of 75MHz
• 16Mbytes addressable linear memory
• On board Ethernet controller
• Data instructions optimised
• 1-Wire bus master implemented in h/w
• 1 extra serial port
• ROM containing TCP/IP stack, boot loader

etc.

The TINI Hardware (9)
The DS90C400 - A

Flash

Processor

Battery

The TINI Hardware (10)
The DS90C400 - B

SRAM

The TINI Hardware (11)
The DSTINIs400

Serial
port

Loader
serial
port

SPI
port

RJ-45
Ethernet

1-Wire

CAN
+5V
Power
I2C

The TINI Hardware (12)
The DS90C400 – Memory map

The Development cycle with TINI
Develop using TINI + extension board:
• Add hardware to peripheral IO area as needed

• Develop drivers and other software to access
hardware

• Develop system as needed

• Design new hardware layout once problems
resolved

• Move software to new board

The Runtime Environment

The Runtime Environment comprises:

• API (Java + platform specific)

• Java Virtual Machine (JVM)

• TINI Native Interface (TNI)

• Operating system (TINIOS)

• Drivers to native hardware

The Runtime Environment (2)
API: Classes defined in JDK + platform

specific

• java.lang classes fundamental to java
• java.io system i/o through file system
• java.net networking
• java.util miscellaneous utilities

Warning: Differences between these and
JDK (see APIDiffs.txt)

• com.dalsemi all platform specific classes

The Runtime Environment (3)

The Runtime Environment (4)
The Java Virtual Machine:

• Occupies ~40kbytes

• Full support for: Threads (16/32 max per proc),
primitive types, strings

• Not supported: Finalisation, (all)
dynamic class

loading,reflection,
serialization (TINI1 only)

• All classes must be defined either in API or
compiled in directly during binary file creation
using TINIConvertor/BuildDependency

The Runtime Environment (5)
The TINI Native Interface (TNI):

• Rarely needed directly but can be accessed
using loadlibrary(libname)

• A very thin layer that acts as an interface
between JVM and operating system
from

java.lang.Runtime

The Runtime Environment (6)
The TINI Operating System (TINIOS):

• Scheduling for process and threads

• Memory management

• I/O management

The Runtime Environment (7)

Scheduling:
• In multitasking systems, need to switch

between processes (context switching)

• Various strategies involving tradeoffs
between responsiveness to critical events
and sharing processor time

• Round robin scheduling with a 1ms clock

The Runtime Environment (8)
Priority scheduling (Real-Time)

The Runtime Environment (9)
Round robin scheduling:

The Runtime Environment (10)
TINIOS distinguishes between processes and

threads:

• A process is expensive in terms of processor
work and time. Also need support from OS for
IPC

• A thread (or lightweight process) is a sub-
process and needs much less code and time.
Also since all variables in same process easy
to access from separate threads

• Time slices: 8ms for processes, 2ms for
threads, 4ms for kernel processes (devices)

The Runtime Environment (11)
Memory manager:

• Allocates memory from heap for all processes

• Automatic garbage collection

• File system

The Runtime Environment (12)
The Garbage Collector:
• Is the only non-Java process, and runs in

background
• Is invoked

(i) Explicitely using
java.lang.System.gc()

(ii) When heap space drops below 64
kbytes

(iii) When a process terminates

The Runtime Environment (13)
The File System:

• The file system is situated in SRAM on heap
(not flash - TINI1)

• Consists of linked lists of 512 byte blocks

• Files must be made contiguous in order to be
interpreted by JVM

• Is non-volatile (battery backup)

The Runtime Environment (14)
The Input/Output system manager:

• TCP/IP stack (all networking)
(In ROM on DSTINIm400)

• Non-networking I/O (Serial, CAN, parallel bus
etc)

The TINI Boot Sequence

Using TINI
Host system requirements:

Hardware:
• Ethernet adaptor, RS232 port
Software:
• Java Development Environment
• Java Communications API
• TINI Software Development Kit
OS:
• Linux, Solaris, Windows

Using TINI (2)
TINI SDK:
• Download from www.ibutton.com/TINI
• tini.jar JavaKit, TINIConvertor and

BuildDependency
• tiniclasses.jar TINI API class files
• tini.tbin/tini400.tbin TINI Runtime binary

image
• slush.tbin/ Binary image of shell

slush400.tbin

Using TINI for the First Time
Loading the Runtime Environment:
• Connect straight RS232 cable to TINI and

apply power
• Run JavaKit [-flash 40 -400] on PC and

connect to TINI
• Download tini.tbin and slush.tbin [tini400.tbin /

slush400.tbin]
• Type b18 followed by f0 [b0 f0]
• Type EXIT

Using TINI (3)
Slush is a command shell for interacting with
TINIOS:

• Login with root and tini

• Use Unix like commands to view file system

cat, ls, cd, cp etc

• Get help by typing

help [topic]

