
1875-3

First Latin American Regional Workshop on Distributed Laboratory
Instrumentation in Physics

Carlos Kavka

7 January - 4 February, 2008

INFN Sezione di Trieste
Area di Ricerca
Padriciano 99
34012 Trieste

I t a l y

Introduction to JAVA
-supporting material-

Introduction to Java

Carlos Kavka∗

INFN Sezione di Trieste
Area di Ricerca

Padriciano 99 – 34012 – Trieste
Italia.

Supporting material for the
lectures given at:

The First Latin American Workshop on
Distributed Laboratory Instrumentation Systems

Universidad Austral de Chile
Valdivia, Chile, 7 January – 1 February 2008

LNS

∗Carlos.Kavka@ts.infn.it

Abstract

This chapter is intended to serve as an introduction to programming in
Java. It is by no means a complete treatment of the Java language or its
Application Programming Interface (API). The readers are encouraged to sup-
plement this material by referring to standard texts and consulting the Java
Software Development Kit (SDK) and API documentation 1.

After a brief introduction to the features of the language that will be rel-
evant to the topics covered in this Workshop, more advance topics such as
multithreading, use of Ant and running Java on the TINI (Tiny InterNet In-
terface) hardware are illustrated with suitable example code.

Appendices contain source code of the examples discussed in this chapter.

1http://java.sun.com/reference/api

Contents

1 Introduction 1

2 The Java platform 1

3 A first example 2

4 Development cycle for Java applications 3

5 Fundamental data types 4

6 Variables 5

7 Literals 5

8 Constants 6

9 Expressions 6
9.1 Arithmetic operators . 6
9.2 Relational operators . 8
9.3 Bit level operators . 9
9.4 Logical operators . 11
9.5 String operators . 11
9.6 Casting . 12

10 Control structures 13
10.1 Selection control statements 13
10.2 Repetition control statements 14
10.3 break and continue . 16
10.4 Switch control statement . 17

11 Arrays 19

12 Command line arguments 20

13 Classes 22
13.1 Constructors . 24
13.2 Methods . 26
13.3 Equality and equivalence . 29
13.4 Static fields . 31
13.5 Static methods . 33
13.6 A static application . 34
13.7 Fields initialization . 34

14 The keyword “this” 36

15 An example: the complex number class 38

4 Introduction to Java

16 Inheritance 41
16.1 Constructors . 42
16.2 Methods . 43
16.3 Instanceof keyword and getClass method 45

17 Packages 46

18 Access control 47

19 final and abstract 48

20 Polymorphism 53

21 Interfaces 54

22 Exceptions 56

23 Input Output 61
23.1 Byte oriented streams . 61
23.2 Buffered byte oriented streams 64
23.3 Data buffered byte oriented streams 65
23.4 Character oriented streams 67
23.5 Standard input . 69

24 Threads 71
24.1 The Producer and Consumer example 73
24.2 synchronized methods . 76
24.3 wait and notify . 77

25 JAR files 78

26 Ant 80
26.1 A first example . 80
26.2 Projects, targets, task elements and properties 81
26.3 A more complicated example 81

27 Java on the TINI 85
27.1 Using Ant . 86

A The Book example 90

B The Complex number example 92

C The Scientific Book example 95

D The Producer and Consumer example 97

References 101

1

1 Introduction

Java is a very powerful programming language that has generated a lot of inter-
est in recent years. It is a general purpose concurrent object oriented language,
with a syntax similar to C (and C++), but omitting features that are complex and
unsafe.

Its main advantage is the fact that the compiled code is independent of the
architecture of the computer. The world wide web has popularized the use of
Java, because programs written in this language can be transparently down-
loaded with the web pages and executed in any computer with a Java capable
browser.

However, Java is not limited to Web based applications. In fact, it has been
used extensively in other domains, including microcontroller applications.

A Java application is a standalone Java program that can be executed inde-
pendently of any web browser. A Java applet on the other hand is a program
designed to be executed under a Java capable browser. In this introduction to
Java, we will not cover applets.

Java was developed by Sun Microsystem in 1991, as part of a project that was
developing software for consumer electronic devices. The current version is Java
6.0 (also known as Java SE 6) and Sun provides the JDK (Java Development Kit)
freely through its web site1. This has certainly contributed to the popularity of
the Java language.

These lecture notes assume that you have some familiarity with C. In fact,
usually Java can be learnt easily than C or C++ due to the fact that most of the
complex aspects of C that can cause errors are not present in Java. We will not
be covering all aspects of Java, and in particular, we will not be covering applets
and interface design.

All examples used in these notes are available for experimentation. In fact,
they serve to complement these lecture notes and you are encouraged to execute
and modify the examples in order to fully understand the concepts involved.

2 The Java platform

Java programs are compiled into Java byte-codes, a kind of machine indepen-
dent representation. The compiled program is then executed by an interpreter
called the Java Virtual Machine (JVM). The Java Virtual Machine is an abstract
computer with its own instruction set and memory areas. A Java compiled pro-
gram can be executed in any computer system that has a JVM.

The main advantage of this approach is, of course, portability. That is, the
same Java compiled program can be executed in any computer that has a JVM.
The price to pay is slower execution due to the use of an interpreter. More recent
Just In Time (JIT) Compilers make Java programs to execute at comparable
speeds.

1java.sun.com

2 Introduction to Java

In this way, Java byte codes help to make “write once, run everywhere” pos-
sible.

3 A first example

This section presents a short example, the usual Hello World application. The
program when compiled and run just prints the message “Hello World!”.

/**
* Hello World Application
* Our first example
*/

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!"); // display output

}
}

This example, though short, involves a lot of concepts. We will just be con-
sidering the main aspects now. The rest will be covered in more detail in later
sections.

The application consists of only one class. Its name is HelloWorld and it has
to be defined in the file HelloWorld.java . The Java compiler requires that the
name of the class must be the same as the name of the file without the extension.

The class defines only one method, called main , that has to be defined exactly
as shown in the example:

public static void main(String[] args)

The main method receives an array of strings as argument and returns noth-
ing. This is the place where the execution will begin.

The class System is defined in the Java API (Application Programming In-
terface) and it is used to provide access to the system functionality. The class
variable out is a member of the class System and is used to create the stream
object System.out which allows access to the standard output stream. The
method println is called in order to print the string passed as an argument on
the standard output:

System.out.println("Hello World!");

There exists two types of standard comments for documenting programs, and
they are ignored by the compiler. Single line comments begin with the characters
// and multi-line comments are defined between the characters /* and */ like
in C.

3

There exists a third type of comments that are used by the special documen-
tation utility javadoc . They are defined between the characters /** and */ , like
in the example:

/**
* Hello World Application
* Our first example
*/

HTML and special commands can be included within this type of comments,
and they are interpreted by javadoc in order to automatically generate docu-
mentation that can be displayed on a web browser.

4 Development cycle for Java applications

To develop a Java application we have to follow three steps: creation of the
source file, compilation and execution. The following example is based on the
use of Sun Microsystems JDK.

Creation of the source file : This can be done with any text editor. The name
of the file must have the same name as the class that is going to be defined,
with the extension .java . Java is case sensitive and the capitalization of
the words will be recognized by the compiler. One possibility is the use of
the emacs editor as shown below (# is the UNIX command prompt):

emacs HelloWorld.java

Compilation : The Java compiler, when invoked using the command javac ,
will translate the source file into a file containing bytecodes that can be
executed by a Java Virtual Machine:

javac HelloWorld.java

This will create a file with the same name and the extension .class :

ls
HelloWorld.java
HelloWorld.class

Execution : The class file containing the bytecodes will be interpreted by the
Java Virtual Machine. In order to execute the application, we have to call
the program java with the name of the class as argument (without exten-
sion):

4 Introduction to Java

java HelloWorld
Hello World!

The javadoc utility can be used to automatically generate documentation for
the class, and for all of its components. The following command creates a set of
HTML files that describe the class HelloWorld .

javadoc HelloWorld

The main output file is HelloWorld.html and it is shown in figure 1.

Figure 1: Documentation generated by javadoc

5 Fundamental data types

Java provides ten primitive data types: four types of integers, two types of float-
ing point numbers, characters, booleans, the special type void and strings. Ta-
ble 1 presents for some data types, their minimum and maximum values and
the size of the objects of these types.

The type boolean consists of two values: true and false . There is no equiv-
alence with integer values like in C.

The type void is used as the return type of a method that returns nothing,
like the method main declared in the first example:

5

type size min value max value

byte 8 bits −128 127
short 16 bits −215 215 − 1
int 32 bits −231 231 − 1
long 64 bits −263 263 − 1
float 32 bits 1.4E − 45 3.45E38
double 64 bits 4.9E − 324 1.7E308
char 16 bits unicode 0 unicode 216 − 1

Table 1: Some characteristics of Java primitive data types

public static void main(String[] args)

The type String specifies sequences of characters, and it is not related to
arrays like in C.

The type char , representing characters, is 16 bits long, and allows to work
with the standard set of ASCII characters, plus an enormous amount of multi-
lingual characters.

We will consider more details of the types in following sections.

6 Variables

Variables can be declared by specifying its type and name. They can be initialized
at the point of declaration, or a value can be assigned later with the assignment
expression, as shown below:

int x; // not initialized
double f = 0.33;
char c = ’a’;
String s = "abcd";

x = 55; // value assigned

7 Literals

The integer values can be written in decimal, hexadecimal, octal and long forms,
as shown in the next example:

int x = 34; // decimal value 34
int y = 0x3ef; // hexadecimal value 3ef
int z = 0772; // octal value 772
long m = 240395922L; // long value 240395922

6 Introduction to Java

The floating point values are of type double by default. In order to specify a
float value, we have to add the letter F at the end, as shown below:

double d = 6.28; // 6.28 is a double value
float f = 6.28F; // 6.28F is a float value

The character values are specified in the standard C notation, with the excep-
tion that unicode values can be specified with \u :

char c = ’a’; // character lowercase a
char d = ’\n’; // newline character
char e = ’\u2122’ // unicode character (TM)

The boolean values are true and false . They are the only values that can be
assigned to boolean variables:

boolean ready = true; // boolean value true
boolean late = false; // boolean value false

8 Constants

The declaration of constants is very similar to the declaration of variables. It has
to include the Java keyword final in front. The specification of the initial value
is compulsory, as shown in the examples below:

final double pi = 3.1415; // constant PI
final int maxSize = 100; // integer constant
final char lastLetter = ’z’; // last lowercase letter
final String word = "Hello";

Of course, once declared, their values cannot be modified.

9 Expressions

Java provides a rich set of operators in order to use in expressions. Expres-
sions can be classified as arithmetic, bit level, relational, logical, and specific for
strings. They are detailed in the following subsections.

9.1 Arithmetic operators

Java provides the usual set of arithmetic operators: addition (+), subtraction
(-), division (/), multiplication (*) and modulus (%). The following application
provides some examples.

7

/**
* Arithmetic Application
*/

class Arithmetic {

public static void main(String[] args) {
int x = 12;
int y = 2 * x;
System.out.println(y);
int z = (y - x) % 5;
System.out.println(z);
final float pi = 3.1415F;
float f = pi / 0.62F;
System.out.println(f);

}
}

The output produced by the execution of the application is:

24
2
5.0669355

The last section of this application shows that the variables can be declared
at any point in the body of a method. They can then be used to store a value
from this point up to the end of the block in which they were defined.

Java provides several compound assignment operators that are composed of
the assignment operator and a binary operator. These can be used for abbrevi-
ating assignment expressions. The next application presents some examples:

/**
* Shorthand operators Application
*/

class ShortHand {

public static void main(String[] args) {
int x = 12;
x += 5; // x = x + 5
System.out.println(x);
x *= 2; // x = x * 2
System.out.println(x);

}
}

The output produced by the execution of the application is:

17
34

8 Introduction to Java

A usual operation is to increment or decrement the value of a variable. The
operators ++ and −− are provided for that. There are two versions of these
operators, called prefix and postfix. For pre-increment and pre-decrement op-
erators, the operation is performed first, and then the value is returned. For
post-increment and post-decrement operators, the value is returned, and then
the operation is performed.

The following application presents some examples:

/**
* Increment operator Application
*/

class Increment {

public static void main(String[] args) {
int x = 12,y = 12;

System.out.println(x++); // x is printed and then incremented
System.out.println(x);

System.out.println(++y); // y is incremented and then printed
System.out.println(y);

}
}

The output produced by the execution of the application is:

12
13
13
13

9.2 Relational operators

Java provides the standard set of relational operators: equivalent (==), not equiv-
alent (!=), less than (<), greater than (>), less than or equal (<=) and greater than
or equal (>=). The relational expressions always return a boolean value.

The following example shows the value returned by some relational expres-
sions:

/**
* Boolean operator Application
*/

class Boolean {
public static void main(String[] args) {

int x = 12,y = 33;

9

System.out.println(x < y);
System.out.println(x != y - 21);

boolean test = x >= 10;
System.out.println(test);

}
}

The output of the program is:

true
false
true

9.3 Bit level operators

Java provides a set of operators that can manipulate bits directly. Some oper-
ators such as and (&), or (|) and not (˜) perform boolean algebra on bits. There
are others to perform bits shifting: shift left (<<), shift right with sign extension
(>>) and shift right with zero extension (>>>).

The binary bitwise operator and (&) performs a boolean “and” operation be-
tween the bits of the two arguments. The binary bitwise operator or (|) performs a
boolean “or” operation between the bits of the two arguments. The unary bitwise
operator not (˜) performs a boolean “not” operation on the bits of its argument.

