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Overview

» Introduction: “Clean” vs. “dirty” RBS
» Roughness and 3D structures

» Sources of background

» Shape of signals — some effects

» Multiple scattering — some effects
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Computer-aided analysis:
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—ith  Calculation may not be good enough!
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T T T T " 1

L b) 6 =8
2x10" 1 +3

+
¥
+
*
+
iy
i
"y

AN

=
X
R
o
|

Yield (counts)

LT
R 1

' | ' | ' | | "
0 50 100 150 200 250 300

Channel



Lith

Yield

100000 —

75000 —

50000 -

Multiple scattering

glass/Re 50A/(Co 20A/Re 5A) .,

(\

Channel



~ ith What can we do?

* Rely on experience of “experienced user”

« Monte Carlo calculation of all known effects
(still has some difficulties!)

 Include known effects in analytic model as
thoroughly as possible



“Dirty RBS”

Beam-sample interaction * Experimental system

— Beam energy spread

— Beam angular spread

— Finite size of beam spot
— Finite size of detector

— Pulse pileup

— Slit scattering

Energy loss straggling
Plural scattering
Multiple scattering
Channelling

Beam charge state

Sample

Surface/interface roughness/mixing

3D structures

Extra elements present, or in unexpected places
Undetectable elements



o)
~ ith Roughness and 3D structures

* Surface roughness

 Interface roughness

e Substrate roughness

* Quantum dots, inclusions, voids
* Lateral inhomogeneity

» RUMP: summing of a few structures (fast, pretty useless)
» SIMNRA: summing of many structures (excellent, slow)

» NDF: effect on signal width (fast, good when applicable)



ith Roughness - models
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The effect of roughness is similar to that of energy straggling:
additional broadening of the features present in the energy spectrum

Calculate the broadening due to roughness:

assign it as an extra contribution to the energy straggling
obtain an apparent energy resolution

This is convoluted with the theoretical spectrum in the normal way.
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2) Corrugated sample

SI/(S1 4 nm/Ge 6 nm)X5
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3) Rough substrate surface

Si/(S1 4 nm/Ge 6 nm)x5

FWHM (keV)
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RBS yield (a.u.)

> (Ti, 4Al, [N/Mo0)x50

» Some examples

energy (keV)
1000 1200 1400 1600
tilt 80°
A experimental
simul. with 2.1 nm intermixing
------- simul. without intermixing
200 250 300 350

channel

» InGaN film on GaN (on alumina)
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L th » SL Molodtsov, AF Gurbich, C Jeynes, J.Phys D Appl Phys 41 (2008) 205303
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~ jth Quantum dots

» Quantity of matter is easy to calculate (with automatic creation of
sub-layers as needed)

» Extra source of energy spread due to different stopping in QDs :
> Q. 2=Q 2+ Q 2+ Qnp°

system straggling

» The point is to calculate Qqp!
» Spherical inclusions: JP Stoquert, T. Szorényi, PhysRevB 66 (2002) 144108
» Cylindrical inclusions: developed by NPB



» GaN/AIN self-organised QDs

40004 F=0.3 h=3.5nm 7

| F=0.35 h=3.0 nm
— F=0.45 h=2.3 nm

: . :
240 260 280
Channel

» Volume fraction of GaN QD: 0.35-0.4
» Height of QDs: 2.6-3 nm



Quantum dots in NDF

» Known samples can be simulated: good

» Both total yield and energy spread are included

» Constraints can be put on possibilities: good

» But complementary techniques are required
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—ith  Agsumptions in roughness models

(a) The beam area must probe a representative sample of the
roughness distribution. This condition is in practice always met
when using microscopic beams of size typically 1x1 mm?.

(b) Gaussian distribution of roughness parameters. Other types of
distributions (for instance, surfaces or interfaces with periodic
structures) are not correctly modelled.

(c) The beam does not re-enter the sample. Structures with large
aspect ratio cannot be simulated with this method.

