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Know the input - Bound the output...

Mitigate the difference...

the road to (earthquake) safety...
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Some remarks on sound SHA

Source & site effects

Integrated methodology

Groundshaking scenarios modelling

Methodology

Groundshaking scenarios modelling

Case Studies

Road map
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 ....may vary greatly among the earthquake scenarios, considering different source locations (and 
rupture ...)
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Near surface effects: impedance contrast, velocity

geological maps, v30

Basin effects

Basin-edge induced waves

Subsurface focusing

Important issues in SRE

heavy-damage
zone

slight-damage
zone

650 m apart 1 sec

L.A. Basin
Sediments

Santa Monica 
Mountains

Santa Monica

1 km

Bedrock

In SHA the site effect should be defined as the average behavior, 
relative to other sites, given all potentially damaging earthquakes.

This produces an intrinsic variability with respect to different 
earthquake locations, that cannot exceed the difference between sites
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PGA as a demand parameter…pp
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Figure 1 – Acceleration time history. Rocca NS record. 1971 Ancona earthquake (ML=4.7) 
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Figure 2 – Acceleration time history. Sylmar N360 record. 1994 Northridge earthquake (Mw=6.7) 
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SHA dualism

Deterministic Probabilistic

Risk 
mitigation 
decision

Emergency response Design/Retrofit

Seismic 
environment

Next to active fault High hazard, plate 
margin

Moderate hazard, 
anywhere

Low hazard, midplate

Scope of the 
project

Regional risk Multiple properties 
lifelines

Specific site

Modified from: Mc Guire, 2001

Qualitative Quantitative
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Probabilistic and Deterministic procedures (after Reiter, 1990)

SHA

9

PBDE

SHA produces response spectral ordinates (or other intensity 
measures) for each of the annual probabilities that are specified for 

performance-based design.

In PBDE, the ground motions may need to be specified not only as 
intensity measures such as response spectra, but also by 

y
y suites of y p p yy

strong motion time histories for input into time-domain nonlinear p
analyses of structures.

It is necessary to use a suite of time histories having phasing and 
spectral shapes that are appropriate for the characteristics of the p p pp p

earthquake source, wave propagation path, and site conditions that p p g p
control the design spectrum.
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Modern PSHA & DSHA dualism

PSHA
Waveform 
modelling

Accounts for all 
potentially damaging 

earthquakes in a 
region

Focus on selected 
controlling 

earthquakes

(Single) parameter Complete time 
series

Deeply rooted in 
engineering practice 
(e.g. building codes)

Dynamic analyses of 
critical facilities

Study of attenuation 
relationships

Deaggregation, 
recursive analysis

PSHA

DSHA
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Regional seismic hazard scenarios
(ground motion at bedrock)

Multiscale Neo-deterministic 
Hazard Scenarios
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Regional Scale - Seismograms
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Displacement - Italy
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The procedure has been applied to several countries in 
the world. Here the map of DGA is shownhe world Here the mp

−10˚

−10˚

−5˚

−5˚

0˚

0˚

5˚

5˚

10˚

10˚

15˚

15˚

20˚

20˚

25˚

25˚

30˚

30˚

35˚

35˚

40˚

40˚

45˚

45˚

5˚ 5˚

10˚ 10˚

15˚ 15˚

20˚ 20˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

0.000
0.005
0.010
0.020
0.040
0.080
0.150
0.300
0.600
1.200

A (g)

15

Pattern recognition 
of earthquake prone 

areas (nodes)

Integrated Neo-Deterministic Hazard

Intermediate-term 
medium-range 

predictions

Ground motion 
scenarios

Restrained area 
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sources + time

Space&
time

info for seismic 
Risk

Seismic 
Input 

for engineering 
analysis
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Soommeee reeemaarkkkks on ssounddd SHHAAAA

Source &&&& site effffffeects

Integgratedd methhoddollogggy

Groundshaking scenarios modelling

Methodology (Source effects)

Road map

GUSEV A. A, Pavlov V, Romanelli F., Panza G. (2008). 

Low-frequency seismic ground motion at the pier positions of the planned 
Messina straits bridge for a realistic earthquake scenario. 

In: 2008 Seismic Engineering Conference commemorating the 1908 Messina and 
Reggio Calabria Earthquake. MELVILLE, NEW YORK: AIP, vol. 1020, p. 362-369, 

ISBN/ISSN: 978-0-7354-0542-4/0094-243X.
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Pier Positions of the Planned Messina Straits Bridge

18



 
3D view: fault model geographical location together with the position of the two piers: Torre 

Calabria, TCA and Torre Sicilia, TSI. Star is the rupture nucleation point.