The binary bitwise left-shift operator (<<) shifts the bits of the first argument
as many positions as indicated by the second argument inserting 0s from the side
of the least significant bit. The binary bitwise right-shift operator (>>>) shifts the
bits of the first argument as many positions as indicated by the second argument
inserting 0s from the side of the most significant bit. The binary bitwise right-
shift operator with sign extension (>>) shifts the bits of the first argument as
many positions as indicated by the second argument inserting 0s or 1s from the
side of the most significant bit, maintaining the sign of the first argument. This
means that 0s are inserted if the number is positive, and 1s are inserted if the
number is negative.

These operators operate on integral types. If the argument is a char , short
or byte , it is promoted to int and the result is an int .

The following example shows the value returned by some boolean algebra bit
level expressions:

/**
* Boolean algebra bit level operators Application
*/

class Bits {

10 Introduction to Java

public static void main(String[] args) {

int x = 0x16; // 00000000000000000000000000010110
int y = 0x33; // 00000000000000000000000000110011
System.out.println(x & y);// 00000000000000000000000000010010
System.out.println(x | y);// 00000000000000000000000000110111
System.out.println(˜x); // 11111111111111111111111111101001

x &= 0xf; // 00000000000000000000000000000110
System.out.println(x); // 00000000000000000000000000000110

short s = 7; // 0000000000000111
System.out.println(˜s); // 11111111111111111111111111111000

}
}

The example shows that compound assignment operators are also possible by
combining the assignment operator and the binary boolean operators (& and |).
The comments specify the binary representation of the values obtained at each
stage. The last two comments show that even if the value of the argument to
“not” is a short , the result is an int .

The following example shows the value returned by some bit level shift ex-
pressions:

/**
* Bit level operators Application
*/

class Bits2 {

public static void main(String[] args) {
int x = 0x16; //00000000000000000000000000010110
System.out.println(x << 3);//00000000000000000000000010110000

int y = 0xfe; //00000000000000000000000011111110
y >>= 4; //00000000000000000000000000001111
System.out.println(y); //00000000000000000000000000001111

x = 9; //00000000000000000000000000001001
System.out.println(x >> 3);//00000000000000000000000000000001
System.out.println(x >>>3);//00000000000000000000000000000001

x = -9; //11111111111111111111111111110111
System.out.println(x >> 3);//11111111111111111111111111111110
System.out.println(x >>>3);//00011111111111111111111111111110

}
}

11

9.4 Logical operators

Java provides the logical operators and (&&), or (||) and not (!). The logical
operators can only be applied to boolean expressions and return a boolean value.

The following example shows the value returned by some logical expressions:

/**
* Logical operators Application
*/

class Logical {

public static void main(String[] args) {
int x = 12,y = 33;
double d = 2.45,e = 4.54;

System.out.println(x < y && d < e);
System.out.println(!(x < y));

boolean test = ’a’ > ’z’;
System.out.println(test || d - 2.1 > 0);

}
}

The output produced by the execution of the application is:

true
false
true

9.5 String operators

Java provides a complete set of operators on Strings. We will leave most of them
for a later section, and we will now consider just the concatenation operator (+).
This operator combines two strings and produces a new string with characters
from both arguments.

A useful behavior happens when an expression begins with a String and
uses the + operator. In this case, the next argument is converted to String if
necessary.

The next program shows some examples:

/**
* Strings operators Application
*/

class Strings {

12 Introduction to Java

public static void main(String[] args) {

String s1 = "Hello " + "World!";
System.out.println(s1);

int i = 35,j = 44;
System.out.println("The value of i is " + i +

" and the value of j is " + j);
}

}

The output produced by the execution of the application is:

Hello World!
The value of i is 35 and the value of j is 44

Due to the fact that the expression between parenthesis starts with a String
and the operator + is used, the values of i and j are converted into strings, and
then concatenated:

System.out.println("The value of i is " + i +
" and the value of j is " + j);

9.6 Casting

Java performs an automatic type conversion of the values when there is no risk
of data loss. This is the usual case for widening conversions, as the following
example shows:

/**
* Test Widening conversions Application
*/

class TestWide {

public static void main(String[] args) {
int a = ’x’; // ’x’ is a character
long b = 34; // 34 is an int
float c = 1002; // 1002 is an int
double d = 3.45F; // 3.45F is a float

}
}

In order to specify conversions where data can be lost (narrowing conversions)
it is necessary to use the cast operator. It consists of just the name of the type
we want to convert to, between parenthesis, as the following example shows:

13

/**
* Test Narrowing conversions Application
*/

class TestNarrow {

public static void main(String[] args) {
long a = 34;
int b = (int)a; // a is long, narrowing conversion
double d = 3.45;
float f = (float)d; // d is double, narrowing conversion

}
}

These conversions must only be used when we are certain that no data would
be lost.

10 Control structures

Programs are built using the three fundamental blocks:

• sequence.

• selection.

• repetition and iteration.

Java provides the same set of control structures as C, with the main differ-
ence being that the conditional expression must be a boolean value, and cannot
be an integer. Next sections describe them.

10.1 Selection control statements

The basic selection mechanism is the statement if , which decides, based on the
value of a boolean expression, the statement that has to be executed. It has two
forms:

if (boolean-expression)
statement

and:

if (boolean-expression)
statement

else
statement

14 Introduction to Java

A statement can be replaced by one instruction or by a compound statement
consisting of a set of instructions surrounded by curly braces.

The following application presents an example of the use of the if selection.
The application prints the words “letter”, “digit” or “other character” depending
on the value of the variable c :

/**
* If control statement Application
*/

class If {

public static void main(String[] args) {

char c = ’x’;

if ((c >= ’a’ && c <= ’z’) || (c >= ’A’ && c <= ’Z’))
System.out.println("letter: " + c);

else if (c >= ’0’ && c <= ’9’)
System.out.println("digit: " + c);

else {
System.out.println("other character:");
System.out.println("the character is: " + c);
System.out.println("it is not a letter");
System.out.println("and it is not a digit");

}
}

}

The output produced by the execution of the application is:

letter: x

10.2 Repetition control statements

Java provides the standard while and do-while repetition control statements
to implement indeterminate loops. They allow the repetition of a statement (or
compound statement) while a boolean expression evaluates to true . Their forms
are:

while (boolean-expression)
statement

and:

do
statement

while (boolean-expression);

15

Note that the while structure can execute the statement zero or more times,
and the do-while structure can execute the statement one or more times, de-
pending on the value of the boolean expression.

The following example prints the number of times it is necessary to increment
a variable in a certain step from an initial value till it goes over a limit:

/**
* While control statement Application
*/

class While {

public static void main(String[] args) {
final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;

float var = initialValue;
int counter = 0;

while (var < limit) {
var += step;
counter++;

}
System.out.println("It is necessary to increment it "

+ counter + " times");
}

}

The output produced by the execution of the application is:

It is necessary to increment it 22 times

Java provides also a control structure that supports iteration: the for loop.
Its form is:

for(initialization;boolean-expression;step)
statement;

The initialization expression is executed first, and then the statement is ex-
ecuted while the boolean expression evaluates to true. Before the evaluation of
the boolean expression, the step expression is evaluated.

The next example performs the same computations as the previous one, but
using the for loop:

16 Introduction to Java

/**
* For control statement Application
*/

class For {

public static void main(String[] args) {
final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;

int counter = 0;

for (float var = initialValue;var < limit;var += step)
counter++;

System.out.println("It is necessary to increment it "
+ counter + " times");

}
}

The scope of the variable var defined in the first expression of the for loop is
the body of the loop, the boolean expression and the step expression. The output
of the application is, of course, the same as the output of the previous example.

10.3 break and continue

The statements break and continue provide control inside loops. break quits
the loop whereas continue starts a new iteration by evaluating the boolean ex-
pression again. In the case of the for loop, the step expression is executed first.

The next example illustrates the use of break and continue :

/**
* Break and Continue control statement Application
*/

class BreakContinue {

public static void main(String[] args) {
int counter = 0;

for (counter = 0;counter < 10;counter++) {

// start a new iteration if the counter is odd
if (counter % 2 == 1) continue;

17

// abandon the loop if the counter is equal to 8
if (counter == 8) break;

// print the value
System.out.println(counter);

}
System.out.println("done.");

}
}

The output produced by the execution of the application is:

0
2
4
6
done.

Note that the boolean expression of the first if statement evaluates to true
when the value of the counter is odd. In this case, the continue statement
finishes the current execution of the body of the loop, executing the step expres-
sion (counter++), and evaluating again the boolean expression (counter < 10).
If this expression evaluates to true , the body of the loop is executed again.

The break statement breaks the execution out of the loop when the counter
reaches the value 8, causing the control to be transferred to the last statement
of the program.

Although break and continue can be used with a label, we will not cover
such usage in these lecture notes.

10.4 Switch control statement

The switch control structure selects blocks of code to be executed based on the
value of an integral expression. Its structure is as follows:

switch (integral-expression) {

case integral-value: statement; [break;]
...
case integral-value: statement; [break;]

[default: statement;]
}

The square brackets surround optional statements. The integral expression
is evaluated and the statement that has a value that matches the value of the

18 Introduction to Java

expression is executed. If the break statement is present, the switch statement
is abandoned. if not, the statements that follow are executed independently of
their integral value, till a break statement is found, or the end of the switch
body is reached.

The integral expression can be any expression that returns a value convertible
to int . This means that it can be char , short , byte or int .

The following example counts the number of days in a year. Note that the
answer would be completely different if break statements are removed.

/**
* Switch control statement Application
*/

class Switch {

public static void main(String[] args) {
boolean leapYear = true;
int days = 0;

for(int month = 1;month <= 12;month++) {

switch(month) {
case 1: // months with 31 days
case 3:
case 5:
case 7:
case 8:
case 10:

case 12:
days += 31;
break;

case 2: // February is a special case
if (leapYear)

days += 29;
else

days += 28;
break;

default: // it must be a month with 30 days
days += 30;
break;

}
}

19

System.out.println("number of days: " + days);
}

}

The output produced by the execution of the application is:

number of days: 366

11 Arrays

In Java it is possible to declare arrays that can be used to store a number of
elements of the same type. The following are some examples of declarations of
arrays:

int[] a; // an unitialized array of integers
float[] b; // an unitialized array of floats
String[] c; // an unitialized array of Strings

The declaration does not specify a size for the array. In fact, the declaration
does not even allocate space for them.

The size can be specified by initializing the arrays in the declaration:

int[] a = {13,56,2034,4,55}; // size: 5
float[] b = {1.23F,2.1F}; // size: 2
String[] c = {"Java","is","great"}; // size: 3

Other possibility to allocate space for arrays is using the operator new. In this
case the size of the array can be computed even at execution time.

int i = 3,j = 5;
double[] d; // unitialized array of doubles

d = new double[i+j]; // array of 8 doubles

When the new operator is used, the memory is assigned dynamically. The
components of the array are initialized with default values: 0 for numeric type
elements, ’\0’ for characters and null for references (more about that later).

The array can be accessed by using an integer index that can take values from
0 to the size of the array minus 1. For example, it is possible to modify the third
element (the one with index 2) of array a in the first example with the following
assignment:

a[2] = 1000; // modify the third element of a

Every array has a member called length that can be used to obtain the length
of the arrays. The next application shows examples of the use of arrays:

20 Introduction to Java

/**
* Arrays Application
*/

class Arrays {

public static void main(String[] args) {
int[] a = {2,4,3,1};

// compute the summation of the elements
int sum = 0;
for(int i = 0;i < a.length;i++)

sum += a[i];

// create an array of floats with this size
float[] d = new float[sum];

// assign some values
for(int i = 0;i < d.length;i++)

d[i] = 1.0F / (i + 1);

// print the values in odd positions
for(int i = 1;i < d.length;i += 2)

System.out.println("d[" + i + "]=" + d[i]);

}
}

The output produced by the execution of the application is:

d[1]=0.5
d[3]=0.25
d[5]=0.16666667
d[7]=0.125
d[9]=0.1

It is also possible to declare multidimensional arrays with a similar approach.
As an example, the following line declares a matrix of integers that can be used
to store 50 elements, organized in 10 rows of 5 columns.

int[][] a = new int[10][5];

12 Command line arguments

We have seen that the method main has to be defined as follows:

21

public static void main(String[] args)

It takes one argument that is defined as an array of strings. Through this
array, the program can access the command line arguments typed when the
program is submitted to the java virtual machine for execution. The following
application prints all of its command line arguments:

/**
* Command Line Arguments Application
*/

class CommandArguments {

public static void main(String[] args) {

for(int i = 0;i < args.length;i++)
System.out.println(args[i]);

}
}

Sample executions of the application follows:

java CommandArguments Hello World
Hello
World
java CommandArguments
java CommandArguments I have 25 cents
I
have
25
cents

Even if, in the last example, the argument 25 is an integer, it is considered
as the string “25”, which is stored in args[2] . It is possible to convert a string
that contains a valid integer into an int value by using method parseInt that
belongs to the class Integer (more details on that later).

The following application accepts two arguments in the command line. They
must be integers. The application prints the result of the addition of the two
arguments.

/**
* Add Application
*/

class Add {

public static void main(String[] args) {

22 Introduction to Java

if (args.length != 2) {
System.out.println("Error");
System.exit(0);

}
int arg1 = Integer.parseInt(args[0]);
int arg2 = Integer.parseInt(args[1]);

System.out.println(arg1 + arg2);
}

}

Sample executions of the application follows:

java Add 2 4
6
java Add 4
Error
java Add 33 22
55

Note the use of the method exit that belongs to class System , which is used
to terminate the execution of the application. Note also that the conversion
from string type to integer type is performed by using the method parseInt as
discussed below.

