

2015-10

Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis

23 - 27 February 2009

IBA Intro III Introduction to codes

N.P. Barradas Instituto Tecnologico e Nuclear Portugal

Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis, 23-27 February 2009

IBA Intro III

Introduction to codes

Nuno P. Barradas (nunoni@itn.pt) Instituto Tecnológico e Nuclear

Overview

- Introduction
- The IAEA review and intercomparison of IBA software, Handbook of Modern Ion Beam Analysis (2nd edition)
- \succ Types of codes
- Design and capabilities of selected codes
- Accuracy of codes and experiments

Data analysis \neq software

- Ambiguous data (different sample structures lead to same fit)
- Limited knowledge of experimental conditions (charge, solid angle, angle of incidence and detection, beam energy, FWHM,...)
- Limited knowledge of basic data (stopping, cross section)
- Surprises in sample (roughness, unexpected elements, roughness, ...)
- Limited knowledge of relevant physics

\Rightarrow Good fits can be meaningless

"It cannot be overemphasized that software is an aide to data analysis, and does not replace the judgment of the analyst. Software that is not correctly used, or used outside its scope of application, leads to wrong data analysis."

Manual analysis

Why use software?

Why use software?

- > Huge efficiency gains in the analysis process
- Enables data analysis by non-experts (including students and casual users)
- Design experiments
- Education (scrutinise characteristics of various ion beam techniques)
- Help recognise limitations of data and of knowledge
- Implementation of advanced physics and models widens the range of samples that can be studied and information that can be derived

Status of IBA data analysis and simulation software

E. Rauhala, N. P. Barradas, S. Fazinic, M. Mayer, E. Szilágyi, M. Thompson Nucl. Instrum. Methods Phys. Res. B244 (2006) 436-456.

- Contains no science
- Discusses the major issues concerning IBA data analysis and software
- > Describes the status of 12 software packages
- Mentions some outstanding problems (some already solved)
- ➤ Has a list of 200+ references a treasure for the IBA analyst!!!

The IAEA intercomparison exercise of IBA software

International Atomic Energy Agency intercomparison of Ion Beam Analysis software

N.P. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, E. Kótai, G. Lulli, M. Mayer, E. Rauhala, E. Szilágyi, M. Thompson Nucl. Instrum. Methods Phys. Res. B262 (2007) 281-303.

- > 7 participating packages, including one MC code
- 28 simulations including RBS, EBS, ERDA, non resonant NRA, channelling, H, He and heavy ions
- \succ 4 data sets from real samples

Handbook of Modern IBA 2nd edition

Chapter Data analysis software for ion beam analysis

Nuno Pessoa Barradas and Eero Rauhala

DEPTH	http://www.kfki.hu/~ionhp/doc/prog/wdepth.htm
FLUX	http://members.home.nl/p.j.m.smulders/FLUX/HTML/
GeoPIXE	http://www.nmp.csiro.au/GeoPIXE.html
GUPIX	http://pixe.physics.uoguelph.ca/gupix/main/
IBANDL	http://www-nds.iaea.org/ibandl/
Ion Beam Infor	mation System (includes links to several codes)
	http://www.kfki.hu/~ionhp/
LibCPIXE	http://sourceforge.net/projects/cpixe
MSTAR	http://www.exphys.uni-linz.ac.at/stopping/
NDF	http://www.itn.pt/facilities/lfi/ndf/uk_lfi_ndf.htm
DataFurnace	http://www.ee.surrey.ac.uk/SCRIBA/ndf/
QXAS	http://www.iaea.org/OurWork/ST/NA/NAAL/pci/ins/xrf/pciXRFdown.php
RUMP	http://www.genplot.com
SigmaCalc	http://www-nds.iaea.org/sigmacalc/
SIMNRA	http://www.rzg.mpg.de/~mam/
SRIM	http://www.srim.org

Types of codes

Direct calculation vs. simulation

Simulating composition changes by division into sublayers

0.05

0

100 200

300 400 600 600 700 800 900 1000

Areal density (1015 at/cm2)