To model the 1908 event, we assume a Mw=7 earthquake, with a 40x20 km 

rectangular fault, and pure reverse dip-slip. The horizontal upper side of the rectangle 
is at 3-km depth, and the N corner of the rectangle is just between the piers.

1908 scenario

19

A typical simulation is made in three steps. 

The fault motion is initially (first step) represented by the time history of slip 
in each of the subfaults and by the distribution of the final seismic moment 
among the subsources (forming “asperities”), both generated as lognormal 
random functions. The time histories are then filtered in order to fit a chosen 
source spectral model. 

The parameters that are conditioning the random functions can be based on 
the bulk of published fault inversions, or reproduced from an earlier 
successful attempt to simulate ground motions in the epicentral zone of the 
1994, M=6.7 Northridge, California, earthquake. 

In the second step, the Green functions (for each subfault and pier 
combination) are calculated for a layered halfspace model of the pier 
foundation stratigraphy, using an advanced Green function calculator, that 
allows an accurate calculation over the entire relevant frequency band 
including static terms. Finally (third step), the 3-components of the strong 
ground motion are obtained at the two piers through convolution and 
summation over the different subsources.
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Slip or Mo(x,y) 
distribution by levels of 

grey. Diamond is the 
nucleation point, and 
white contours are 

rupture front positions 
every 1.03 s

Variant 222

Variant 224

Rupture histories
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a) variant 222

 

b) variant 224

Displacement                    Velocity                 Acceleration

Ground motion at pier Torre Sicilia
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Z

EW
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Ground motion at pier Torre Calabria

a) variant 222

 

b) variant 224

Displacement                    Velocity                 Acceleration
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PRV (response velocity spectra) for horizontal components, both 
piers on one plot.  Variant 224 exceeds significantly the reference 

spectrum (SM-PRV), proposed by Stretto di Messina (2004). 

Variant 222 Variant 224

PRV
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Examples of the considerable variability of the accelerograms in the individual simulations. Eight sample 
functions of the ground acceleration at Torre Sicilia for the horizontal components. Vertical interval 

between zero-lines of traces is 2000 cm/s2 . The first trace is for the less usual source sample function, 
when a large asperity happened to coincide with the spot with the highest permitted propagation velocity

NS EW

Variability respect to rupture history

25

We compare a set of response horizontal velocity spectra (PRV) 
obtained from our calculations with a reference PRV that is 
considered as a reasonable upper bound for the possible ground 
motion near the piers. Our results suggest that the seismic p gg
ground motion under Torre Sicilia dominates that under Torre 
Calabria and that the median PRV is generally above the 
reference one, about 1.1-1.3 times for T

g y
TTTTTT>4 s, and up to 2 times 

for 1<<<TTTT≤≤≤4 s. 

The use of advanced fault and medium models, accounting also 
for the natural scatter of individual PRV spectra due to events 
with the same gross source parameters, provides a sound basis 
for the 

g p p
deterministic engineering estimates of future earthquake 

ground motion.

Considerations...
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Soommeee reeemaarkkkks on ssounddd SHHAAAA

Source &&&& site effffffeects

Integgratedd methhoddollogggy

Groundshaking scenarios modelling

Methodology (Site effects)

Road map
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Introduction - Local scale

Synthetic seismograms along selected profiles

Laterally heterogenous structural models

Detailed source models

Cutoff frequency up to 10 Hz

Time series, amplification maps
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Source

Sites

Methodology - Modal summation (regional scale)

Modal summation
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Methodology - Hybrid technique (local scale)
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Methodology- 2D/1D spectral amplificationslogyyyy- 2D/1D spectral amplificati-

Local model (2D)

Bedrock (1D)

Seismogram 2D

Seismogram 1D

Response spectra 2D

Response spectra 1D

Spectral ratio
2D/1D
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Soommeee reeemaarkkkks on ssounddd SHHAAAA

Source &&&& site effffffeects

Integgratedd methhoddollogggy

GGrounndddsshhaaakkkkinggg sscceenaarioss moddddeeelliinnggg

Methhodddologggy

Groundshaking scenarios modelling

Application to critical facility (real bridges...)