13 Classes

A class is defined in Java by using the class keyword and specifying a name for
it. For example, the code:

class Book {

}

declares a class called Book . New instances (or objects) of the class can be
created (or instantiated) using the keyword new, as follows:

Book b1 = new Book();
Book b2 = new Book();

or in two steps, with exactly the same meaning:

Book b3;

b3 = new Book();

23

As you can imagine, this class is not very useful since it has an empty body
(ie. it contains nothing).

Inside a class it is possible to define data members, usually called fields,
and member functions, usually called methods. The fields are used to store
information and the methods are used to communicate with the instances of the
classes.

Let’s suppose we want to use instances of the class Book to store information
on the books we have, and particularly, we are interested in storing the title, the
author and the number of pages of each book. We can then add three fields to
the Book class as follows:

class Book {
String title;
String author;
int numberOfPages;

}

Note that the above definition is a kind of template or blueprint that defines
the class Book .

Now, each instance of this class will contain three fields. The fields can be
accessed with the dot notation, which consists of the use of a dot (.) between the
name of the instance and the name of the field we want to access.

The next application shows how to create an instance and how to access these
fields:

/**
* Example with books Application
*/

class Book {
String title;
String author;
int numberOfPages;

}

class ExampleBooks {

public static void main(String[] args) {
Book b;

b = new Book(); // default constructor
b.title = "Thinking in Java";
b.author = "Bruce Eckel";
b.numberOfPages = 1129;

System.out.println(b.title + " : " + b.author +

24 Introduction to Java

" : " + b.numberOfPages);
}

}

The output produced by the execution of the application is:

Thinking in Java : Bruce Eckel : 1129

13.1 Constructors

The constructors allow the creation of instances that are properly initialized. A
constructor is a method that has the same name as the name of the class to
which it belongs, and has no specification for the return value, since it returns
nothing.

The next application provides a constructor called Book (there is no other
option) that initializes all fields of an instance of Book with the values passed as
arguments:

/**
* Example with books Application (version 2)
* that shows the use of constructors
*/

class Book {
String title;
String author;
int numberOfPages;

Book(String tit,String aut,int num) { // constructor
title = tit;
author = aut;
numberOfPages = num;

}
}

class ExampleBooks2 {

public static void main(String[] args) {
Book b;

// create an instance of a book

b = new Book("Thinking in Java","Bruce Eckel",1129);

System.out.println(b.title + " : " + b.author +

25

" : " + b.numberOfPages);
}

}

The constructor is called when the instance of a book is created. The output
produced by the execution of this application is:

Thinking in Java : Bruce Eckel : 1129

Java provides a default constructor for the classes. This is the one that was
called in the example ExampleBooks before, without arguments:

b = new Book();

This default constructor is only available when no other constructors are de-
fined in the class. This means, that in the last example ExampleBooks2 it is not
possible to create instances of books by using the default constructor.

It is possible to define more than one constructor for a single class, only if
they have different number of arguments or different types for the arguments.
In this way, the compiler is able to identify which constructor is called when
instances are created.

The next application adds one extra field for books; the ISBN number. The
previously defined constructor is modified in order to assign a proper value to
this field. A new constructor is added in order to initialize all the fields with
supplied values. Note that there is no problem in identifying which constructor
is called when instances are created:

/**
* Example with books Application (version 3)
* that defines more that one constructor
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;

26 Introduction to Java

author = aut;
numberOfPages = num;
ISBN = isbn;

}
}

class ExampleBooks3 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.title + " : " + b1.author +

" : " + b1.numberOfPages + " : " + b1.ISBN);

b2 = new Book("Thinking in Java","Bruce Eckel",1129,
"0-13-027363-5");

System.out.println(b2.title + " : " + b2.author +
" : " + b2.numberOfPages + " : " + b2.ISBN);

}
}

The output of the execution of the application is:

Thinking in Java : Bruce Eckel : 1129 : unknown
Thinking in Java : Bruce Eckel : 1129 : 0-13-027362-5

13.2 Methods

A method is used to implement the messages that an instance (or a class) can
receive. It is implemented as a function, specifying arguments and the type of
return value. It is called by using the dot notation.

The following is the same application as the one defined before, but with a
method to get the initials of the author’s name from an instance of a Book :

/**
* Example with books Application (version 4)
* that defines one method
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

27

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {

initials = initials + currentChar + ’.’;
}

}
return initials;

}
}

class ExampleBooks4 {

public static void main(String[] args) {
Book b;

b = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println("Initials: " + b.getInitials());

}
}

The output of the execution of the application is:

Initials: B.E.

The prototype of the method getInitials() is:

public String getInitials()

28 Introduction to Java

The method is defined public so it can be called from other classes (more
details on that later). It takes no arguments and returns a String.

It is called by using the dot notation:

System.out.println("Initials: " + b.getInitials());

Note that no arguments are passed. In object oriented terminology, we must
say that the message “getInitials” is sent to the object “b”. The object “b” is the
receptor of the message.

The method is implemented as follows:

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {

initials = initials + currentChar + ’.’;
}

}
return initials;

}

All references to author correspond to references to the field called author in
the receptor of the message, in this case, the instance b.

The method creates an empty string in the variable initials , and traverses
the field author searching for uppercase letters. If an uppercase letter is found,
it is added to the string initials together with a dot.

Note the use of the methods length() and charAt(int) of class String, that
can be used to get the length of a string, and the character in a specified position
in the string.

The next example defines an array of books, and initializes it with data per-
taining to three books. After that, the method getInitials is called on the three
instances. This should clarify the fact that even if the method getInitials pro-
cesses data stored in author , it corresponds to the specific field of the receptor
of the message.

class ExampleBooks5 {

public static void main(String[] args) {
Book[] a;

a = new Book[3];
a[0] = new Book("Thinking in Java","Bruce Eckel",1129);

29

a[1] = new Book("Java in a nutshell","David Flanagan",353);
a[2] = new Book("Java network programming",

"Elliotte Rusty Harold",649);

for(int i = 0;i < a.length;i++)
System.out.println("Initials: " + a[i].getInitials());

}
}

The output of the execution of the application is:

Initials: B.E.
Initials: D.F.
Initials: E.R.H.

13.3 Equality and equivalence

The usual operator for testing equality (==) can be a bit confusing when it is
used to compare objects. The next application defines two books with the same
values and then compares them:

class ExampleBooks6 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are different

The fact is that the equivalent operator (==) checks for the equivalence of the
objects, ie. if the two objects passed as arguments are the same object, but not
if they have the same values. Things are different if we write the application as
follows:

30 Introduction to Java

class ExampleBooks6a {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = b1;

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are the same

Now, b1 and b2 are references to the same object. The expression b1 == b2
returns true , because both variables refer to the same object.

In order to have the possibility to test for equality in the sense that two objects
are equal if both have the same values, it is necessary to define a method. It is
usual practice to call it equals . It can be defined inside the class Book as follows:

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

The method equals receives one reference to Book as an argument and re-
turns a boolean value. This value is computed as the result of an expression
that compares each field individually.

The next application tests equality of books:

class ExampleBooks7 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

if (b1.equals(b2))
System.out.println("The two books are the same");

else

31

System.out.println("The two books are different");
}

}

The output of the execution of the application is:

The two books are the same

13.4 Static fields

In Object Oriented programming classes are used as models to create instances.
Every instance of a Book has four fields (title , author , numberOfPages and
ISBN), and they can be used to store values in one instance independently of the
values stored in other instances. Hence they are called instance variables.

Static fields (or class variables) are data members that belong to the class and
do not exist in each instance. It means that there is always only one copy of this
data member, independent of the number of the instances that were created.

The next example defines a static field called owner that will be used to store
the name of the owner of the books. We assume that all the books that we
are going to define in an application will belong to the same person. In this
case, it is not necessary to have one field in each instance (book) to store the
name, because it must be the same in all of them. The example also defines two
methods: setOwner and getOwner that will be used to set and get the owner of
all books respectively. This methods are usually called accessor methods.

/**
* Example with books Application (version 8)
* that defines a static field and accessor methods
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
static String owner; // shared by all instances

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;

32 Introduction to Java

author = aut;
numberOfPages = num;
ISBN = isbn;

}

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i ++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {

initials = initials + currentChar + ’.’;
}

}
return initials;

}

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

public void setOwner(String name) {
owner = name;

}

public String getOwner() {
return owner;

}
}

class ExampleBooks8 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Java in a nutshell","David Flanagan",353);
b1.setOwner("Carlos Kavka");

System.out.println("Owner of book b1: " + b1.getOwner());
System.out.println("Owner of book b2: " + b2.getOwner());

}
}

33

The main application creates two books, and then set the owner by sending
the message setOwner to the object b1 (it could also be b2). After that it prints
the owner of both books. The output of the execution of the application is:

Carlos Kavka
Carlos Kavka

It can be seen that even if the owner was set by sending a message to the
object b1, the owner of b2 was modified. In fact, there is only one field called
owner that can be accessed with the methods through all instances of Books .

Static fields can be used for communication between different instances of
the same class, or to store a global value at the class level.

13.5 Static methods

With the same idea of the static fields, it is possible to define class methods or
static methods. These methods do not work directly with instances but with the
class. As an example, we want to define a method called description to provide
information about the class Book . In this sense, the information returned by
this method must be the same, independent of the instance. The method can be
defined inside the class Book in this way:

public static String description() {
return "Book instances can store information on books";

}

Note the word static before the specification of the return value. The applica-
tion can then call the method as follows:

class ExampleBooks9 {

public static void main(String[] args) {

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);

System.out.println(b1.description()); // to the object
System.out.println(Book.description()); // to the class

}
}

The output of the execution of the application is:

Book instances can store information on books
Book instances can store information on books

A static method can be called by sending the message to the class, or by
sending the message to any instance.

Static methods can only access static variables. In the above example, the
only variable that can be accessed from the method description is the variable
owner .

34 Introduction to Java

13.6 A static application

All the examples we have seen till now define a class that contains a static
method called main, where usually instances from other classes are created.

It is possible to define a class with only static methods and static fields, as
the following example shows:

/**
* All static class Application
*/

import java.io.*;

class AllStatic {
static int x;
static String s;

public static String asString(int aNumber) {
return "" + aNumber;

}

public static void main(String[] args) {

x = 165;
s = asString(x);
System.out.println(s);

}
}

This application defines two static fields x and s . It also contains two static
methods asString and main .

The method main calls the method asString . This can be done since both of
them are static, and they operate only on static fields. There is no need to create
an instance of this class in order to send the messages.

In some sense, when only static fields and methods are defined, the class
looks like a standard C program, with functions and global data.

It is interesting to note the way in which the function asString converts an
integer value to a string. It uses the operator + and the property that when the
first argument is a string, the next one is converted to string.

13.7 Fields initialization

All fields in an object are guaranteed to have an initial value. There exists a
default value for each primitive type as illustrated in Table 2:

35

type default value

byte 0
short 0
int 0
long 0
float 0.0 F
double 0.0
char ’\0’
boolean false

Table 2: Initial values of primitive data types

All references to objects get an initial value of null . The following application
shows an example:

/**
* InitialValues Application
*/

class Values {
int x;
float f;
String s;
Book b;

}

class InitialValues {

public static void main(String[] args) {

Values v = new Values();

System.out.println(v.x);
System.out.println(v.f);
System.out.println(v.s);
System.out.println(v.b);

}
}

The output of the execution of the application is:

0
0.0
null
null

36 Introduction to Java

The values can be initialized also in the constructor, or even by calling meth-
ods at the declaration point, as the following example shows:

/**
* InitialValues Application (version 2)
*/

class Values {
int x = 2;
float f = inverse(x);
String s;
Book b;

Values(String str) {
s = str;

}

public float inverse(int value) {
return 1.0F / value;

}
}

class InitialValues2 {

public static void main(String[] args) {

Values v = new Values("hello");

System.out.println(v.x);
System.out.println(v.f);
System.out.println(v.s);
System.out.println(v.b);

}
}

The output of the execution of the application is:

2
0.5
hello
null

14 The keyword “this”

The keyword this , when used inside a method, refers to the receiver object.
It has two main uses: 1). it can be used to return a reference to the receiver

37

object from a method and 2). it can be used to call constructors from other
constructors.

For example, the method setOwner in the previous Book class could have
been defined as follows:

public Book setOwner(String name) {
owner = name;
return this;

}

The method returns a reference to Book , and the value returned is a reference
to the receiver object. With this definition of the method, it can be used as
follows:

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.setOwner("Carlos Kavka").getInitials());
System.out.println(b1.getOwner());

The message setOwner is sent to b1. The method returns a reference to the
receptor object, which is b1. Then the message getInitials is sent to b1.

The output of the execution of this example is:

B.E.
Carlos Kavka

The other use of this is to call from one constructor another constructor. For
example, in the definition of the class Book there were two constructors:

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

The second one can be defined in a shorter way by calling the first constructor.
This can be done as follows:

38 Introduction to Java

Book(String tit,String aut,int num,String isbn) {
this(tit,aut,num);
ISBN = isbn;

}

The effect is exactly the same. The first constructor is called, and then the
value in isbn is assigned to the data member ISBN.

When the keyword this is used in this way, it must be called as the first
action of the constructor.

The complete implementation of the Book class, with even more methods is
included in Appendix A.

15 An example: the complex number class

Let’s suppose that we want to define a complex number class that allows us to
work with complex numbers in our applications. The following application shows
an example of the use of this Complex class, that we want to define:

/**
* Test Complex class Application
*/

class TestComplex {

public static void main(String[] args) {

Complex a = new Complex(1.33,4.64);
Complex b = new Complex(3.18,2.74);

Complex c = a.add(b);
System.out.println("a+b = " + c.getReal() + " " +

c.getImaginary());

Complex d = c.sub(a);
System.out.println("c+d = " + d.getReal() + " " +

d.getImaginary());

}
}

This application creates two complex numbers a and b with some initial val-
ues in their real and imaginary parts. A complex number c is created as the
addition of a and b, and then its real and imaginary parts are printed. After that,
a complex number d is created as the subtraction of a from c . This number is
also printed.

