

2015-21

Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis

23 - 27 February 2009

Pitfalls in ion beam analysis

M. Mayer Max-Planck-Institut fuer Plasmaphysik Germany

Pitfalls in ion beam analysis

M. Mayer

Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany <u>Matej.Mayer@ipp.mpg.de</u>

- Ambiguity of Depth Profile and Roughness
- Over-interpretation of Data
- Deviations from Rutherford Cross-Section
- Electronic detection system effects: Dead time and pulse pile-up

Ambiguity of Depth Profile and Roughness

Ambiguity of depth profile and roughness

Example: Tungsten marker in the divertor of the JET tokamak

- \bullet 3 μm W on carbon fibre composite (CFC)
- Exposed to plasmas for 3 years
- Aim:
 - Measurement of W erosion
 - \Rightarrow W-thickness before and after exposure
 - Material mixing of C/W
 - Preparatory experiment for full-W divertor

Ambiguity of depth profile and roughness (2)

RBS spectrum can be fitted with 4 μ m W_{0.3}C_{0.7} layer on C + roughness

- ⇒ Interpretation: Carbide formation due to diffusion + high temperature
- \Rightarrow **Conclusion:** Diffusion barrier necessary between W and C
- ⇒ Implication: Additional costs of a few M€, technologically demanding

BUT: Is this interpretation correct?

W-layer after exposure RBS, 165°, 4 MeV protons

Ambiguity of depth profile and roughness (3)

SEM of W-layer after exposure

Laterally inhomogeneous samples and depth distributions may give identical spectra

⇒ IBA methods alone may be not sufficient for determining sample structure

100% coverage with $W_{0.15}C_{0.85}$, thickness 13.1×10¹⁹ W-at./cm² \Rightarrow Total: 2×10¹⁹ W-at./cm²

50% W-coverage, thickness 4×10^{19} W-at./cm² \Rightarrow Total: 2×10^{19} W-at./cm²

Ambiguity of depth profile and roughness (4)

Laterally homogeneous composition varying with depth

Laterally inhomogeneous, roughness homogeneous composition Laterally inhomogeneous, roughness composition varying with depth

ł	↓	↓
IBA methods provide depth profile of elements	IBA methods provide roughness distribution	IBA methods provide total amounts of elements (within some error bar)
		Depth profiling is demanding, if possible at all

M. Mayer, NIM B194 (2002) 177

Correlation effects are neglected

 \Rightarrow valid, if lateral variation Λ > d for typical RBS angles of 160°-170°

Measuring surface roughness with IBA (3)

Measuring surface roughness with IBA (4)

- Good agreement for large blobs (around 200 nm)
- Small blobs are only visible with RBS and SEM, but not AFM
- M. Mayer et al., NIM B 228 (2005) 349

Over-interpretation of Data

Ambiguity of too small structures

Example:

RBS from (imaginery) AuSi on Si 2 MeV 4 He

- Only structures larger than depth resolution are meaningful
- Depth profile is ambiguous for structures smaller than depth resolution
- ⇒ Never use layers with thicknesses smaller than the depth resolution
- ⇒ Never interpret structures which are smaller than the depth resolution
- ⇒ Occam's razor: The depth profile with the smallest number of assumptions should be used

Deviations from Rutherford Cross-Section

Deviations from Rutherford Cross Section

Cross Section [Ratio to Rutherford]

Electronic detection system effects: Dead time and pulse pile-up

Electronic detection system effects

Electronic detection system effects (2)

- Most people assume, that measured spectrum = incident spectrum
 This is incorrect!
- Electronic detection system adds unavoidable distortions
 - finite ADC conversion time
 - \Rightarrow **Dead time losses** of incident pulses
 - finite electronic pulse widths
 ⇒ Pulse pile-up
- Distortions can be minimised at low incident pulse rates, but never completely avoided

Spectroscopy systems

Dead time losses

- ADC needs a certain time to digitise an analogue pulse
 - \Rightarrow Paralysation of the system
- Additional pulses cannot be accepted during this time
 ⇒ Rejection of pulses
 - \Rightarrow Dead time losses
- Pile-up rejector is additional source of dead time due to rejection of pulses
- Dead time losses are taken into account through

$$P_{Live} = \frac{T_{Live}}{T_{\text{Re}al}}$$

Pulse pile-up E_2 ╋ Ε ADC Spectroscopy amplifier

Arrival of 2 pulses within amplifier pulse width

- \Rightarrow Overlap of pulses
- \Rightarrow Pulse pile-up

Wielopolski and Gardner, 1976

M. Mayer ICTP Trieste Feb. 2009

M. Mayer ICTP Trieste Feb. 2009

Pulse pile-up (3)

P_{iik} can be obtained from

- Poisson arrival time distribution
- Approximation of pulse shape with parabola Wielopolski and Gardner, 1976 or numerical use of precise pulse shapes
- Double pulse pile-up (pile-up of >2 pulses neglected)

- Additional peaks at combined energy (PIXE, ...)
- Additional intensity at higher energies

A pile-up rejector (PUR) rejects pulses only if t > pair resolution time

• pair resolution time 300 - 500 ns

(specification of Canberra DSP 9660, Ortec Amplifier 672: < 500 ns)

A pile-up rejector alleviates the problem of pile-up, but does not fully eliminate it

Summary

• Ambiguity between depth profile and roughness

- \Rightarrow Depth profiling only possible for laterally homogeneous samples
- \Rightarrow IBA methods measure roughness for laterally inhomogeneous samples
- \Rightarrow Lateral homogeneity has to be proven with other methods than IBA
- Depth profile is ambiguous for structures smaller than depth resolution
 - \Rightarrow Only structures larger than depth resolution are meaningful
- Deviations from Rutherford cross-section occur at higher energies
 - \Rightarrow Carefully check for possible deviations
- Electronic data acquisition system adds dead-time and pulse pile-up
 - \Rightarrow Use low incident pulse rates + accurate simulation of pile-up