Road map

Romanelli F., Panza G.F. ,Vaccari, F., 2004. 
Realistic Modelling of the Effects of Asynchronous motion at the Base of Bridge 
Piers, Journal of Seismology and Earthquake Engineering, Vol. 6, No. 2, pp. 19-28

33

VAB Project (EC)

Effects on bridge seismic response of 
asynchronous motion at the base of bridge piers

ADVANCED METHODS FOR ASSESSING 
THE SEISMIC VULNERABILITY 

OF EXISTING MOTORWAY BRIDGES

ARSENAL RESEARCH, Vienna, Austria; ISMES S.P.A,. Bergamo, Italy; 
ICTP, Trieste, Italy; UPORTO, Porto, Portugal; CIMNE, Barcelona, Spain; 

SETRA, Bagneaux, France; JRC-ISPRA, EU.
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Warth bridge
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The bridge was designed for a horizontal 
acceleration of 0,04 g using the quasi 

static method. 

According to the new Austrian seismic 
code the bridge is situated in zone 4 with 
a horizontal design acceleration of about 

0,1 g: a detailed seismic vulnerability 
assessment was necessary.
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Transverse accelerograms M=5.5, d=6km 
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Synthetic accelerations and diffograms
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Implementation of PSD tests
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Directivity parametric study
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ESp towards directivity
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Directivity & PGV - PGA
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Directivity & SV
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Directivity & SA
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Groundshaking scenarios modelling

Application to Triest

Road map

Vaccari F., Romanelli F., Panza G. F. (2005).
Detailed modelling of strong ground motion in Trieste; Modellazione dettagliata del 

moto sismico del suolo a Trieste". Geologia tecnica e ambientale, Vol. 2, pp. 7-40.
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Local Scale - Choice of Scenario Earthquakes

Regional zonation

Morphostructural analysis

Active faults

Earthquake prone areas

S1

S2

S3

Trieste
S1 in the Bovec zone 
(65 km from Trieste)

S2 East of Gorizia 
(30 km from Trieste)

S3 at 17 km from Trieste
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Local Scale - Choice of Profiles
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Local Scale - Preliminary Parametric Test

Radiation Pattern

Source Depth

Epicentral Distance
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Local Scale - Synthetic Seismograms

Profile 1 - Bedrock “B” - Dist. 17 km - M=6.0
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Scenari: Trieste

Local Model (2D)

Bedrock (1D)

2D seismogram

1D seismogram

2D response spectra

1D response spectra

RSR
2D/1D

Site effects in Trieste city centre may cause 
a significant  amplification (up to 5 times  at 

engineering relevant frequencies) of the 
seismic signal at bedrock, hence intensity 

may reach IX (MCS) or VIII (MSK).

Local Scale - Response Spectra Ratio
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Local Scale - Response Spectra

Same site at the intersection of two profiles
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Local Scale - Response Spectra Ratio

Choice of reference site
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Rive - Dist. 17 km - M=6.0
Foundations and Amplifications (RSR 2D/1D)

Max=8 Max=5

Local Scale - RSR with Soil Interaction
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Local Scale - Source Model

Seismic Source of finite dimension and complicated rupturing process
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Local Scale - Differential Motion
Significant for elongated structures (bridges, lifelines etc)

Transverse Acceleration Differential (2D) Differential (1D)
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Engineering analysis - Triest case

Palazzo Carciotti
(masonry)

Model Vertical tensions

The data set of synthetic seismograms can be y g
fruitfully used and analysed by civil engineers for y y y g
design and reinforcement actions, and therefore g ,
supply a particularly powerful and economical tool pp y p y p
for the prevention aspects of Civil Defence.
Non-linear dynamic analysis considering the seismic y y g
input provided by the complete synthetic p p y pp y
accelerograms as obtained from microzoning gg  

Evaluate the response of relevant man-made p
structures, in terms of displacements and stresses, p
with respect to a set of possible scenario pp
earthquakes
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Groundshaking scenarios modelling

Application to Valparaiso

Road map

http://www.marvasto.bologna.enea.it/
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CONTRACT BID-ENEA n. ATN/II-9816-CH

PARTNERSHIP

ENEA, Ente per le Nuove tecnologie, 
l’Energia e l’Ambiente 

UNIFE, Università di Ferrara, Dip. di 
Architettura e Ingegneria

ICTP, Abdus Salam International Centre 
for Theoretical Physics, Trieste

UNIPD, Università di Padova, Facoltà di 
Ingegneria, Dipartimento di  Costruzioni e 

Trasporti

USM, Universidad Tecnica Federico Santa 
Maria, Departamento de Obras Civiles 

UC, Universidad de Chile, División 
Estructuras Construcción Geotecnia, 

Departamento de Ingeniería Civil, Facultad 
de Ciencias Físicas y Matemáticas 

PARTNERSHIP

OGP, Ilustre Municipalidad de Valparaíso, Oficina de 
Gestion Patrimonial

VALPOMIO, Programa de Recuperación y Desarrollo 
Urbano de Valparaíso 

“MAR VASTO” - Manejo de riesgos en Valparaiso
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Patrimonio Cultural de la 
humanidad