The output of the execution of this application should be something like:

39

a+b = 4.51 7.38
c+d = 3.18 2.74

The Complex class should have two data members to store the real and the
imaginary parts of the complex numbers. We have to define a constructor that
can initialize both parts from the arguments, and methods to get the real and
imaginary parts of the number. This can be done as follows:

/**
* Complex Number class
*/

public class Complex {
double real; // real part
double im; // imaginary part

/** This constructor creates a complex number from its real
* and imaginary part.
*/

Complex(double r,double i) {
real = r;
im = i;

}

/** This method returns the real part
*/

public double getReal() {
return real;

}

/** This method returns the imaginary part
*/

public double getImaginary() {
return im;

}
}

We have to define two specific methods in order to implement the addition
and subtraction of complex numbers. From the example, we can see that both
methods must take one argument; the complex number to be added to or sub-
tracted from the number that is the receptor of the message. For example, in the
following expression, the method sub must subtract from the complex number c
the complex number a:

40 Introduction to Java

Complex d = c.sub(a);

Note that the methods have to create a new complex number and return it
as the result. They do not have to modify the receptor or the complex number
passed as argument. This can be implemented as follows:

/** This method returns a new complex number which is
* the result of the addition of the receptor and the
* complex number passed as argument
*/

public Complex add(Complex c) {
return new Complex(real + c.real,im + c.im);

}

/** This method returns a new complex number wich is
* the result of the substraction of the receptor and the
* complex number passed as argument
*/

public Complex sub(Complex c) {
return new Complex(real - c.real,im - c.im);

}

Note that we use new in order to create a new instance of a complex number.
It is initialized by calling the constructor, and then it is returned.

Let’s suppose we want to define a method addReal that increments just the
real part of the receptor of the message with the value passed as argument. Note
that this method must modify the receptor, something that methods add and sub
were not doing. An example of its use could be:

a.addReal(2.0);

By considering our previous example, we should get the values 3.33 and 4.64
as the real and imaginary parts of a after the execution of the method. Imagine
that we would like to be able to use it also in the following way:

a.addReal(2.0).addReal(3.23);

In this case we want to add first 2.0 to the real part of a, and then 3.23. In
this case, we need that the method addReal returns a reference to the receptor
object (or current object), so the next call to addReal can operate on the same
complex number.

As this is a reference to the receptor object when it is used in a method, this
can be done as follows:

41

/** This method increments the real part by a value
* passed as argument. Note that the method modifies
* the receptor
*/

public Complex addReal(double c) {
real += c;
return this; // returns the receptor object

}

We must be careful if we want to create one complex number as a copy of the
other, since the assignment expression shown below will not do it:

Complex e = a;

This will make just e to be a reference to the same object referenced by a (see
section 13.3). This means that if we increment e, then a will be incremented too.

In order to create a new complex number, we should use a constructor as
follows:

Complex e = new Complex(a);

It is necessary then to define a constructor that takes one complex number
as argument. An interesting way to define it is as follows:

/** This constructor creates a complex number as a copy
* of the complex number passed as argument
*/

Complex(Complex c) {
this(c.real,c.im);

}

Note that this constructor takes a complex number as argument, and calls
(through this) the constructor defined previously.

The complete implementation of the Complex class, with even more methods
is included in Appendix B.

16 Inheritance

Inheritance allows to define new classes by reusing other classes. It is possible
to define a new class (called subclass) by saying that the class must be “like” the
other class (called super class) by using the keyword extends followed by the

42 Introduction to Java

name of the super class. The definition of the new class specifies the differences
with the super class.

Let’s suppose we want to extend the definition of the class Book we have
defined in Section 13 to store information on scientific books. We can add two
fields to the definition of the class Book in order to store the area of science they
cover and a boolean data member to identify proceedings from normal scientific
books:

class ScientificBook extends Book {
String area;
boolean proceeding = false;

}

The instances of a ScientificBook will have six fields altogether: title ,
author , numberOfPages , ISBN, area and proceeding ; the four inherited from
the super class Book and the two newly defined fields. Note that by default a
scientific book is not a proceeding.

16.1 Constructors

We can define a constructor for the class as follows:

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn); // use the constructor defined
area = a; // in the super class

}

The constructor defined above has the same parameters as the constructor of
the class Book plus one parameter for the area. As there is one constructor that
can be used to initialize the first four data member in the super class Book , it
is not necessary to do it again here. The constructor of the super class can be
called through super .

By using this constructor, a scientific book can be defined as follows:

ScientificBook sb;

sb = new ScientificBook("Neural Networks, A Comprehensive
Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

The method super must be the first instruction in the body of the construc-
tor. If it is not used, then the Java compiler inserts a call to super without
parameters. If there is no such constructor, the compiler will indicate an error.

By extending classes it is possible to define a complete hierarchy of classes.
Every class can inherit from the class above and can add some fields and meth-
ods.

43

16.2 Methods

A class can have two or more methods of the same name but with different sets
of parameters. Java is able to distinguish between them by the number and type
of their parameters. This property is known as Method Overloading.

New methods can be defined in the subclass to specify the behavior of the
objects of this class. However, methods defined above in this hierarchy can also
be called.

This new method in the subclass can have the same name and the parameters
as a method in the super class. This property is known as Method Overriding.

When a message is sent to an object, the method is searched for in the class
of the receptor object. If it is not found then it is searched for higher up in the
hierarchy of classes till it is found.

The inheritance can then be used to reuse the code defined in other related
classes. In some cases, the behavior of a method has to be changed. In this case,
the method can be redefined. As the search of a method starts from the receptor
class, the most specific method is always selected.

In our example, we can certainly reuse the method getInitials from the
class ScientificBook , since it works over the data member author , which is
common to instances from both classes.

Without defining it for scientific books, we can do something like:

System.out.println(sb.getInitials());

where sb is the instance of ScientificBook defined before.
We cannot use the method equals since in order to check if two scientific

books are equal we have to consider now two more fields. However, we can reuse
the checking of the four data members from the class Book and just write the
comparison for the new fields as follows:

public boolean equals(ScientificBook b) {
return super.equals(b) && area.equals(b.area) &&

proceeding == b.proceeding;
}

The method equals compares the fields area and proceeding . The compar-
ison of the other four fields is done by calling the method equals defined in the
super class by using super .

In this way, this method’s equals redefines the method with the same name
defined in the super class. However, the method equals defined in the super
class is called as part of the definition of this method. When super is used to
call super class methods, it can be used in any place of the body of the method.

It should be clear that the method could have been defined in the following
way since all fields are accessible from this method:

public boolean equals(ScientificBook b) {
return (title.equals(b.title) && author.equals(b.author) &&

44 Introduction to Java

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN) && area.equals(b.area) &&
proceeding == b.proceeding;

}

Of course, the previous version reuses code defined before.
It is not necessary to call redefined method from the subclass. For example,

a method description can be defined to return a value independently of the
value returned by the method with the same name in the super class. It can be
defined as:

public static String description() {
return "ScientificBook instances can store information" +

" on scientific books";
}

New methods can also be defined. For example, we can define methods to set
the field ’proceeding’ and to check it, as follows:

public void setProceeding() {
proceeding = true;

}

public boolean isProceeding() {
return proceeding;

}

Note that it is possible to send a message setProceeding to an instance of
the class ScientificBook but it is not possible to send it to an instance of Book .

The next application is an example of the use of scientific books:

/**
* Test Scientific Book Class
*/

class TestScientificBooks {
public static void main(String[] args) {

ScientificBook sb1,sb2;

sb1 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

sb2 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

45

sb2.setProceeding();

System.out.println(sb1.getInitials());
System.out.println(sb1.equals(sb2));
System.out.println(sb2.description());

}
}

The output of the execution of the application is:

S.H.
false
ScientificBook instances can store information on
scientific books

The complete ScientificBook class is provided in Appendix C.

16.3 Instanceof keyword and getClass method

The keyword instanceof returns a boolean value indicating if an object is an
instance of a specified class. The method getClass returns the runtime class of
the object, which can be printed as a string.

As an example, the following application shows an interesting result in the
context of inheritance:

/**
* Test Class Application
*/

class TestClass {

public static void main(String[] args) {
Book b1;
ScientificBook sb1;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);

sb1 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

System.out.println(b1.getClass());
System.out.println(sb1.getClass());
System.out.println(b1 instanceof Book);
System.out.println(sb1 instanceof Book);
System.out.println(b1 instanceof ScientificBook);

46 Introduction to Java

System.out.println(sb1 instanceof ScientificBook);
}

}

The output of the execution of the application is:

class Book
class ScientificBook
true
true
false
true

The two calls to getClass return the class the receptor objects are instances
of, which are printed as strings. When calling instanceof , it is true that b1 is
an instance of Book and not an instance of a ScientificBook , and that sb1 is
an instance of ScientificBook .

It is interesting to note that sb1 is also an instance of Book . In fact, every
object is an instance of its class, and an instance of all classes that are higher
up in the class hierarchy. This is what allows instances of scientific books to
accept messages that correspond to methods defined for books.

17 Packages

A package is a structure in which classes can be organized. A package can
contain any number of classes, usually related by purpose or by inheritance.

The standard classes in the system are organized into packages. For example,
Java provides a class Date that can be used to work with dates in our classes.
It is defined in the package java.util . In order to specify to the Java compiler
that we are interested in the use of this class, we have to use the keyword import
in a statement as follows:

import java.util.Date;

It is possible to specify just the name of the package, importing all classes
defined in a given package:

import java.util.*;

An application that prints the current date is the following:

/**
* Test Date Class
*/

import java.util.*;

47

class TestDate {

public static void main(String[] args) {

System.out.println(new Date());
}

}

The output of the application (when I was executing it) was:

Wed Sep 15 11:40:16 ART 2004

New packages can be defined by using the keyword package with the name
of the package we are going to define as argument:

package mypackage; // first line of all source files

This must be the first non commented statement in the file. The classes
defined in the file belong to the package mypackage . There can also be other files
that define classes for the same package. They can be imported by other classes
with the import statement.

However, not only the package name should be included in each file, the
source files themselves should be placed in a special directory, that matches the
package name structure. For example, if the file Instrument.java is defined as
follows:

package it.infn.ts;

class Instrument {

...
}

It should be placed in the directory it/infn/ts . When executing an applica-
tion that imports this class specifying the full package name, the virtual machine
will look for the file by using this path, starting from the base directory or any
directory specified in the so called classpath. The classpath lists all directories
and files that are starting points for locating classes. Its value can be set by
using the option -classpath for the compiler and the virtual machine, or more
usually, by setting the CLASSPATHenvironment variable.

18 Access control

It is possible to control the access to methods and variables from other classes
with three so called access modifiers: public , private and protected . There

48 Introduction to Java

exists a default access control which allows full access from all classes that
belong to the same package. That is the one which we have been using in our
examples so far.

Full access means that it is possible to access fields and methods from an-
other class. For example, it is possible to set the proceeding condition of a
scientific book from the class TestScientificBook as follows:

sb1.setProceeding();

or by just accessing the field:

sb1.proceeding = true; / property exposed

Usually we do not want direct access to a field. This is in order to guar-
antee proper encapsulation. To achieve encapsulation we can use the modifier
private . This modifier guarantees that the field can be accessed only from
methods that belong to this class.

For example, the class ScientificBook can be defined in this way:

class ScientificBook extends Book {
private String area;
private boolean proceeding = false;

}

In this case, the direct access to the field proceeding is not allowed from
other classes, and the condition of a scientific book to be a proceeding can only
be asserted by sending the message setProceeding .

The same applies to methods. A private method can only be called from other
methods in its own class.

Usually most of the data members are defined private, and they can only be
modified by methods belonging to the class in which these data members are
found. This is in fact the important property of the abstract data types (ADT)
called encapsulation.

The public modifier allows full access from all other classes without restric-
tions. This is the usual way in which methods are defined so the messages they
implement can be sent to objects of its class from all other classes.

The protected modifier allows access to fields and methods from subclasses
and from all classes in the same package.

19 final and abstract

Two other modifiers can be used to define the methods and the classes: final
and abstract .

A final method cannot be redefined in a subclass. It means that when a
method is defined final, it is not possible for the subclasses to redefine its mean-
ing.

49

A final class does not allow subclassing. It means that it is not possible to
define subclasses of a final class.

An abstract method has no body, and it must be redefined in a subclass.
It means that it is possible to define classes that force subclasses to define a
specific method.

An abstract class is a class that cannot be instantiated. It means that it is not
possible to define instances of this class. However, as subclassing is possible,
instances can be created of subclasses of abstract classes.

We will now see an example that uses these concepts. Let’s suppose we want
to use in our application different types of input output boards. In particular,
we have a serial board and an Ethernet network board. We have to define two
classes, one for each type of board.

However, we can see that there are some data that are common to all input
output boards: system name, counter for errors, etc. and some operations that
are the same: initialization, reading, writing, close, etc.

A good design option is to define a class called IOBoard that contains data
members and methods that are common to all types of input output boards.
Then subclasses can be defined in order to implement the specific input output
boards.

This IOBoard class must be abstract, in the sense, that we will not be creating
instances of this general input output board, but will create instances of its
subclasses.

It is important to note that it is not possible to define the real code for commu-
nication in the abstract class IOBOard since it is general, and we cannot assume
a specific type of hardware. This requires that the implementation dependent
code must be defined in the subclasses.

In order to force all subclasses to define methods for the required behavior of
an input output board, these methods have to be defined as abstract methods.

