

2016-9

Joint ICTP/IAEA Advanced Workshop on Earthquake Engineering for Nuclear Facilities

30 November - 4 December, 2009

PSHA and Hazard Scenarios

Lalliana Mualchin California Department of Transportation California USA

PSHA and Hazard Scenarios

Joint ICTP/IAEA Advanced Workshop on Earthquake Engineering for Nuclear Facilities 30 November – 4 December, 2009

Lalliana Mualchin

Retired Chief Seismologist California Department of Transportation

Nuclear Power Plants in California

(including proposed and cancelled sites)

1.	<u>Santa Susana Sodium Reactor Experiment</u>	1957-1964	-closed
2.	Vallecitos (PG&E)	1957-1963	-closed
3.	Bodega Bay Head (PG&E)	1958-1964	-cancelled
4.	<u>Humboldt Bay (PG&E)</u>	1963-1976	-closed
5.	Point Arena (PG&E)	1966-1972	-cancelled
6.	Malibu (LADWP)	1967	-stopped
7.	Stanislaus (PG&E)	1971-1979	-cancelled
8.	Davenport (PG&E)	early 1970s-1977	-stopped
9.	Sundesert (SDG&E)	1970's-1978	-cancelled
10.	Wasco, Kern County (PG&E-LADWP)	1973	-cancelled
11.	Rancho Seco (SMUD)	1975-1989	-closed
12.	<u>San Onofre (SCE)</u>	1968	-operating
13.	<u>Diablo Canyon (PG&E)</u>	1985	-operating
•	PSHA in 10 CFR Parts 50 and 100 of US-NRC	1997	-adopted

[9 years after National Research Council's PSHA Report]

SHA and Important Dates

- US-AEC Established 1947
 DSHA Used Since → 1947
- US-NRC Created 1974
- PSHA Report 1988

(US-National Research Council)

• PSHA Introduced Since \rightarrow 1997

Seismic Hazard Analysis

- DSHA the standard method is so named to distinguish it from PSHA, now also called "Scenario" Approach
- Neo-DSHA similar to DSHA, to obtain realistic ground motions using plausible earthquake source and calculating wave propagation from source to site
- PSHA promoted & endorsed by the US National Research Council in their Panel Report of 1988
- PSHA not open to debate

DSHA

- Characterize Sources of Earthquakes Faults [Selection Criteria, Occurrence Likelihood, Extended Source]
- Estimate Maximum Credible Earthquakes (MCEs) [Robustness of Estimate with ¼ Magnitude Round-off]
- Estimate Ground Motions from MCEs by using GM Attenuation Relationships [Choice of Mean or above Mean Attn Relationships, lesser M's]
- Select Highest Appropriate GM from one or more MCEs for Design [Magnitude-Dependent Spectrum]
- Used Continuously in California Since the 1970s

PSHA(1/2)

- Characterize Sources of Earthquakes Faults & Areas [Faults As in DSHA but less important MCE]
- Estimate Maximum (Credible) Earthquakes (MCEs) and Recurrence of Earthquake Magnitudes for the Sources [Logic Tree, Seismicity and Slip Rate for Recurrence]

PSHA(2/2)

- Calculate Ground Motions *probabilistically* by using GM Attenuation Relationships and Earthquake Recurrence, and "triple" integrating for magnitudes and distances [Probability from *Spatial* Attn. Relationships and Time from *Temporal* Recurrence]
- Decide a probability and an exposure time, then obtain the corresponding GM for Design [Arbitrary Probability, n combinations of Prob. & Exp. Times, Return Period, and Low Probability GMs Issues]
- First Used in the US Nuclear Power Industry in 1997

DSHA vs PSHA

- Transparency
- Stability of Results
- Variability in Input Data
- Uncertainty or Variability in the Result
- Earthquake Occurrence Temporal Frequency
- Earthquake Sources
- Cost of Analysis
- Selecting Ground Motion for Design [*Note*:Both can use same Faults and Attn. Relationships]

DSHA vs PSHA(1/4)

• Transparency

DSHA - transparent.

Inputs and results - directly related.

PSHA - not transparent.

Inputs and results - not directly correlated.

• Stability of Results

DSHA results - as stable as the inputs are.

Increase above the mean, or vice versa as desired.

Not much room for changing results.

PSHA results and inputs – variability.

Quite sensitive to some inputs, being complex calculation. Results easily manipulatable.

DSHA vs PSHA(2/4)

• Variability in Input Data

DSHA - best estimate of input data.

Not necessary to formalize the variability, eg., MCE. PSHA - expert opinion and logic tree to incorporate variability.

• Uncertainty or Variability in the Result

DSHA - results from best estimate inputs.

Usually mean, eg., mean peak ground motion. PSHA divides uncertainty into

aleatory/random and epistemic/subjective components. Some questioned why separating into two components.

DSHA vs PSHA(3/4)

- Earthquake OccurrenceTemporal Frequency
 DSHA not consider frequency of earthquakes magnitude. Assumes only the occurrence of MCE at any time. Exceeds and *automatically considers all other events*.
 PSHA - earthquake recurrence by Gutenberg-Richter Eqn. Continuous distribution of magnitudes, up to MCE. Recurrence rate - measure of earthquake activity rate. Availability and Interpretation of Data (completeness & Eq Budget)
- Earthquake Sources

DSHA – faults.

No faults with ground motions, eg., Central Valley. PSHA – faults & areas.

DSHA vs PSHA(4/4)

• Cost of Analysis

DSHA – economic, less time & analysis. PSHA – expensive, more time & analysis.

• Selecting Ground Motion for Design

DSHA - compares GMs from all MCEs.

Ones impact most - for design.

PSHA first peak acceleration with given probability and exposure time, the non-unique n combinations.

Source for that peak acceleration - by *deaggregation*. Followed by standard DSHA procedure.

Personal Experience with PSHA

- San Onofre NPP Christianitos fault by Gutenberg-Richter equation, inadequate data.
- **Diablo Canyon** NPP Hosgri fault, no problem with DSHA and problem with PSHA.
- **Bolsa Chica** Project Newport-Inglewood fault, unrealistic result by PSHA.
- Hospital Seismic Reports Too low hazard for Central Valley.
- California Seismic Hazard Map for Caltrans Critical input not available for many faults and PSHA results not correlated with proximity to earthquake source.

PSHA CREDIBILITY IN DOUBT

- Yucca Mountain Nuclear Waste Disposal Facility project for the US Department of Energy on *Extreme Ground Motions*
- PEGASOS project for SwissNuclear on *Overestimated Ground Motions*

CONCLUSIONS & RECOMMENDATIONS

- DSHA demonstrated its stability and usefulness in engineering, be enhanced by including the variability of inputs and results
- Neo-DSHA can be used for realistic seismic sources in conjunction with DSHA
- PSHA demonstrated its lack of credibility, with its intractable and costly method, and must be replaced by DSHA for engineering
- Seismic Risk Analysis can use PSHA or DSHA*. *Klugel, J.-U., Mualchin, L. and Panza, G. F. (2006): Eng. Geology: 88, 1-22.