(not so common) alternative:define continuous depth profiles

Types of codes

> Interactive vs. automated

➢ Interactive

Automated - Simulated annealing

Types of codes

Interactive vs. automated

- Interactive: relies on knowledge, experience and skill of user
 time and patience limits of the user
- > Automated: relies on χ^2 or similar
 - > Ambiguity of data
 - $> \chi^2$ function very sensitive to the quality of the simulation
 - fully automated processes can lead to artefacts in the depth profiles derived, unless the user restricts the solution space to physical solutions
 - some form of automation is desirable, particularly if large quantities of data are to be analyzed

Types of codes

Deterministic vs. Stochastic (Monte Carlo) (vs. ANNs)

> Deterministic **Fast** \triangleright Rely on models \succ Current standard Eri E31 E_{r2} LAYERI KE, E32 LAYER 2 Ers KE2 1 E2 Er4 E3 LAYER 3 Err Er-1 LAYER r KEr Er

Monte Carlo
 Great potential
 Not yet ready for routine data analysis (?)

- Artificial neural networks
 - Great for large amounts of data
 - Black boxes without physics

ith

Capabilities of codes

- Design basis
 - > Techniques implemented
 - Experimental conditions supported
 - Description of samples
- Data bases implemented
 - Stopping powers
 - Scattering cross sections
- Basic physics
- > Advanced physics
- > Automated optimisation
- ➢ Usability

Capabilities of codes

Basic physics

- Straight trajectories
- Single large angle scattering event
- Energy loss (e.g. SRIM)
- Flat surfaces and interfaces

- > RUMP and other first generation codes
- Good enough for many samples and experimental conditions
- Terribly inadequate for many other (most current problems)

▶ ...

Capabilities of codes

Advanced physics and models

- Straggling with multiple scattering, geometrical straggling,...
- Non-Gaussian energy distribution
- Plural large angle scattering events (plural scattering)
- Handling of sharp resonances in the cross section
- Handling of the yield at very low energies
- Effect on yield of multiple scattering
- Rough surfaces and interfaces
- Inclusions, quantum dots, other 3D structures
 - > NDF and SIMNRA include several of these; MC codes
 - > Room for further developments and improvements!

Analysis Program	Incident Ions	Analytical Techniques	Scattering Geometries	Pileup correction	Detection Systems	Stopper Foils	Energy calibration
DEPTH	All	RBS, ERDA, NRA	IBM, Cornell	No	Energy dispersive (magnetic spectrograph coming)	Simulated; including inhomogeneities	Linear
GISA	All	RBS	IBM	No	Energy dispersive	N/A	Quadratic
MCERD	All	ERDA, RBS	IBM	No	Energy dispersive, TOF, different layers in detector for e.g. gas detectors	Simulated; equivalent treatment to sample	Linear
NDF	All	RBS, ERDA, non- resonant NRA, PIXE, NDP, resonant NRA	IBM, Cornell, General	Yes	Energy dispersive	Simulated; equivalent treatment to sample	Quadratic; varying by ion species
RBX	All	RBS, ERDA, non- resonant NRA	IBM, Cornell	Yes	Energy dispersive	Simulated; Homogeneous foils only	Linear
RUMP	All	RBS, ERDA	Cornell, IBM, General	Yes	Energy dispersive, partial TOF	Simulated, or from user calibration	Linear
SIMNRA	All	RBS, ERDA, non- resonant NRA	IBM, Cornell, General	Yes	Energy dispersive, TOF, electrostatic, thin solid state detectors with transmission of particles	Simulated; equivalent treatment to sample	Quadratic; varying by ion species