The method used to increment the counter of errors in the abstract class
IOBoard can be defined final, since no subclass must modify its behavior.

The following is the code of the class IOBoard defined in line with what is
discussed above:

/**
* IO board Class
*/

abstract class IOBoard {
String name; // common to all IOBoards
int numErrors = 0;

IOBoard(String s) {
System.out.println("IOBoard constructor");
name = s;

}

50 Introduction to Java

final public void anotherError() {
numErrors++;

}

final public int getNumErrors() {
return numErrors;

}
abstract public void initialize();
abstract public void read();
abstract public void write();
abstract public void close();

}

A subclass of IOBoard cannot redefine the method anotherError since it was
declared final. It is not possible to create an instance of IOBoard since it was
declared abstract. This means that it is not possible to do something like:

IOBoard b = new IOBoard("my board"); // wrong !!!!

The subclass serial board can be defined as follows:

/**
* IO serial board Class
*/

class IOSerialBoard extends IOBoard {
int port;

IOSerialBoard(String s,int p) {
super(s);
port = p;
System.out.println("IOSerialBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOSerialBoard");
// specific code to initialize a serial board

}

public void read() {
System.out.println("read method in IOSerialBoard");
// specific code to read from a serial board

}

public void write() {
System.out.println("write method in IOSerialBoard");

51

// specific code to write to a serial board
}

public void close() {
System.out.println("close method in IOSerialBoard");
// specific code to close a serial board

}
}

This class defines a constructor that takes the name of the board and a port
as arguments. The port corresponds to a field defined in this class, and the
name is the value to be stored in the field defined in the super class. Note that
the constructor calls the constructor of the super class through super .

The respective methods will only print a message identifying themselves and
return, since we are not going to define communication code in the method bod-
ies in this example.

The subclass IOEthernetBoard can be defined as follows:

/**
* IOEthernetBoard Class
*/

class IOEthernetBoard extends IOBoard {
long networkAddress;

IOEthernetBoard(String s,long netAdd) {
super(s);
networkAddress = netAdd;
System.out.println("IOEthernetBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOEthernetBoard");
// specific code to initialize an ethernet board

}

public void read() {
System.out.println("read method in IOEthernetBoard");
// specific code to read from an ethernet board

}

public void write() {

52 Introduction to Java

System.out.println("write method in IOEthernetBoard");
// specific code to write to an ethernet board

}

public void close() {
System.out.println("close method in IOEthernetBoard");
// specific code to close an ethernet board

}
}

This class defines a constructor that takes the name of the board and a net-
work address as arguments. The network address corresponds to a field defined
in this class, the name is the value to be stored in the field defined in the super
class. Note that the constructor calls the constructor of the super class through
super .

The next application presents an example of their use:

/**
* Test Boards1 class Application
*/

class TestBoards1 {
public static void main(String[] args) {

IOSerialBoard serial = new IOSerialBoard("my first port",
0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

The output of the execution of this application is:

IOBoard constructor
IOSerialBoard constructor
initialize method in IOSerialBoard
read method in IOSerialBoard
close method in IOSerialBoard

Note the order in which the constructors are executed. Note also that the
methods defined in the subclass are executed, and the methods defined in the
super class are ignored.

53

20 Polymorphism

Polymorphism is an important feature in which the appropriate method to act on
an object is selected from all the methods that have the same name. We can say
that there exists polymorphism when different objects can respond to the same
kind of messages. In this way, we can operate with these objects by using the
same interface.

In the last example, we can see that instances of the class IOSerialBoard
and instances of the class IOEthernetBoard can respond to the same set of
messages. We can say then that there exists polymorphism. This property allows
to work with instances of both classes in the same way, as the next example
shows:

/**
* Test Boards2 class Application
*/

class TestBoards2 {

public static void main(String[] args) {

IOBoard[] board = new IOBoard[3];

board[0] = new IOSerialBoard("my first port",0x2f8);
board[1] = new IOEthernetBoard("my second port",0x3ef8dda8);
board[2] = new IOEthernetBoard("my third port",0x3ef8dda9);

for(int i = 0;i < 3;i++)
board[i].initialize();

for(int i = 0;i < 3;i++)
board[i].read();

for(int i = 0;i < 3;i++)
board[i].close();

}
}

In this application an array of three IOBoard instances is defined. A problem
that seems to appear is the fact that it is not possible to define instances of this
class, since it was declared abstract.

However, as we have seen before, instances of subclasses of IOBoard are
also instances of IOBoard (see section 16.3). So, it is possible to make the
assignments shown in the example, that assign one instance of a Serial board,
and two instances of IOEthernetBoard boards to the array.

In order to work with the boards we have to initialize, read and close them. As
the interface is the same, we can operate with the input output board instances

54 Introduction to Java

stored in the array by just sending the corresponding messages, without consid-
ering the specific type of board. This is possible due to polymorphism property.

21 Interfaces

In our last example we have defined an abstract class in order to define the com-
mon data and methods we want all input output boards to have and implement.
However, we can get a similar behavior by using interaces.

An interface defines what a class should do, without specifying how it should
be done. Its definition looks like a class definition, however, it is not a class, it
is a specification of a set of requirements that the classes that wants to conform
the interface should follow.

An interface looks like a class definition, where all fields are static and
final , and all methods have no body and are public . No instances can be
created from interfaces.

The fields can represent constant values (being final and static), and the meth-
ods can define a behavior, or more specifically as the name says, an interface.

The word implements can be used to define classes that implements an in-
terface or in other words, classes that implement all methods defined in the
interface.

In our example, if we are not interested in having a name for the boards and
an error counter, we could have defined IOboard as an interface as follows:

/**
* IO board interface
*/

interface IOBoardInterface {

public void initialize();
public void read();
public void write();
public void close();

}

The class IOSerialBoard can then be defined as a class that implements this
interface, and not as a subclass of another class:

/**
* IO serial board Class (second version)
*/

class IOSerialBoard2 implements IOBoardInterface {
int port;

55

IOSerialBoard2(int p) {
port = p;
System.out.println("IOSerialBoard constructor");

}

public void initialize() {
System.out.println("initialize method in IOSerialBoard");
// specific code to initialize a serial board

}

public void read() {
System.out.println("read method in IOSerialBoard");
// specific code to read from a serial board

}

public void write() {
System.out.println("write method in IOSerialBoard");
// specific code to write to a serial board

}

public void close() {
System.out.println("close method in IOSerialBoard");
// specific code to close a serial board

}
}

The next application shows an example of the use of this class:

/**
* Test Boards3 class Application
*/

class TestBoards3 {

public static void main(String[] args) {

IOSerialBoard2 serial = new IOSerialBoard2(0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

56 Introduction to Java

A class can implement more than one interface. For example, let’s suppose
we want to define an interface called niceBehaviour that defines methods we
consider that all nice classes should implement:

/**
* Nice behavior interface
*/

interface NiceBehavior {

public String getName();
public String getGreeting();
public void sayGoodBye();

}

If we are interested in forcing the serial board class to implement all meth-
ods in IOBoardInterface and all methods in NiceBehavior , we can define the
serial board class as follows:

/**
* IO serial board Class (third version)
*/

class IOSerialBoard3 implements IOBoardInterface,
NiceBehavior {

...
}

The Java compiler will accept this class definition, only if all methods defined
in both interfaces are defined in this class.

We can see that a similar effect can be obtained with abstract classes as
with interfaces. In some sense, both of them force other classes to define a
specific behavior. However, a class can implement more than one interface, but
a subclass cannot inherit from more than one class.

22 Exceptions

The usual behavior when there is a runtime error in an application is to abort
the execution. For example:

/**
* Test Exceptions class Application
*/

class TestExceptions1 {

57

public static void main(String[] args) {

String s = "Hello";

System.out.print(s.charAt(10));
}

}

As the string s has no character in position 10, the execution stops with the
following message:

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException:

String index out of range: 10
at java.lang.String.charAt(String.java:499)
at TestExceptions1.main(TestExceptions1.java:11)

This error, or exception in Java terminology, can be caught and some pro-
cessing can be done by using the try and catch statements as shown in the
following example:

/**
* Test Exceptions class Application (version 2)
*/

class TestExceptions2 {
public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (Exception e) {
System.out.println("No such position");

}
}

}

The output of the execution of the application is:

No such position

When an exception occurs inside the block defined by try , the control is
transfered to the block defined by catch . This block will process all kinds of
exceptions. If we are interested only in processing the exception for index out of
bounds for strings, we can do it in the following way:

58 Introduction to Java

/**
* Test Exceptions class Application (version 3)
*/

class TestExceptions3 {

public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (StringIndexOutOfBoundsException e) {
System.out.println("No such position");

}
}

}

There exist messages that can be sent to an exception object. For example,
the next application sends the message toString to the exception object e:

/**
* Test Exceptions class Application (version 4)
*/

class TestExceptions4 {

public static void main(String[] args) {

String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (StringIndexOutOfBoundsException e) {
System.out.println("No such position");
System.out.println(e.toString());

}
}

}

The output of the execution of the application is:

No such position
java.lang.StringIndexOutOfBoundsException:

String index out of range: 10

59

In a try clause, there can be multiple catch blocks for all possible exceptions
that the clause is intended to handle. It is also possible to specify a special block,
by using the keyword finally , that will be executed always at the end of the
clause, independently if the execution finish normally, or with some exception.
It is used normally to release some resource that must be cleaned up.

The next example defines a method that receives a string as argument, which
represents an affirmative English sentence, which is expected to end with a dot.
It prints to standard output the first character of the sentence and the last char-
acter before the dot, using an interesting method of the class String that pro-
vides C-like formatting.

Class MultipleCatch {

public void printInfo(String sentence) {

try {

// get first and last char before the dot
char first = sentence.charAt(0);
char last = sentence.charAt(sentence.indexOf(".") - 1);
String out = String.format("First: %c Last: %c",

first, last);

System.out.println(out);
} catch (StringIndexOutOfBoundsException e1) {

System.out.println("Wrong sentence, no dot?");
} catch (NullPointerException e2) {

System.out.println("Non valid string");
} finally {

System.out.println("done!");
}

}
}

The method has to deal with two exceptions: the first exception can be gen-
erated when it is not possible to get the character that is just before the dot,
because the dot itself is missing or the sentence consists of the single dot. The
second exception can be generated when the string is null .

Note that the method indexOf returns the index of the first character of the
string passed as an argument. If the string is not found, it returns 0.

Consider the following statements:

String sentence = "A test sentence.";

MultipleCatch mc = new MultipleCatch();
mc.printInfo(sentence);

60 Introduction to Java

The output is:

First: A Last: e
done!

Note that no exception is generated, and the block defined by finally is
executed.

Consider now the following statements:

String sentence = "A test sentence";

MultipleCatch mc = new MultipleCatch();
mc.printInfo(sentence);

The output is:

Wrong sentence, no dot?
done!

The exception StringIndexOutOfBoundsException is generated, and the
first catch block is executed. After that, the block defined by finally is also
executed.

Consider now the following statements:

String sentence = null;

MultipleCatch mc = new MultipleCatch();
mc.printInfo(sentence);

The output is:

Non valid string
done!

The exception NullPointerException is generated, and the second catch
block is executed. After that, the block defined by finally is also executed.

There exists a set of predefined exceptions that can be caught. In some cases
it is compulsory to catch exceptions. It is also possible to express an interest to
not to catch even compulsory exceptions (by using the keyword throwable). We
will see more examples in sections to follow.

61

23 Input Output

The input output system in Java is rather complex. There are plenty of classes
that have to be used in order to read or write data. One advantage is the fact
that input output from files, devices, memory or web sites is performed exactly
in the same way.

The Java input output system is implemented in the package java.io . It
is based on the idea of streams. An input stream is a data source that can be
accessed in order to get data from. An output stream is a data sink, where data
can be written to.

The streams are divided into byte streams and character streams. Byte streams
can be used to read or write data in small pieces, like bytes, integers, etc. Char-
acter streams can be used to read or write characters.

Java also allows to write and read complete objects (property known as seri-
alization), but we will not be covering it here.

The following subsections introduce the way in which it is possible to work
with streams depending on the kind of data we want to work with.

23.1 Byte oriented streams

There exist two classes that can be used for processing byte oriented streams:
the class FileOutputStream that can be used to write bytes into a stream, and
the class FileInputStream that can be used to read bytes from a stream.

The next application writes 5 bytes into a file called file1.data :

/**
* Write bytes class Application
*/

import java.io.*;

class WriteBytes {

public static void main(String[] args) {

int data[] = { 10,20,30,40,255 };

FileOutputStream f;

try {
f = new FileOutputStream("file1.data");

for(int i = 0;i < data.length;i++)
f.write(data[i]);

f.close();
} catch (IOException e) {

62 Introduction to Java

System.out.println("Error with files:"+e.toString());
}

}
}

The application defines a reference to a FileOutputStream . An instance of
this class is created with the keyword new by passing a file name as argument.
The effect of this operation is to relate the internal object f with the file in such
a way that, when a write operation is performed on f , the data is written into the
file.

In this example, all the components of the array are written into the file with
the message write . The file is closed at the end with the message close .

Note that all the operations with the stream are included inside a try and
catch block. This is in fact compulsory, and the compiler will complain if it is
not done, due to the fact that an IOException can be generated and it must be
trapped.

The next example reads data from a file called file1.data :

/**
* Read bytes class Application
*/

import java.io.*;

class ReadBytes {

public static void main(String[] args) {

FileInputStream f;

try {
f = new FileInputStream("file1.data");

int data;
while((data = f.read()) != -1)

System.out.println(data);

f.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

In this example, an instance of FileInputStream is created relating to the
file file1.data . The bytes are read one after another with the message read .
This message returns the byte read, or -1 when the end of file is reached. The

63

stream is closed with the message close . Note also that in this example the
IOException should be trapped.