New work by Molodtsov et al. removes this assumption; still
not implemented 1n data analysis codes: soon!

(d) Roughness parameters must be within well-defined range.



~ ith Sources of background

* Plural scattering

* Pulse pile-up

» Slit scattering

* Some effect not yet understood?

* Leads to reduced sensitivity to small 1solated signals

» Leads to distortion of the signal that must be accounted for
In accurate simulations
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Sources of background

 Plural scattering

beam

» Traditionally, an ad-hoc cut-off angle =20° has been imposed.
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» Cut-off angles do not work at grazing angle!

» Actual trajectories must be considered.
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k—*lth » Model implemented in NDF

» Take all events where both scattering angles are larger than 20°

» Otherwise, take events where trajectory changed more than 50%
compared to the corresponding single scattering trajectory. Values
between 25% and 100% lead to similar results.

» Reject events with scattering angle < 1° (to avoid the singularity at 0°;
such angles are never used in RBS anyway).

» Use a large number of different directions after the first scattering (up to
5000).

» Use a high density of trajectories in regions with high cross sections

» For speed, reject the trajectories that all together carry only 1% of the
cross section (which can be the majority!).

» Consider influence of lateral spread.
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» Influence of lateral spread

e ¢ \
carbon

/>\ gold

carbon

sample

» Effective reduction of flux in high-Z layers




— ith » Use model of Amsel et al. to calculate lateral spread
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Yield (counts)

Yield (counts)

> Results: Si/PtSi 48x1015 at./cm?
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- jth » Results: same nominal path (80 nm ot PtS1)
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Sources of background

* Pulse pile-up
When two backscattered particles hit the detectors or
within the detector’s response time

The output 1s a single signal, proportional to the added
energy of the two particles.

The spectrum loses 2 counts at low energies and gains 1 at
high energies.

This leads to a distortion of the shape of the spectrum.
Particularly important at high count rates.
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Cgtifirst principles accurate calculation of two- and three-pulse pile-up
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Parameters required: livetime; shaping time of amplifier; resolving time of pile-up rejection circuit if present;
pulse duration (characteristic of amplifier).
Wielopolski L, Gardner RP. Nucl. Instrum. Methods. 1976; 133: 303. Nucl. Instrum. Methods. 1977; 140: 289. Nucl. Instrum. Methods. 1977; 140: 297.
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Two detectors:
— High count rate

— Low count rate

DS not included here
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i Sources of background

 Slit scattering

Scattering 1n slits located before sample leads to contamination of beam
with lower energy particles = low energy background

o
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Exists even in systems designed to minimise it
Can only be calculated with full Monte Carlo simulations: not feasible
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Ao Sources of background

* Some extra effect not yet understood?

* Claimed by A. Gurbich after a careful experiment in a
system without slits, where DS was simulated with

Monte Carlo (NIMA 364 (1995) 496)
* Monte Carlo details were not given in paper




xX)
~ jth Shape of signals — some effects

* Roughness

* Plural scattering

* Pulse height defect

e Simulation of resonances
* Low energy yield

* Multiple scattering

* Leads to reduced sensitivity to small 1solated signals

» Leads to distortion of the signal that must be accounted for
In accurate simulations



Shape of signals — some effects

* Roughness

70000 -
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- i
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30000 -
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- Simulated -
10000 1 -
O u;nmmmm\ I L I L I 1 l -
0 200 400 600 800
Energy, keV

* Model by Molodtsov, Gurbich and Jeynes works well
* In some cases, perhaps no proper model available
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Shape of signals — some effects

. Plural scattermg
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Shape of signals — some effects
* Pulse height defect

S1 surface barrier detectors have a dead layer where charge
1s not collected. The detected beam, however, loses energy
when crossing it.

Not all the energy of the beam 1s transformed 1n electron-
hole pairs, some 1s lost to non-1onising events. This
depends on the beam species and energy.