Analysis Program	Sample Description	Continuous Profiles	Slab Limitations /Elements	Substrate Roughness	Layer Roughness
DEPTH	Layer definition	Slabs only	None	No	No
GISA	Layer definition or profile function	Maps continuous profiles onto slab structure	10 layers; 10 elements; User can define so layer*elem. is constant	No	No
MCERD					
NDF	Layer definition; equation overlays	User defined functions; Effective interdiffusion profiles between layers.	250 layers in description; up to 92 constituents	Yes - approximated as energy broadening	Yes - approximated as energy broadening
RBX	Layer definition	User defined functions (Gauss, error functions etc.). Channeling defect distributions.	None	No	No
RUMP	Layer definition with equation overlays	Gaussian implants, error function diffusion, Pearson IV profiles, one- sided and two-sided diffusion.	None	No	Yes - single or dual sided, all interfaces possible.
SIMNRA	Layer definition	Slabs only	100 layers in description; 40 elements per layer	Yes - Lorentzian or Gaussian angular distribution	Yes, all interfaces possible.

Capabilities of codes > Physics handled

Analysis Program	Isotope Calculation	Screening Calculation	Straggling models	Plural Scattering	Multiple Scattering	Geometric Straggling	Channeling
DEPTH	Single isotope	Yes	Bohr, Chu, Yang, Tschalär	None	Yes. Pearson VII distribution	Yes	No
GISA	Natural abundance and/or specific isotopes	Energy/Angle - external tables by users	Bohr + Lindhard/S charff	None	None	No	No
MCERD	Natural abundance and/or specific isotopes	No	Bohr, Chu, Yang	Full MC calculation	Full MC calculation	Yes	No
NDF	Natural abundance and/or specific isotopes	Energy/Angle – Andersen and L'Ecuyer	Bohr, Chu, Yang, Tschalär	Dual scattering approx. (run time option)	Yes - Gaussian approximation from DEPTH calculation	Yes - from DEPTH calculation	No
RBX	Natural abundance and/or specific isotopes	Yes	Bohr, Chu, Yang, Tschalär	None	Yes (same model as DEPTH)	Yes	Yes (analytic model)
RUMP	Natural abundance and/or specific isotopes	Energy only - L'Ecuyer	Bohr	None	None	No	No
SIMNRA	Natural abundance and/or specific isotopes	Energy/Angle - Andersen and L'Ecuyer	Bohr, Chu, Yang, Tschalär	Dual scattering approx. (run time option)	Yes (DEPTH model approximated as Gaussian +)	Yes	No

Analysis Program	Starting conditions	Optimization method	Error estimation	Statistics used	Searchable experimental parameters	Auto- refinemen t of layers	Limitations
GISA	Reasonable guess	χ^2 minimization	None returned		None	No	One layer at a time
NDF	Elements present only; guess can be used but not required	Simulated annealing plus grid search	Bayesian inference with Markov chain Monte Carlo integration (time intensive)	Poisson	E ₀ , E _{cal} , charge, θ, Φ, φ	Yes	All parameters variable, user controls which ones change
RUMP	Reasonable guess	Marquart search	Curvature of chi-square matrix; full correlation of error sensitivities (intrinsic in search method)	Poisson	E ₀ , E _{cal} , charge, current, θ, Φ, φ	No	No internal limit, practical of 30 parameters at a time
SIMNRA	Reasonable guess	Simplex search	Additional search to determine curvature near best fit (comparable to fit time)	Poisson	E _{cal} , charge	No	One layer at a time, all characteristics

Analysis Program	Primary Interface "nature"	Primary simulation modes	Graphic Output
DEPTH	Interactive or batch	Manual iteration	N/A
GISA	Interactive	Manual iteration; automated parameter search	Screen only
MCERD	Batch	Manual iteration	N/A
NDF	Batch directed or interactive	Fully automated search; manual iteration	Publication quality
RBX	Interactive	Manual iteration	Draft quality
RUMP	Interactive	Manual iteration; automated parameter search	Publication quality
SIMNRA	Interactive	Manual iteration; automated parameter search	Draft quality

ith

Accuracy of codes and experiments

- Counting statistics
 - > Often quoted as "the" error, often severely underestimates true error.
- Basic physical quantities
 - Accuracy of elastic scattering cross sections varies widely from experiment to experiment. Often strong angular dependence. Need to check original reference!
 - Stopping powers: SRIM off 4.2% and 4.1% for H and He ions on average, but for some elements errors can be much larger! For heavy ions as well: need to check original reference, and in some cases use experimental values.
- Experimental conditions
 - Error often unknown and disregarded
- Physical models and their implementations
 - For simple cases: see the IAEA intercomparison exercise
 - For complicated cases: deep knowledge is required