The output of the execution of the application is:

10
20
30
40
255

There exists a message write that can be used to store a complete array of
bytes into a file. The next example is similar to the class WriteBytes , but it
writes all the components of a byte array at once:

/**
* Write bytes class Application
*/

import java.io.*;

class WriteArrayBytes {
public static void main(String[] args) {

byte data[] = { 10,20,30,40,50 };
FileOutputStream f;

try {
f = new FileOutputStream("file1.data");

f.write(data,0,data.length);

f.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

The message write receives as arguments the array of bytes, the index of
the first component, and the number of components to be written. Even if the
array is written in this way, it can be read without problems using the previous
example ReadBytes . An equivalent message exists for reading an array of bytes
at once.

Something that is important to note is the fact that the message write expects
an integer as argument, and the method read returns an integer, instead of a
byte. This is due to the fact that a normal byte can take values from -128 to
127, and the bytes written to or read from a file must be in the range 0 to 255.
However, the methods that reads or writes a complete array work with bytes.

64 Introduction to Java

23.2 Buffered byte oriented streams

In order to minimise the communication overheads it is the usual practice to
use buffers. Byte oriented buffered streams can be defined and used with the
classes BufferedOutputStream and BufferedInputStream . It is still necessary
to create the streams as was explained in the previous section. The available
messages are the same.

The next application shows how to write to a file using buffered streams:

/**
* Write buffered bytes class Application
*/

import java.io.*;

class WriteBufferedBytes {

public static void main(String[] args) {

int data[] = { 10,20,30,40,255 };
FileOutputStream f;
BufferedOutputStream bf;

try {
f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);

for(int i = 0;i < data.length;i++)
bf.write(data[i]);

bf.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

A buffered output stream object bf is created by passing the file output
stream object f as the argument. In this way, we are expressing our interest
in buffering the output stream.

The same applies to reading:

/**
* Read buffered bytes class Application
*/

import java.io.*;

class ReadBufferedBytes {

65

public static void main(String[] args) {

FileInputStream f;
BufferedInputStream bf;

try {
f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);

int data;
while((data = bf.read()) != -1)

System.out.println(data);

bf.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

The output of the execution of the application is:

10
20
30
40
255

23.3 Data buffered byte oriented streams

A data buffered byte oriented stream can be used to work with data in small
pieces corresponding to the primitive types. The messages shown in Table 3 can
be used to read and write data.

read message write message

readBoolean() writeBoolean(boolean)
readByte () writeByte(byte)
readShort() writeShort(short)
readInt() writeInt(int)
readLong() writeLong(long)
readFloat() writeFloat(float)
readDouble() writeDouble(double)

Table 3: Methods for buffered byte oriented streams

66 Introduction to Java

The next application stores into a data buffered byte oriented stream an in-
teger that corresponds to the size of an array of doubles, the components of the
array of doubles, and finally a boolean value:

/**
* Write data class Application
*/

import java.io.*;

class WriteData {

public static void main(String[] args) {
double data[] = { 10.3,20.65,8.45,-4.12 };

FileOutputStream f;
BufferedOutputStream bf;
DataOutputStream ds;

try {
f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);
ds = new DataOutputStream(bf);

ds.writeInt(data.length);
for(int i = 0;i < data.length;i++)

ds.writeDouble(data[i]);

ds.writeBoolean(true);

ds.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

Note that a data buffered byte oriented stream is created in three steps: first
the file output stream is created, then it is buffered, and finally the data stream
is created.

The next application reads data from a data stream:

/**
* Read data class Application
*/

67

import java.io.*;

class ReadData {

public static void main(String[] args) {

FileInputStream f;
BufferedInputStream bf;
DataInputStream ds;

try {
f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);
ds = new DataInputStream(bf);

int length = ds.readInt();
for(int i = 0;i < length;i++)

System.out.println(ds.readDouble());

System.out.println(ds.readBoolean());

ds.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

The output of the execution of the application is:

10.3
20.65
8.45
-4.12
true

23.4 Character oriented streams

The character oriented streams can be used to read and write characters. In
order to create an output text stream it is necessary to create an instance of
a FileWriter and then an instance of a BufferedWriter . There exists three
methods that can be used to write data into this kind of streams. They are shown
in Table 4.

The first message can be used to write characters from a string, starting from
the position indicated by the first integer and as many as indicated by the second
integer. The second message is similar, but the characters are written from an

68 Introduction to Java

message

write(String,int,int)
write(char[],int,int)
newLine()

Table 4: Methods for character oriented streams

array of characters. The message newLine generates a newline in the output
stream independent of the convention used in the current operating system.

The next application writes some selected characters from two strings into a
character oriented output stream:

/**
* Write text class Application
*/

import java.io.*;

class WriteText {
public static void main(String[] args) {

FileWriter f;
BufferedWriter bf;

try {
f = new FileWriter("file1.text");
bf = new BufferedWriter(f);

String s = "Hello World!";
bf.write(s,0,s.length());
bf.newLine();
bf.write("Java is nice!!!",8,5);
bf.newLine();

bf.close(); }
catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The content of the file after the execution of the application is:

Hello World!
nice!

In order to read from a text oriented stream it is necessary to create an in-
stance of a file reader, and then an instance of a buffered reader. The message

69

readLine can be used to read complete lines from the text file. It returns an
instance of a String containing the line, or the null reference at end of file.

The next application reads lines from a buffered text oriented stream:

/**
* Read text class Application
*/

import java.io.*;

class ReadText {

public static void main(String[] args) {

FileReader f;
BufferedReader bf;

try {
f = new FileReader("file1.text");
bf = new BufferedReader(f);

String s;
while ((s = bf.readLine()) != null)

System.out.println(s);

bf.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

23.5 Standard input

Sometimes the applications need to read from the standard input. The standard
input of an application can be referenced in Java with the object System.in .
In order to read from it, it is necessary to define an InputStreamReader and a
BufferedReader , as the next example shows:

/**
* Standard input class Application
*/

import java.io.*;

class StandardInput {

public static void main(String[] args) {

70 Introduction to Java

InputStreamReader isr;
BufferedReader br;

try {
isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)

System.out.println(line);
} catch(IOException e) {

System.out.println("Error in standard input");
}

}
}

The method readLine returns a line from the standard input as a string.
Note that the method length is called on this returned string in order to check
if the standard input was closed.

The application just copies its standard input into its standard output.
As it was stated before, methods can express their interest in not to catch

some specific exceptions. This is done by using the keyword throws in the
method specification. In this case, it is not necessary to define the try and
catch block.

The next application is the same as the previous one, but the method main
throws the exception IOException :

/**
* Standard input class Application (throws IOException)
*/

import java.io.*;

class StandardInputWithThrows {

public static void main(String[] args) throws IOException {
InputStreamReader isr;
BufferedReader br;

isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)

System.out.println(line);
}

}

71

Note that in this example application, the try and catch block was not de-
fined.

From Java 5.0 (JDK 1.5.0) the handling of standard input devices is simpli-
fied, with the use of the Scanner class. Using the Scanner class, an object can
be created to read input from System.in in a very simple way. What follows is
an example of an application that prints the summation of a set of integers read
from standard input.

/**
* Sum integers read from System.in with the Scanner class
*/

import java.io.*;
import java.util.*;

class ReadWithScanner {

public static void main(String[] args) throws IOException {

Scanner sc = new Scanner(System.in);
int sum = 0;
while (sc.hasNextInt()) {

int anInt = sc.nextInt();
sum += anInt;

}
System.out.println(sum);

}
}

The scanner object reads and splits the inputs in tokens using a delimiter
pattern, which by default is a whitespace. The resulting tokens may then be
converted into values of different types using the various next methods.

The Scanner class can also be used to read from a file by creating an instance
as follow:

Scanner from_file = new Scanner(new File("file.data"));

Please refer to the Java 5.0 API documentation for more details.

24 Threads

In Java it is possible to run concurrently different tasks called threads. Each
thread can be seen as an independently running task, with some CPU time as-
signed to it. These threads can communicate between themselves and their
access to shared data can be synchronized.

In order to define a thread, it is necessary to create a subclass of the class
Thread . The class Thread has an abstract method called run , that has to be

72 Introduction to Java

defined in the subclass. This method has to contain the code that will be running
as an independent thread.

The next example defines a class called CharThread that is a subclass of
Thread , and defines the method run :

/**
* Char thread class Application
*/

class CharThread extends Thread {
char c;

CharThread(char aChar) {
c = aChar;

}

public void run() {
while (true) {

System.out.println(c);
try {

sleep(100);
} catch (InterruptedException e) {

System.out.println("Interrupted");
}

}
}

}

This class defines a character data member that is initialized with a character
value when an instance of the class is created with the constructor.

The method run contains an infinite loop where the character is printed, and
puts the thread to sleep for 100 milliseconds. Note that an exception can be
generated when the thread is sleeping, so code has to be defined in order to
catch it.

The next application creates two instances of this class, each initialized with
a different character. Then both of them are started as a thread, so the run
methods of both instances will be executed concurrently:

/**
* test threads class Application
*/

class TestThreads {

public static void main(String[] args) {

73

CharThread t1 = new CharThread(’a’);
CharThread t2 = new CharThread(’b’);

t1.start();
t2.start();

}
}

Note that the two instances of CharThread are created by calling the con-
structor. Both threads are started by sending the message start .

The output of the execution of the application is:

a
b
a
b
a
b
a
b
a
b
a
b
...

Both threads get the CPU for some time quantum, so the output produced by
them is intermixed.

24.1 The Producer and Consumer example

The producer and consumer problem is a standard example that illustrates con-
currency and the problems associated with it. The idea is that there exist two
processes that interact through a common buffer into which the producer stores
the items produced and from which the consumer consumes these items.

A synchronization problem arise since both processes have to interact with
the same buffer. The buffer is then a critical resource. The other problem arises
from the fact that the producer cannot put items into a full buffer, and the
consumer cannot consume items from an empty buffer.

The next application shows a possible implementation of the main class for
the producer and consumer problem:

/**
* Producer Consumer class Application
*/

74 Introduction to Java

class ProducerConsumer {

public static void main(String[] args) {

Buffer buffer = new Buffer(20);

Producer prod = new Producer(buffer);
Consumer cons = new Consumer(buffer);

prod.start();
cons.start();

}
}

This class creates a buffer with 20 empty slots, and then an instance of the
producer thread and an instance of the consumer thread. The common buffer is
passed as an argument to the constructor, so both threads will share the buffer.
After that, both threads are started.

A corresponding producer class can be defined as follows:

/**
* Producer class Application
*/

class Producer extends Thread {
Buffer buffer;

public Producer(Buffer b) {
buffer = b;

}

public void run() {
double value = 0.0;

while (true) {
buffer.insert(value);
value += 0.1;

}
}

}

The producer class is a subclass of Thread , so it must have a method run that
can be executed as an independent thread. The class defines one data member
that will contain a reference to the buffer passed as argument to the constructor.
The method run inserts a double value into the buffer inside an infinite loop.
So the producer is producing double values that are inserted into the common
buffer.

75

Similarly a consumer class can be defined as follows:

/**
* Consumer class Application
*/

class Consumer extends Thread {
Buffer buffer;

public Consumer(Buffer b) {
buffer = b;

}

public void run() {

while(true) {
System.out.println(buffer.delete());

}
}

}

The consumer class is also a subclass of Thread . The class defines a data
member that will contain a reference to the common buffer. The run method, ie.,
the one that will be executed as a thread, just removes data from the buffer, and
prints it onto standard output.

The Buffer is defined as a circular buffer implemented with one array and two
pointers, one for the head position and the other for the tail position. Data is
inserted in the tail position, and data is read from the head position. There is
one data member used to store the number of elements currently available in
the buffer. The Buffer application is shown below:

/**
* Buffer class Application
*/

class Buffer {

double buffer[];

int head = 0;
int tail = 0;
int size = 0;
int numElements = 0;

public Buffer(int s) {
buffer = new double[s];

76 Introduction to Java

size = s;
numElements = 0;

}

public void insert(double element) {

buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;

}

public double delete() {

double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}
}

Although this implementation seems to be correct, it does not work for two
reasons which are discussed below.

• Both methods insert and delete operate concurrently over the same struc-
ture. It is necessary to define a critical region, or in other words, to prevent
both methods accessing the buffer concurrently. If one thread is inserting
data the other must wait till the first one has finished, and vice-versa.

• The insert method does not check if there is at least one free slot in the
buffer, and the delete method does not check if there is at least one data
value available in the buffer.

The following subsections will further discuss these problems and their solu-
tions.

24.2 synchronized methods

In Java it is possible to define synchronized methods. These methods are not
allowed to be executed concurrently in the same instance. Each instance has a
lock that is used to synchronize the access.

The solution to the first problem is to define the methods as follows, using the
keyword syncronized :

public synchronized void insert(double element) {

buffer[tail] = element;

77

tail = (tail + 1) % size;
numElements++;

}

public synchronized double delete() {

double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}

Synchronized methods allow to implement the concept of mutual exclusion,
where no more than one process can get access to shared data at the same time.
Note that it is possible to have many consumers and many producers, all of them
dealing with the same buffer. It is also possible to create more than one buffer,
with each instance having its own lock.

24.3 wait and notify

Subclasses of Thread can send messages wait and notify . The messages can
be sent only from synchronized methods. The message wait puts the calling
thread to sleep, releasing the lock. The message notify awakens a waiting
thread on the corresponding lock.

In our example, the thread that is going to insert a value into the buffer has
to put itself to sleep when there is no empty slots in the buffer. The thread that
is going to remove a value from an empty buffer has to put itself to sleep to be
awakened when a value is available in the buffer.