Energy spectra as measured with a SSB do not exactly
represent the energy of the backscattered beam.

For 4He 1n Si, this effect can be about 0.5% 1n yield
changes, depending on beam energy.

For heavy 10ns, the effect can be much larger.
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Experimental measurement of the thickness of the

detector dead layer
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(L iti‘| C (substrate) Al203 + Au markers

~4.1015 ||
800101 at/cm?®

atfem?

A well-characterised sample consisting of of layers of
Au nanocrystals used as markers, embedded in an
amorphous AI203 matrix deposited on a graphite
substrate was measured with different beams: “He,
12C, 160, 27Al, 28Si. For each beam, five different
beam energies, between 250 and 1250 keV/nucleon,

were used.

Experimental RBS data (squares). Simulations
considering the PHD correction (solid lines) are
compared to simulations that do not take the
correction into account (dashed lines). The same
energy calibration is enforced for all energies.
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Shape of signals — some effects

 Simulation of resonances

1004
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o O O o
| T I B |

[EEN

N A O 00 O
o O O O O o o
- 1 l 1 l 1 l 1 l 1 l 1 T 1

a) E=2577 keV]

Yield (counts/ uC msr keV)

1 — with effect

[EEN

o

o
|

N A OO
o O O O o
1 l 1 l 1 l 1 l

1= = -without effect ;.
H

500 1000

—
1500 2000
E (keV)

» Energy spread leads to a
smearing of the cross section

» If this 1s not taken into
account, simulated
resonances are much sharper
than the measured data

Example: Mylar I um /N1 4.2 um with p beam



‘“-*ltil » “Double integral”: accurate, hard, slow
@ cros st nd “Detailed analysis of the resonant backscattering
¥ N spectrum for deeply penetrating protons in carbon™
[\ AN\ M. Tosaki, S. Ito, N. Maeda, NIMB 168 (2000) 543
___/ff . \'\ f“i]‘\_

Double integral 1s required:

(b) . - on depth of interaction
\\’_'E - on energy before interaction
t=77 um

S LA .

B

P In practice, for each depth of interaction, ions with
é{ % different energy must be followed separately,
e calculating one sub-spectrum for each.

Fig. 3. A schematic illustration of the energy distributions of
ions along trajectories in matter: (a) indicates the case in which

the normal Rutherford backscatiering occurs at a depth r. The This effect 1s only important if the cross section

effect of energy-dependent stopping power is seen in the be- . . .

havior of the black patt indicated in the distributions f; and

Savion of et ps e kot o e changes abruptly, leading to severe distortions of the
ticularly for th f 6.0-MeV proton incid th : : :

fc?itic:ccara;gn t';;ge: Tc;lzed;tributioi ﬁpsgn:inst? ;fl' ae:bc:r;;eali energy dlStrlbUtlon

having a ~11-keV width (FWHM) and ~63-keV wide braod
part, but the sharp feature is smeared out in the distribution f.
In this case, the widths for the distributions f; and f3 are found
to be 88 and 137 keV, respectively.
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» NDF: fast, easy, good enough

Effective cross section

o' (E)= | T (E-Eb.sh)oE)dE

Average energy after interaction

El (E)= [ E«®) Tl (E-Eb.sh)o® dE/ |

» Calculations for protons in C
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) -'ﬂl » Comparison between NDF and full model by Tosaki
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» Full model does not include Tschalar effect on straggling
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» Comparison with data: protons on C

» glassy C
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» Where the model fails: grazing incidence
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Yield (counts/ uC msr keV)

» 1 um Mylar film under a 4.2 um N1 film

2000 - —&— data -
A A O  with effect _
A without effect
1500 - _
1000 -
500 -
0 T T T T T T T T T T T T T T T T
2000 2050 2100 2150

E (keV)

» Total yield of films affected
» Factor of 10 in worst case scenario!!!