Using TINI (4)
Configuring the Ethernet adapter for IPv4:

ipconfig
• -a xx.xx.xx.xx Set ip address
• -m xx.xx.xx.xx Set subnet mask
or
• -d Get DHCP to issue ip

address and mask
On 'OK to proceed?' prompt type 'y'
Test with ping, and telnet

Programming TINI
Running a programme on TINI:
• Create source file on host using text editor
• Run javac Progname.java
• Run TINIConvertor to create a binary image
java [TINI_PATH]/tini.jar TINIConvertor –f

Progname.class –d [TINI_PATH]/tini.db –o
Progname.tini

• Download image to TINI via ftp put in binary mode
• Telnet to TINI and run

java Progname.tini

Converting OneWireContainers + all classes NOT in
flash:

• Because of complicated dependencies, use of
TINConvertor becomes difficult

java -classpath [TINI PATH]/bin/tini.jar
BuildDependency
-x [TINI PATH]/owapi_dep.txt
-p [TINI PATH]/owapi_dependencies_TINI.jar
-f input_file.class
-o output_file.tini
-d {TINI_PATH]/tini.db
-add OneWireContainer01;OneWireContainer02;...

• For full list of options type:
java [TINI PATH]/tini.jar BuildDependency

Programming TINI
Use of BuildDependency (1)

Programming TINI
Use of BuildDependency (2)

Packages needing -add flag [m400]:
• All 1-Wire containers: OneWireContainer01

etc [ALL]
• URLs: HTTP, FTP, FILE,

MAILTO
• HTTP server: HTTP SERVER
• FTP clients: FTPCLIENT
• Communications: IIC, CAN, PPP, SPI

The Native Packages
Some com.dalsemi packages:

com.dalsemi.comm CAN and serial ports

com.dalsemi.fs Extensions to
java.io.File

com.dalsemi.onewire 1-Wire classes

com.dalsemi.shell FTP and telnet shells

com.dalsemi.system Native hardware access

com.dalsemi.tininet Network hardware support

Serial IO (1)
Using javax.comm:
Obtain a serial port using:

static CommPortIdentifier
getPortIdentifier(String portName)

where
serial0 is serial port,
serial1 is 1-wire port and,
serial4 is 2nd serial port [m400 only]

and then open it using the CommPortIdentifier method
CommPort open(String appname, int timeout)

Here timeout is the time (in ms) to wait before giving up
Note that the CommPort object must be cast to a

SerialPort object before it can be used

Serial IO (2)
Configure the port :

void SetSerialPortParams(
int baudrate, int databits,
int stopbits, int parity)

Can configure to (7, 2, 0), (7,1,1), (8,1,0), (8,1,1)
(data, stop, parity)

Set handshaking
int getFlowControlMode()
void setFlowControl(int flowcontrol)

Serial IO (3)
Next obtain the streams associated with the

port:
InputStream getInputStream()

OutputStream getOutputStream()

and
byte read(void)
void write(byte b)

Serial IO (4): Code snippet
// Step 1: Obtain the port object
CommPortIdentifier cpi =

CommPortIdentifier.getPortIdentifier(“serial0”);

// Step 2: Open the port object and set timeout
SerialPort sPort = (SerialPort)cpi.open(“MyApp”, 5000);

// Step 3: Set serial port parameters
sPort.setSerialPortParams(9600, 8, 1, 0);

// Step 4: Get streams
InputStream sIn = sPort.getInputStream();
OutputStream sOut = sPort.getOutputStream();

// Step 5: Use the streams
while (true) {

byte b = (byte)sIn.read();
sOut.write(b);

}

Networking (1)
Can perform networking on Ethernet using
following packages:

com.dalsemi.tininet.http Simple http server
com.dalsemi.tininet.icmp Error and control
com.dalsemi.tininet.dhcp Dynamic Host

Configuration
protocol
com.dalsemi.tininet.dns Domain Name System

Networking (2)

Communicating with sockets:
• Standard java.net package
• Create a new socket with constructor

Socket(String serverIP, int port)

• Get streams
InputStream getInputStream()
OutputStream getOutputStream()

• Use streams
int read(byte[] buffer, int offset, int length)
void write(byte[] buffer, int offset, int length)

Networking (3): Code snippet
Socket client;
byte buffer[1024];

// Step 1: Connect to server
client = new Socket(sServerIP, port);

// Step 2: Set up IO streams as needed
InputStream sIn = client.getInputStream();
OutputStream sOut = client.getOutputStream();

// Step 3: Process data
while (true) {

// Read from the input stream
int nchars = sIn.read(buffer, 0, buffer.length);

// … and echo back
sOut.write(buffer, 0, nchars);

}

Networking (4)
A simple HTTP server:
import com.dalsemi.tininet.http.HTTPServer;

// Step 1: Construct a server object on a given port
HTTPServer server = new HTTPServer(80);

// Step 2: Configure the server index file and root directory
server.setIndexPage(“index.html”);
server.setHTTPRoot(“/html”);

// Step 3: Handle service requests
while (true) {

server.serviceRequests();
}

Networking (5)
index.html:

<html>
<head><title> Hello Trieste </title>

<body>
Hello Trieste

</body>
</head>

</html>

1-Wire Devices
• 1-Wire devices have single active line (+return) for signaling
• Each 1-Wire device has factory defined unique address with

last byte giving family of device (memory, thermometer, adc
etc) i.e.:

- DS18B20 digital thermometer has id of 0x28
- DS2505 memory has id 0x0b

TINI has two 1-Wire ports
- Internal : Used for ethernet MAC address only
- External: Used for everything else

- Connected to serial1
- Can drive many devices

• All classes needed for 1-Wire networking found in
com.dalsemi.onewire

1-Wire devices (2)
Adapters:

DSPortAdapter is superclass with TINIExternalAdapter
used for specific properties

Instance of adapter created by:
(i) new TINIExternalAdapter()

or calling
(ii) DSPortAdapter getDefaultAdapter()
from OneWireAccessProvider class

Note: 1-Wire devices have two speeds: Regular and Overdrive.
Set with

DSPortAdapter.setSpeed()

1-Wire devices (3)
• In a multi-threaded environment will need to

lock and unlock the adapter:
boolean beginExclusive()

endExclusive()

• Before use it is necessary to determine what
devices are on network using

boolean findFirstDevice()

and in loop
boolean findNextDevice()

1-Wire devices (4)

• At each stage of the device identification can
get address of devices in various forms:

String getAddressAsString()
long getAddressAsLong()

etc
• Can often use this to identify device

unambiguously using family id

1-Wire devices (5)
Can communicate through:

boolean getBit()
int getByte()

byte[] getBlock(int length)

and
void putBit(boolean bit)
putByte(int value
void dataBlock(byte[] data, int offset,

int length)
All these throw OneWireException, and

OneWireIOException

1-Wire devices (6)
import com.dalsemi.onewire.*;

static final READ_MEMORY = 0xf0;
static final DS2502_FAMILY = 0x89;
DSPortAdapter adapter;
byte memory[] = new byte[128];

// Step 1: obtain an adapter
adapter =
OneWireAccessProvider.

getDefaultAdapter();

// Step 2: Get exclusive access to
the adapter

adapter.beginExclusive(true);

// Set speed of adapter (*******)
adapter.setSpeed(

adapter.SPEED_REGULAR);

// Step 3: iterate through the devices on
the network

if (adapter.findFirstDevice()) {
// Obtain the device address and
// check that it is in the
// correct family. DS2502 have a
// family id of 0x89
long address =

adapter.getAddressAsLong();
if (address & 0x0ff == DS2502_FAMILY)

getMemory();
else while (adapter.findNextDevice()) {

if (address & 0x0ff ==
DS2502_FAMILY) {

getMemory();
break;

}
}

}
// Close the lock on the adapter
adapter.endExclusive();

1-Wire devices (7)
// Read a block of memory from DS2502
// Method to get the 1024 bits of the DS2502 memory
void getMemory(void) {

byte [] command;

// Form the command to send to the device
command = new byte[3];
command[0] = READ_MEMORY;
command[1] = 0;
command[2] = 0;

// Step 4: Send the command
adapter.dataBlock(command, 0, 3);
// Get the response
memory = adapter.getBlock();

}

1-Wire devices (7)

• Containers through OneWireContainer
superclass provide a much more convenient
way of accessing devices

• Each container formed by
OneWireContainerXX where XX is family id

1-Wire devices (8)
Containers exist for:

ADCContainer Analog measuring operations.
ClockContainer Real-Time clocks.
HumidityContainer Humidity measuring operations.
MemoryBank Basic memory communication.
MissionContainer Analog measuring operations.
OneWireSensor Basic sensor operations.
OTPMemoryBank OTP Memory bank interface.
PagedMemoryBank Paged Memory bank interface.
PagedMemoryBank Password protection interface.
PotentiometerContainer Basic potentiometer operations.
SwitchContainer Switch device interface
TemperatureContainer Temperature measuring devices

1-Wire devices (9)
Accessed using:

OneWireContainer getFirstDeviceContainer()
getNextDeviceContainer()
Enumeration getAllDeviceContainers()

• Throw OneWireIOException, OneWireException
• Once a container has been obtained the functionality

offered by the device can be accessed
• Each family has different physical properties reflecting

in specific methods for its container class i.e.
DS18B20 is a digital thermometer with a family id of
0x28. It has methods:

void doTemperatureConvert(byte[] state)
double getTemperature(byte[] state)
double getMaxTemperature()

etc.

1-Wire devices (10)
import com.dalsemi.onewire.container.OneWireContainer;

DSPortAdapter adapter;

// Get adapter etc as before

…
// Obtain containers
container = adapter.getFirstDeviceContainer();
while (container != null) {

// Do something with it
System.out.println(“Got “ + container.getName());
…

// Get next container
container = adapter.getNextContainer();

}

Summary
• The TINI is a versatile device for of data all

forms of embedded data acquisition and
control

• It is easy to programme using standard java
and html

• It is reasonably cheap and many different
boards can be found

• The 1-Wire network allows simple, modular
data acquisition