The thread that has just inserted data into an empty buffer has to notify the
delete thread so it can be awakened. The thread that has just removed data from
a full buffer has to notify the insert thread so it can be awakened.

The correct code for the implementation of both methods is as follows:

public synchronized void insert(double element) {
if (numElements == size) {

try {
wait(); // go to sleep

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;
notify(); // wake any thread waiting

}

78 Introduction to Java

public synchronized double delete() {

if (numElements == 0) {
try {

wait(); // go to sleep
} catch(InterruptedException e) {

System.out.println("Interrupted");
}

}
double value = buffer[head];
head = (head + 1) % size;
numElements--;
notify(); // wake any thread waiting
return value;

}

Note that it is necessary to catch an exception when wait is used.
The listing of the Buffer class is provided in Appendix D.

25 JAR files

When we were compiling the ProducerConsumer example four class files were
generated as the following command shows:

ls *.class
Buffer.class
Consumer.class
ProducerConsumer.class
Producer.class

In order to distribute the executable of this application it is necessary to copy
these four files.

Java provides a mechanism to pack and compress files into one file in order
to make the process of distribution of applications easier. This compressed file
is called a JAR (Java ARchive) file.

A JAR file can be created and manipulated by the command jar . In order to
create a JAR file, it is necessary to define a manifest file. The manifest file con-
tains information on the files included in the JAR file. The command jar creates
a default manifest file in the directory META-INF with name MANIFEST.MF, just
below the current directory.

It is possible to add specific lines to this manifest file by passing, as an ar-
gument to jar , the name of a text file that contains these lines. Information
is specified as (key,value) pairs. In the Producer Consumer example, the only
necessary pair that has to be specified is the name of the class that contains the

79

main function. It can be done in a text file (called mylines.txt in our example)
with the following content:

cat mylines.txt
Main-Class: ProducerConsumer

The creation of a JAR file for this application can be done as follows:

jar cmf mylines.txt ProducerConsumer.jar
ProducerConsumer.class Producer.class Consumer.class
Buffer.class

The option c specifies creation of a JAR file, m that a text file with lines to be
added to the manifest file will be supplied in the command line, and f that the
name of the JAR file will be also supplied in the command line. mylines.txt
contains the lines to be added to the manifest file, ProducerConsumer.jar is
the expected output file, and the file names that follow are the names of the files
to be added to the JAR file.

It is possible to see the contents of the JAR file just created by using the
option t as follows:

jar tf ProducerConsumer.jar
META-INF/
META-INF/MANIFEST.MF
ProducerConsumer.class
Producer.class
Consumer.class
Buffer.class

Note that a manifest file was added with the following contents:

Manifest-Version: 1.0
Main-Class: ProducerConsumer
Created-By: 1.5.0 (Sun Microsystems Inc.)

The application included in the JAR file can be executed as follows:

java -jar ProducerConsumer.jar

It is possible to extract and update the contents of a JAR file. Please refer to
Java documentation for further details and examples.

80 Introduction to Java

26 Ant

Ant is a building tool that provides support to compile, pack, deploy and docu-
ment Java applications. In some sense, its functionality is similar to the make
command, except that the approach is completely different. The make specifi-
cations are organized as a set of shell commands whereas the specifications for
the ant command are defined in terms of XML sentences. A build file defines a
project which consists of a set of tasks. The building process is executed by call-
ing out the target of tasks, where each task is run by an object that implements
a particular Task interface. The main advantage of this approach is portabil-
ity, since the build files are independent of the operating system. A not so big
disadvantage is that the shell commands cannot be used for specifications.

The ant specification is usually written in a file called build.xml . This file fol-
lows the XML syntax, and it specifies a project (identified with the tag project),
which consists of a set of targets (identified with the tag target), which in turn
consists of a set of task elements. Each task element corresponds to a specific
task to be performed by ant .

26.1 A first example

This section introduces ant with a simple example that can be used to com-
pile a Java application. Let us assume that the current directory contains the
file HelloWorld.java developed in section 3. A possible definition of the file
build.xml is as follows:

<?xml version="1.0"?>
<!-- first build file -->

<project name="HelloWorld" default="build" basedir=".">
<target name="build">

<javac srcdir="." />
</target>

</project>

The first line specifies that this file is an XML file, the second line is a comment
and the rest specifies the actions to be taken for this project. The project is called
HelloWorld , its default action (target) is called build , and all directories will be
considered relative to the current directory, which is specified by the value given
to the attribute basedir . Executing the project means just follow one target with
name build . This target involves only one task element, which is the compilation
of all Java source files in the current directory.

In order to compile the file, it is enough to execute the command ant as the
following example shows:

ant
Buildfile: build.xml

81

build:
[javac] Compiling 1 source file

BUILD SUCCESSFUL

Total time: 3 seconds

26.2 Projects, targets, task elements and properties

As it was explained before, the file build.xml specifies a project, and consists of
a set of targets, with each one containing a set of task elements.

A project specifies three attributes: the name of the project (name), the default
target (target) that will be called when no target is specified in the command
line, and the base directory (basedir), that provides the base for all relative
references to directories in the build file. The file build.xml in the previous
section shows an example of a project definition.

A target specifies five attributes: the name of the target (name), the list of
targets on which it depends (depends), the name of the property that must be
set (if), the name of the property that must not be set (unless) and a comment
(description). Except for the name of the target, the other attributes are op-
tional. The targets in a project can depend on other targets in the same project.
ant checks the dependencies between the different targets to determine the order
in which the different targets will be executed.

The properties can be used to hold a value. The value assigned to a property
cannot be changed, so they are not variables. As an example, the following XML
sentences assign the value yes to the variable conditionOK and the value src
to the variable src-dir :

<property name="conditionOK" value="yes"/>
<property name="src-dir" location="src"/>

The values can be accessed by placing the property name between "${" and
"}" . Section 26.3 provides examples of its use.

26.3 A more complicated example

This section shows a file build.xml that can be used as a model for building
specification files for ant . The project called Complex can be used to create the
TestComplex application developed in section 15. This application consists of
two files: Complex.java and TestComplex.java , which are stored in a subdi-
rectory with name src .

The project defines a set of four targets: init , build , dist and clean , that
can be used respectively to initialize the directory structure, compile the source
files, create the jar file and clean directories and object files. The file build.xml
stored in the top directory is as follows:

82 Introduction to Java

<?xml version="1.0"?>
<!-- first build file -->

<project name="Complex" default="dist" basedir=".">

<!-- set global properties -->
<property name="src-dir" location="src"/>
<property name="build-dir" location="build"/>
<property name="dist-dir" location="dist"/>

<target name="init" description="initial task">
<!-- Create the build directory -->
<mkdir dir="${build-dir}"/>

</target>

<target name="build" depends="init" description="compile task">
<javac srcdir="${src-dir}" destdir="${build-dir}"/>

</target>

<target name="dist" depends="build"
description="build distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist-dir}"/>

<!-- Create the jar file -->
<jar jarfile="${dist-dir}/complex.jar" basedir="${build-dir}">

<include name="*.class"/>
<manifest>

<attribute name="Main-Class" value="TestComplex"/>
</manifest>

</jar>
</target>

<target name="clean" description="clean up" >
<delete dir="${build-dir}"/>
<delete dir="${dist-dir}"/>

</target>

</project>

The project is called Complex . Its default target is dist and all directory
references are relative to the current directory. A set of properties are defined
before any action is taken:

<!-- set global properties -->

83

<property name="src-dir" location="src"/>
<property name="build-dir" location="build"/>
<property name="dist-dir" location="dist"/>

The property src-dir contains the value src , which is the directory in which
the source files are stored. The property build-dir contains the value build ,
which is the directory in which the class files will be stored, and the property
dist-dir with the value dist , is the directory in which the final jar file will be
created.

The target init just creates the directory specified by the variable build-dir ,
which will be build in this case:

<target name="init" description="initial task">
<!-- Create the build directory -->
<mkdir dir="${build-dir}"/>

</target>

The target build is defined as follows:

<target name="build" depends="init" description="compile task">
<javac srcdir="${src-dir}" destdir="${build-dir}"/>

</target>

Note that it depends on the target init , meaning that init has to be executed
before build . Its task is to compile all java source files in the directory src and
to leave all class files in the directory build , as specified respectively by the
attributes srcdir and destdir .

The target dist is more complex:

<target name="dist" depends="build"
description="build distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist-dir}"/>

<!-- Create the jar file -->
<jar jarfile="${dist-dir}/complex.jar" basedir="${build-dir}">

<include name="*.class"/>
<manifest>

<attribute name="Main-Class" value="TestComplex"/>
</manifest>

</jar>
</target>

It depends on build , meaning that the source files must be compiled be-
fore attempting to build the jar file. Its first action is to create the directory
build . Then it creates a jar file with name complex.jar in the dist directory,

84 Introduction to Java

as specified by the attribute jarfile . The base directory for the file references
is build , as specified by the attribute basedir , and the files that have to be in-
cluded are those with extension .class, as specified by the task element include
with attribute name. The manifest file is specified with the task manifest , with
the attribute Main-class with value TestComplex (see section 15 for details on
manifest file construction for this example).

The target clean just removes the directories created during the process:

<target name="clean" description="clean up" >
<delete dir="${build-dir}"/>
<delete dir="${dist-dir}"/>

</target>

An example of its execution follows:

ant
Buildfile: build.xml

init:
[mkdir] Created dir: ComplexNumbers/build

build:
[javac] Compiling 2 source files to ComplexNumbers/build

dist:
[mkdir] Created dir: ComplexNumbers/dist

[jar] Building jar: ComplexNumbers/dist/complex.jar

BUILD SUCCESSFUL

Total time: 11 seconds

It is possible to ask ant to execute just a specific target, by specifying it in the
command line, as the following example shows:

ant clean
Buildfile: build.xml

clean:
[delete] Deleting directory ComplexNumbers/build
[delete] Deleting directory ComplexNumbers/dist

BUILD SUCCESSFUL

Total time: 3 seconds

85

ant build
init:

[mkdir] Created dir: ComplexNumbers/build

build:
[javac] Compiling 2 source files to ComplexNumbers/build

BUILD SUCCESSFUL

Total time: 7 seconds

Ant is quite more powerful than what the examples have shown. For more
information please refer to the Ant manual.

27 Java on the TINI

The TINI (Tiny InterNet Interface) is a platform developed by Dallas Semicon-
ductors that can be programmed in Java. Its Java API implements most of the
classes in the core packages java.lang , java.io , java.net and java.util . A
new package called com.dalsemi provides support for TINI’s unique capabilities.

In order to be able to execute on TINI an application developed in Java on
another platform, it is necessary to follow a four step process: (1) the source
code has to be compiled using a standard Java compiler, (2) the resulting class
file has to be converted to the special format required by TINI, (3) this is then
downloaded to the TINI board and (4) executed there. The following example
shows these four steps when creating the HelloWorld application developed in
section 3.

Step 1: Compiling the source code : The source code is compiled using any
Java compiler. For example, by using the Sun JDK, the command is:

javac HelloWorld.java

Step 2: Converting the .class file : The .class file generated in the previous
step is converted to the .tini format required by the TINI board by executing
the program TINIConvertor :

java -classpath /tini/bin/tini.jar TINIConvertor
-f HelloWorld.class
-d /tini/bin/tini.db -o HelloWorld.tini

Note that the program TINIConvertor is a Java application included in
the file tini.jar . That is why the program is executed by calling the Java
interpreter specifying the jar file as the class path. The flag -f is used to
specify the .class file name and the flag -o to specify the .tini file name. The
file tini.db is the TINI API database. This example assumes that the TINI
development system is located in the directory /tini .

86 Introduction to Java

Step 3: Downloading the .tini file : The .tini file is downloaded to TINI by us-
ing ftp as follows.

ftp tini
Connected to tini.
220 Welcome to slush. (Version 1.11) Ready for user login.
User (tini:(none)): root
331 root login allowed. Password required.
Password:
230 User root logged in.
ftp> bin
200 Type set to Binary
ftp> put HelloWorld.tini
200 PORT Command successful.
150 BINARY connection open, putting HelloWorld.tini
226 Closing data connection.
ftp: 183 bytes sent in 0.00 Seconds.
ftp> bye

Step 4: Executing on the TINI board : The program is executed by calling the
Java interpreter on TINI in a telnet session:

telnet tini
Connected to tini.
Escape character is ’ˆ]’.