» 30% error at yield maximum
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F.ed Shape of signals — some effects

* Low energy yield

» At low energies, simulations drop while data increases

» Counts are lost in the simulation due to energy spread; tails of the
calculated energy distribution functions are at negative energies (!)

12500

10000 +

7500

Yield (counts)

5000

2500 |7~
1

Channel

» “This problem probably cannot be solved” (Edit Szilagyi, IBA2005)
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Yield

Low energy yield
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Cith » What is happening’

Energy

» Most codes stop the calculation at channel 0, not energy 0.

»> At EY<O0, particles in the positive branch of the Gaussian are discarded



i lth » NDF model

EG
\E
ES '

i

0 Energy

» NDF goes to energy 0 (which leads to virtual negative channels).
» NDF follows the Gaussian as long as 1% of it remains positive

» The Gaussian 1s no longer the energy distribution of the beam. Its
positive part 1s. The Gaussian keeps a role as a convenient
mathematical construct.

» Physical quantities are calculated for the average E, not E© (or
integrated on E).
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» Some results

E (keV)
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» Differences only below 50 keV

300
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Beam flux on exit

FWHM (keV)

» Details of the 5xBohr calculation
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Cjth Pure simulation of grazing angle RBS: 5° in Cornell geometry

2000 ..
Advanced physics included

v Roughness (as given by AFM)

v Double scattering at grazing angle
v’ Realistic pulse pile-up

v Low energy yield:

[EEN

o

o

o
]

v" Energy distribution of beam is
followed untill all ions are at rest

Yield (counts)

v" Energy 0, and not channel 0, is

p considered (implies using virtual
negative channels that still lead to
% yield at positive channels)

————r——— v" All contributions to energy spread via
650 700 DEPTH code

0 et e
0 100 200 300 400 500
Channel

RBS spectrum of a Si/(Ti0.4Al10.6N 25.2A /Mo 14.9A)x10 multilayer measured at 5° grazing angle. A full simulation
including double scattering (DS), pulse pileup (pup), roughness and an improved low energy yield calculation is
shown. The calculated partial signals of the elements are shown. A simulation including only basic physics (but with

the correct energy straggling) is also shown for comparison.
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Multiple scattering — some eftects

* Energy spread
« Effect of scattering angle spread
« Effect of pathlength spread

E. Szilagvi | Nucl Instr. and Meth. in Phyvs. Res. B 161163 (2000 ) 3747

Beam Detection

energy and Geome )
ry energy resolution
ions: Z,, m,, Eg finite beam and
detector size H““*—-..

energy straggling
L'|"E5.i|'4 i '!H'I

bt = X/COS[,

angular spreads — energy spread 1= weos(agte)= b, (1-€ tgog)
through the kinematics
path length fluctuation ~ tga, or tg3,
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F.ed Multiple scattering — some effects

* Energy spread

» In some situations, multiple scattering is the dominating contribution
to energy spread

60 MeV “I| ERDAINC ate=10", u=4.7°
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| - --- beam ang.
. = L - geo.
» Heavy ions > ©
o, straggling
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» Low energies S WH —--- MSout
'-g | == Doppler
? 20}
2
> | .
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c 7T e
© [ e T e =
|:|. I i,
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depth [monolayers]

E Szilagyi, 183 (2001) 25



Multiple scattering — some eftects

Scattering angle spread
— Spread of scattering cross section
— Spread of kinematic factor

Pathlength spread
— Spread of scattering centers on way in
— Spread of energy lost on way in
— Spread of energy lost on way out

Shape of signal and total yield change
Analytic calculations require very strong approximations
In practice, some signal features are never well simulated

Monte Carlo may be the only solution, but it has its own
problems



~ ith Conclusions

» Correct use of software requires knowing the
phenomena that influence the data.

» Some effects are still not well simulated.

» Software does not replace the judgment of the
analyst.