58



DISASTER HAZARD MAPS
(earthquakes, tsunami, landslides, fires)

SURVEYS 
(photos, GPS, geology, laser scanner 3D)

VULNERABILITY ANALYSIS
(synthetic sheets, structural calculations)

GIS 
(geo-referenced database for risk management)

MULTIMEDIA ACTIVITIES 
(movies, workshops, publications)

FINAL PROPOSALS 
(guidelines for future interventions) IN
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LANDSLIDE HAZARD

Cooperation with UC, 
USM, OGP

 cartography
 quebradas Cerro Cordillera
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FIRE HAZARD

Cooperation with UC, 
USM, OGP,OREMI, CORPO 

DEI POMPIERI
 cartography

 churches protection
 pilot study Cerro 

Cordillera
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GIS DATABASE

cooperation with 
OGP,OREMI, SHOA, 

FIREMEN CORP
 cartography
 aerial photos

 vulnerability analysis
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Urban planning  analysis            p g y
Cerro Cordillera pilot area

In situ vulnerability 
investigation

 restoration proposals

cooperation with OGP, 
UC, Police
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Laser scanner 3D

cooperation with 
GEOCOM, OGP, FIREMEN 

CORP
 La Matriz

 San Francisco
 Hermanas de la Providencia
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Objectives:

Hazard at a regional scale 

Scenario parametric tests

Validation with experimental data

Seismic input at urban scale

3 selected churches

Selected profiles with site effects

SEISMIC HAZARD
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Horizontal PGA distribution and Period in seconds of its maximum after 
hazard deaggregation of the  1906 and 1985 events

SEISMIC HAZARD Regional scale
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El Almendral station: acceleration, velocity 
and displacement for the 1985 event. 

a) computed (unilateral rupture) 

b) recorded. 

Comparison of response spectra: this 
study, recorded and the one simulated by 
Somerville et al., 1991. 

SEISMIC HAZARD Validation
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Groundshaking scenario in the Valparaiso urban area for the 1985 event.  
NS component of velocities for bilateral rupture. 

SEISMIC HAZARD Urban scale
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Example of seismic input computed at the 
La Matriz church: 1906 scenario, bilateral 

rupture. 

Displacements, velocities and accelerations 
for the two horizontal components of motion. 

SEISMIC HAZARD Seismic input for 3 selected churches
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Bedrock model (depth) at El Almendral and the 

position of the two profiles with their 
parameters. 

Radial component of motion along profile 2. 
1906 scenario

SEISMIC HAZARD Profiles & site effects
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Spectral amplifications obtained along profile 2. 
From top to bottom: radial and transverse component.  

SEISMIC HAZARD Regional scale
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SHOA Inundation maps

TSUNAMI HAZARD
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EARTHQUAKE SCENARIOS

We generate a set of tsunami scenarios at the site of Valparaiso, associated to 
different “scenario” earthquakes that can be classified, according to their different: 
a) magnitude, 
b) occurrence period, Tm, to be intended solely for an engineering analysis, and 
c) risk level: 

Magnitude 7.0  � �       Frequent       (Tm≈70-80 years) 
Magnitude 7.5  � �       Occasional    (Tm≈120-140 years, Strong) 
Magnitude 7.8 (1985) �  Sporadic       (Tm≈200-250 years, Very Strong) 
Magnitude 8.3 (1906) �  Rare             (Tm≈500 years, Disastrous) 
Magnitude 8.5  � �       Exceptional   (Tm≈1000 years, Catastrophic) 

TSUNAMI HAZARD
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Tsunami signals for the reference case (1D) and 
different laterally heterogeneous models (2D).

Tsunami signals computed at Valparaiso site 
(about 50 km) for different magnitudes (from 

7.5 to 8.7) considering extended source models. 

Laterally heterogeneous models & Extended sources

TSUNAMI HAZARD
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a) Maximum height (for point and extended sources)
b) amplification compared to the reference event (1906 earthquake) 
for the scenario earthquakes considered. 

Using as a base of knowledge the inundation map provided by SHOA (1999) 
associated to the 1906 event, an upper bound of the multiplication factor for 
the tsunami hazard associated to be used for the different scenarios can be 
read in Figure: the tsunami heights, computed with a scaled and an extended 
source, are plotted versus magnitude and the associated amplifications (using 

as reference the 1906 level) are shown:

Final remarksTSUNAMI HAZARD
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