Welcome to slush. (Version 1.11)

tini00a93c login: root
tini00a93c password:
TINI /> java HelloWorld.tini
HelloWorld

27.1 Using Ant

Since this process is rather tedious, it is usually automated by using make-
files, ant files or the graphical user interfaces provided by some development
environments. In this section, we will explore a solution based on ant, using a
package called tiniant. This package provides the tini task element that can be
used to convert a .class file into a .tini class. The most important attributes are
outputfile to specify the output file name, database to specify the TINI API
database, include for the source file names and classpath for the location of
the TINI development kit. It is also necessary to specify the convert file set that
specifies what to include and what to exclude in the output file. For example, the
file build.xml for compiling the application HelloWorld stored in the directory
src can be defined as follows:

87

<?xml version="1.0" encoding="UTF-8"?>

<project name="HelloWorld" default="convert" basedir=".">

<taskdef name="tini" classname="net.geeba.ant.Tini"/>

<property name="tini.dir" value="/tini/"
<property name="tini.db" value="${tini.dir}/bin/tini.db"/>
<property name="tini.classes"

value="${tini.dir}/bin/tiniclasses.jar"/>
<property name="tini.jar" value="${tini.dir}/bin/tini.jar"/>

<target name="init" description="initialize">
<mkdir dir="build"/>

</target>

<target name="build" depends="init" description="compile">
<javac srcdir="src" destdir="build"

bootclasspath="${tini.classes}"/>
</target>

<target name="convert" depends="build" description="convert">
<tini outputfile="HelloWorld.tini" database="${tini.db}"

classpath="${tini.jar}">
<convert dir="build"/>

</tini>
</target>

<target name="clean" description="clean">
<delete dir="build"/>
<delete file="HelloWorld.tini"/>

</target>
</project>

The application can be compiled with the command ant :

ant
Buildfile: build.xml

init:
[mkdir] Created dir: HelloWorldAnt/build

build:
[javac] Compiling 1 source file to HelloWorldAnt/build

convert:

88 Introduction to Java

[tini] TINIConvertor (KLA)
[tini] Version 1.24 for TINI 1.1 (Beta 2 and later ONLY!!!)
[tini] Built on or around March 20, 2002
[tini] Copyright (C) 1996 - 2002 Dallas Semiconductor Corp.
[tini] Loading class HelloWorldAnt/build/HelloWorld.class

from file HelloWorldAnt/build/HelloWorld.class
[tini] Getting UNMT...there are 0 user native methods
[tini]
[tini] Class HelloWorld, size 125, CNUM 8000, TH Contrib: 19
[tini]
[tini] Initial length of the application: 125
[tini] Output file created in 424 milliseconds.
[tini] Output file written in 1 milliseconds.
[tini] Output file size : 472
[tini] Number of string table entries: 1

BUILD SUCCESSFUL

Total time: 8 seconds

The third line in the file build.xml :

<taskdef name="tini" classname="net.geeba.ant.Tini"/>

is used to include the task tini in order to make it available for use in the
specifications file. The tasks init and clean are defined in the same way as they
were defined in section 26.3. The task build compiles the file HelloWorld.java
to HelloWorld.class by including also the specific API class files developed for
TINI with the attribute bootclasspath :

<target name="build" depends="init" description="compile">
<javac srcdir="src" destdir="build"

bootclasspath="${tini.classes}"/>
</target>

The task convert converts HelloWorld.class to HelloWorld.tini as spec-
ified by the attribute outputfile , using the database specified by the property
tini.db and including the class definitions from tini.jar :

<target name="convert" depends="build" description="convert">
<tini outputfile="HelloWorld.tini" database="${tini.db}"

classpath="${tini.jar}">
<convert dir="build"/>

</tini>
</target>

89

It is possible to automate the download procedure by using a shell script for
the FTP transfer and make ant to call it after the building process is finished.
The following shell script called deploy.sh transfers the file HelloWorld.tini
to the TINI board:

#!/bin/sh
ftp -n $1 <<!
user $2 $3
bin
put HelloWorld.tini
close
quit
!

It initiates an FTP session by using the board name, the user name and the
password passed as arguments in the command line. Note that it is possible to
add more FTP commands before the close statement. An example of its use from
the command line follows:

./deploy.sh tini root tini
Connected to tini.
220 Welcome to slush. (Version 1.11)
331 Password required for root.
230 User root logged in.
200 Type set to I.
local: HelloWorld.tini remote: HelloWorld.tini
150 Opening BINARY mode data connection for ’HelloWorld.tini’.
226 Transfer complete.
472 bytes sent in 0.00 Seconds.
221 Goodbye.

A special ant task called exec allows to call a script from the file build.xml .
The executable file is specified with the attribute executable , the base directory
with dir and the arguments with the FileSet arg . The attribute output can be
used to specify a file where the output of the command execution will be stored.
The following task definition can be used to download HelloWorld.tini to the
TINI board with name tini , user account root and password tini :

<target name="deploy" depends="convert">
<exec dir="." executable="deploy.sh">

<arg value="tini"/>
<arg value="root"/>
<arg value="tini"/>

</exec>
</target>

The TINI application can then be downloaded by using ant as follows:

ant deploy

90 Introduction to Java

A The Book example

/**
* Books Application
*/

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
static String owner;

/** This constructor creates a Book with a specified title,
* author, number of pages and unknown ISBN
*/

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}

/** This constructor creates a Book with a specified title,
* author, number of pages and ISBN
*/

Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

/** This method returns a string containing the initials of
* the author
*/

public String getInitials() {
String initials = "";

for(int i = 0;i < author.length();i++) {
char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {

initials = initials + currentChar + ’.’;

91

}
}
return initials;

}

/** This method returns true if both the receptor and the
* argument correspond to the same book
*/

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}

/** This method sets the owner of the book
*/

public void setOwner(String name) {
owner = name;

}

/** This method gets the owner of the book
*/

public String getOwner() {
return owner;

}

/** This method returns a description of the book
*/

public static String description() {
return "Book instances can store information on books";

}
}

92 Introduction to Java

B The Complex number example

/**
* Complex Number class
*/

public class Complex {
private double real; // real part
private double im; // imaginary part

/** This constructor creates a complex number from its real
* and imaginary part.
*/

Complex(double r,double i) {
real = r;
im = i;

}

/** This constructor creates a complex number as a copy
* of the complex number passed as argument
*/

Complex(Complex c) {
this(c.real,c.im);

}

/** This method returns the real part
*/

public double getReal() {
return real;

}

/** This method returns the imaginary part
*/

public double getImaginary() {
return im;

}

/** This method returns a new complex number wich is
* the result of the addition of the receptor and the
* complex number passed as argument
*/

93

public Complex add(Complex c) {
return new Complex(real + c.real,im + c.im);

}

/** This method returns a new complex number wich is
* the result of the substraction of the receptor and the
* complex number passed as argument
*/

public Complex sub(Complex c) {
return new Complex(real - c.real,im - c.im);

}

/** This method returns a new complex number wich is
* the result of the product of the receptor and the
* complex number passed as argument
*/

public Complex mul(Complex c) {
return new Complex(real * c.real - im * c.im,

real * c.im + im * c.real);
}

/** This method returns a new complex number wich is
* the result of the product of the receptor and the
* complex number passed as argument
*/

public Complex div(Complex c) {
double r,i;

if (Math.abs(c.real) >= Math.abs(c.im)) {
double n = 1.0 / (c.real + c.im * (c.im / c.real));
r = n * (real + im * (c.im / c.real));
i = n * (im - real * (c.im / c.real));

} else {
double n = 1.0 / (c.im + c.real * (c.real / c.im));
r = n * (im + real * (c.real / c.im));
i = n * (- real + im * (c.real / c.im));

}
return new Complex(r,i);

}

/** This method returns a new complex number wich is
* the result of the scaling the receptor by the
* argument

94 Introduction to Java

*/

public Complex scale(double c) {
return new Complex(real * c,im * c);

}

/** This method computes the norm of the receptor
*/

public double norm() {
return Math.sqrt(real * real + im * im);

}

/** This method increments the real part by a value
* passed as argument. Note that the method modifies
* the receptor
*/

public Complex addReal(double c) {
real += c;
return this;

}

/** This method returns a string representation of
* the receptor
*/

public String asString() {
return "" + real + " + i * " + im;

}
}

95

C The Scientific Book example

/**
* Scientific Book Class
*/

class ScientificBook extends Book {
String area;
boolean proceeding = false;

/** This constructor creates a Scientific Book with a
* specified title, author, number of pages, ISBN and
* area. Proceeding is set to false
*/

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}

/** This method returns true if both the receptor and the
* argument correspond to the same book
*/

public boolean equals(ScientificBook b) {
return super.equals(b) && area.equals(b.area) &&

proceeding == b.proceeding;
}

/** This method returns a description of the book
*/

public static String description() {
return "ScientificBook instances can store information" +

" on scientific books";
}

/** This method sets proceeding to true
*/

public void setProceeding() {
proceeding = true;

}

/** This method sets proceeding to false

96 Introduction to Java

*/

public boolean isProceeding() {
return proceeding;

}
}

97

D The Producer and Consumer example

/**
* Producer Consumer class Application
*/

class ProducerConsumer {

/** This method creates a common buffer, and starts two
* threads: the producer and the consumer
*/

public static void main(String[] args) {

// creates the buffer
Buffer buffer = new Buffer(20);

Producer prod = new Producer(buffer);
Consumer cons = new Consumer(buffer);

// start the threads
prod.start();
cons.start();

}
}

/**
* Producer class Application
*/

class Producer extends Thread {
Buffer buffer;

/** This constructor initialize the data member buffer as
* a reference to the common buffer
*/

public Producer(Buffer b) {
buffer = b;

}

/** This method executes as a thread. It keeps inserting
* a value into the buffer
*/

public void run() {

98 Introduction to Java

double value = 0.0;

while (true) {
buffer.insert(value);
value += 0.1;

}
}

/**
* Consumer class Application
*/

class Consumer extends Thread {
Buffer buffer;

/** This constructor initialize the data member buffer as
* a reference to the common buffer
*/

public Consumer(Buffer b) {
buffer = b;

}

/** This method executes as a thread. It keeps removing
* values from the buffer, and printing them
*/

public void run() {

while(true) {
System.out.println(buffer.delete());
}

}
}

/**
* Buffer class Application
*/

class Buffer {

double buffer[];

int head = 0;
int tail = 0;
int size = 0;

99

int numElements = 0;

/** This constructor initialize the data member buffer as
* an array of doubles. The size of the array is also
* initialized
*/

public Buffer(int s) {
buffer = new double[s];
size = s;
numElements = 0;

}

/** This method inserts an element into the circular
* buffer. The thread goes to sleep if there is no empty
* slots, and notify waiting threads after inserting an
* element
*/

public synchronized void insert(double element) {

if (numElements == size) {
try {

wait();
} catch(InterruptedException e) {

System.out.println("Interrupted");
}

}
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;
notify();

}

/** This method removes an element from the circular
* buffer. The thread goes to sleep if there is no element
* to remove, and notify waiting threads after removing an
* element
*/

public synchronized double delete() {

if (numElements == 0) {
try {

wait();
} catch(InterruptedException e) {

100 Introduction to Java

System.out.println("Interrupted");
}

}
double value = buffer[head];
head = (head + 1) % size;
numElements--;
notify();
return value;

}
}

101

References

[1] Arnold K, Gosling J and Holmes D, The Java programming Language,
Prentice Hall, 2005.

[2] Eckel B, Thinking in Java (4th Edition) Prentice Hall, 2006. Third edition
available on-line at http://www.mindview.net/Books/TIJ

[3] Flanagan D, Java in a Nutshell: A desktop quick reference (3rd Edi-
tion), O’Reilly, 1999.

[4] Holzner S, Java 2, The Coriolis Group, 2000.

[5] Hortsmann C, Computing concepts with Java 2, essentials (2nd Edi-
tion), Wiley, 2000.

[6] Horstmann C and Cornell G, Core Java, Volume II – Advanced Features,
The Sun Microsystems Press, 2000.

[7] Horstmann C and Cornell G, Core Java, Volume I – Fundamentals, The
Sun Microsystems Press, 2001.

[8] Lemay L and Cadenhead R, Java 2. Guida Completa. Apogeo, 2000.

[9] Sun Microsystems, The Java tutorial. A practical guide for program-
mers. Available online at http://java.sun.com

[10] Loomis D, The TINI specification and developer’s guide, Addison Wesley
Professional, 2001.

http://www.mindview.net/Books/TIJ
http://java.sun.com

Index
Access control, 47
Ant, 80

TINI ant, 86
Arrays, 19

Cast, 12
Classes, 22

abstract classes, 48
final classes, 48

Command line arguments, 20
Constants, 6
Constructors, 24

constructor inheritance, 42
default constructor, 25

Control structures, 13
break, 16
continue, 16
repetition, 14
selection, 13
switch, 17

Equality, 29
Equivalence, 29
Exceptions, 56
Expressions, 6

arithmetic, 6
bit level, 9
logical, 11
relational, 8
strings, 11

Fields, 23
initialization, 34
static fields, 31

getClass, 45

Inheritance, 41
instanceof, 45
Interfaces, 54

JAR files, 78
Java virtual machine, 1, 3

Literals, 5

Methods, 26
abstract methods, 48
final methods, 48
overriding methods, 43
reusing methods, 43
static fields, 34
static methods, 33, 34
synchronized methods, 76

notify, 77

Packages, 46
Polymorphism, 53

Standard input, 69
Streams, 61

buffered byte oriented streams, 64
byte oriented streams, 61
character oriented streams, 67
data buffered byte oriented streams,

65
Strings, 11, 34, 57
super, 42, 43

this, 36
Threads, 71, 77
TINI, 85

TINI ant, 86
Types, 4

Variables, 5

wait, 77

102

	Introduction
	The Java platform
	A first example
	Development cycle for Java applications
	Fundamental data types
	Variables
	Literals
	Constants
	Expressions
	Arithmetic operators
	Relational operators
	Bit level operators
	Logical operators
	String operators
	Casting

	Control structures
	Selection control statements
	Repetition control statements
	break and continue
	Switch control statement

	Arrays
	Command line arguments
	Classes
	Constructors
	Methods
	Equality and equivalence
	Static fields
	Static methods
	A static application
	Fields initialization

	The keyword ``this''
	An example: the complex number class
	Inheritance
	Constructors
	Methods
	Instanceof keyword and getClass method

	Packages
	Access control
	final and abstract
	Polymorphism
	Interfaces
	Exceptions
	Input Output
	Byte oriented streams
	Buffered byte oriented streams
	Data buffered byte oriented streams
	Character oriented streams
	Standard input

	Threads
	The Producer and Consumer example
	synchronized methods
	wait and notify

	JAR files
	Ant
	A first example
	Projects, targets, task elements and properties
	A more complicated example

	Java on the TINI
	Using Ant

	The Book example
	The Complex number example
	The Scientific Book example
	The Producer and Consumer example
	References