Effect of some phenomena on data analysis

phenomenon	ion	energy	scattering angle	target element	effect on spectrum	error	effect on analysis
cross section							false quantitative analysis
1) electron screening	all	all	<15°	all	decreased yield	Poorly known (large)	
	all	> 150 keV/Z	>15°	heavy		1%	
	all	> 500 keV/Z	>90°	heavy		≥0.2%	
2) nuclear effects	р	≥ 100 keV	all	light (medium heavy)	increased or decreased yield	depends on reaction (can be very large)	
	α	≥ 2.0 MeV	all	light			

Effect of some phenomena on data analysis

phenomenon	ion	energy	scattering angle	target element	effect on spectrum	error	effect on analysis
stopping power							false quantitative and depth analysis
1) general uncertainties	р			all	increased or decreased yields and widths	4.2% average (>10% for 13% of target atoms)	
	α			all		4.1% average (>10% for 11% of target atoms)	
	α			Si		<i>≤</i> 2%	
	Li			all		5.1% average (>10% for 17% of target atoms)	
	heavier ions			all		6.1% average (>10% for 18% of target atoms)	
2) Bragg rule violations	all			Compounds with light elements (insulators)	increased or decreased yields and widths	≤10-15%	
3) physical state effects	all			light solids vs. liquid or gaseous	increased or decreased yields and widths	≤5-10%	

Effect of some phenomena on data analysis

phenomenon	ion	energy	scattering angle	target element	effect on spectrum	error	effect on analysis
energy spread, multiple scattering	heavy		grazing angle geometry		increased or decreased edge and peak broadness	large	false interdiffusion, mixing, depth profile, and roughness analysis
	р		normal incidence			small	
	all		all			depends on details (can be small or large)	
surface and interface roughness	all			all	increased edge and peak broadness, changed shape	depends on details (can be small or large)	false analysis of intermixing and interdiffusion
channeling	all		incidentally aligned geometry		decreased yields	depends on details (can be small or large)	false quantitative and depth analysis
pulse pile-up	all			heavy (all)	increased or decreased yields, background	≤2-5% for count rates below ≈5 kHz	false quantitative analysis, reduced sensitivity
low energy background	all	low (all)	grazing geometry (all)	heavy (all)	increased background	depends on the details; can be dominant at low energies; small in most analyses	false quantitative analysis, reduced sensitivity

Accuracy of codes and experiments

> Always:

- Select a code that actually can analyse your data correctly.
- ➢ include Andersen et al. electron screening in the calculations.
- For proton beams, and ⁴He beams above 2.0 MeV, always check the literature and IBANDL for possible nuclear reactions.
- > Use the most recent stopping power data available.
- > Be aware of the accuracy with which you know the exp. parameters.

Accuracy of codes and experiments

- > Depending on the experiment at hand:
 - Calculate pile-up whenever count rate is not very low.
 - Calculate all contributions to energy spread whenever width of signals is relevant (e.g. diffusion, profiles, roughness). Use NDF or SIMNRA.
 - Calculate effect of roughness whenever relevant. Use NDF or SIMNRA.
 - Different codes have different emphasis and different advantages and disadvantages.

Conclusions

- Software does not replace the judgment of the analyst.
- Software that is not correctly used, or used outside its scope of application, leads to wrong data analysis.
- Use RUMP for simple RBS/ERDA, NDF and SIMNRA for best accuracy.