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What 1s HAZARD? RISK?

What 1s Seismic Hazard? Seismic Risk?




Hazard vs. Risk

e Hazard e Risk

— Something (bad) that could — Probability of harm if
cause harm something or someone
(vulnerability) 1s exposed to a
hazard

— Quantification: — Quantification:

* Physical measurement * Probability
o Temporal measurement  Physical/monetary measurement
o Spatial measurement * Temporal measurement

» Spatial measurement

Risk= Hazard x Vulnerability (someone or something)




Hazard vs. Risk

[ | Increasing consensus around risk

Natural Hazard: A Risk:

Earthquakes Qﬂ;gﬂg{:ﬂﬁm from .Asset price collapse . 1 .
Tropical Storms 1) Probability

Floods 2) US$
Interstate and 3) 10 years

Pandemics civil wars 0il price shock 4) Global
ooba

China economic hard landing

Man-made Hazard:
Wars

Terrorism

Crime and corruption

_Midcltlle,l_East Transnational crime and corruption
instabilrty Breakdown of ClI

Coming Fallin § - )
. . : Chronic disease in
M fiscal crises Climate change developed countries

NatCat: [l Tropical storms Liability regimes
NatCat: [l Earthquakes Il Developing world disease

NatCat: Inland flooding Loss of freshwater services

Failed and failing states
Proliferation of WMD
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Nanotechnology
Intemational terrorism

10-50 billion

Any event:
1) What?

2) When?

3) Where?

2-10 billion

Bl below1% 1-5% 5-10% 10-20% |_>
Likelihood

The 23 core global risks over a 10-year time frame estimated by World Economic Forum (2007).




Hazard vs. Risk

USNRC Risk Definition (1998 White Paper):
“The risk definition takes the view that when one asks,
"What 1s the risk?" one is really asking three questions:

1. "What can go wrong?" - Hazard (scenario)
2. "How likely 1s 1t?" - Probability

3. "What are the consequences?* — Outcome from
interaction between hazard and vulnerability

the "risk triplet”




Seismic Hazard vs. Seismic Risk

e Seismic Hazard e Seismic Risk

— Natural phenomenon — Probability of harm if
generated by an earthquake, something or someone
such as fault rupture, (vulnerability) 1s exposed to a
ground shaking, Seismic hazard
liquefaction

— Quantification: — Quantification:
 Physical measurement « Probability
(magnitude, PGA, MMI)

* Physical/monetary measurement
* Temporal measurement

» Temporal measurement

* Spatial measurement e Spatial measurement

Seismic Risk= Seismic Hazard x Vulnerability




Seismic Hazard vs. Seismic Risk

Risk = Seismic Hazard x Vulne}ablhty e

Hazard may or may not be mitigated, but risk can always be reduced




Seismic Hazard and Risk Assessments

e Seismic Hazard e Seismic Risk

— Quantification: — Quantification:

* Physical measurement » Probability
(magnitude, PGA, MMI)

e Temporal measurement

* Physical/monetary measurement

» Temporal measurement

 Spatial measurement e Spatial measurement

Seismic Risk= Seismic Hazard x Vulnerability
1. Seismic hazard Assessment
2. Hazard and vulnerability interact:
1) Spatially
2) Physically
3) Temporally
3. Risk estimation




Seismic Risk Assessment

Probabilistic Risk Analysis (PRA) for nuclear facility
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The two terms multiplied in the integrand of the "risk integral,"(NUREG/CR-6728)




Seismic Risk Assessment

Step 1: Seismic hazard assessment

, ‘M? 1811 |
M7.8. 1906 New Madnd

). Calitornia

Area within Intensity VII
New Madrid = 203,000 square cules
San Francisco = only 12,000 square miles!

2 Three-story steel moment-frame building
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Seismic Risk Assessment

Step 1: Seismic hazard assessment

(a) SA{0.2 s)

(b) SA(} 5)

San Francisco, CA

Paducah, KY

e

Sarn Francisco, CA

Paducah, KY

10° 10°
Return Pericd (years)

10°
Return Period (years)

UFRS with 2,500-y RP |

San Francisco

Paducah

0.5 1 1.5
Natural Period, T{s)




Seismic Risk Assessment

Step 1: Seismic hazard assessment

(a) San Francisco, CA (b) Paducah, KY
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Demand curves for 5% damping




Seismic Risk Assessment
Step 2: Hazard and building interaction (physical)
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Capacity curve (building response)




Seismic Risk Assessment
Step 2: Hazard and building interaction (physical)

@
-
4
o
2
ﬁ
Lo
z
@
g
<L
©
=
2
w

Spectral Deformation, S0 (in.)

Demand and capacity curves in SF for ground motion with 2,500y RP




Seismic Risk Assessment
Step 2: Hazard and building interaction (physical)
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Seismic Risk Assessment
Step 2: Hazard and building interaction (physical)
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Seismic Risk Assessment
Step 3: Risk estimate

San Francisco
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Seismic Risk Assessment
Step 3: Risk estimate
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Seismic Risk Assessment

Car: 10% chance being hit; People: 39% chance being hit.
People has much higher chance being injured or killed because of more vulnerable




Probabilistic Seismic Hazard Analysis — PSHA
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Developed by Cornell in 1970 (Cornell, 1968, 1971)




Probabilistic Seismic Hazard Analysis — PSHA

eleration (%) with 10% Probal
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The US National Seismic Hazard Maps




Development of Seismic Design Ground Motion

eak Acceleration (%) with 2% Probability of Exceedance in 50 Years
{site: NEHRP B-C boundary)
27 o 280"

Seismic Hazard Map
(USGYS)
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BSSC — engineers,

seismologists, and others




Development of Seismic Design Ground Motion

Seismic Hazard Map Science - Basis
(USGS)

BSSC — engineers, Stakeholders:
Scientists/Engineers

seismologists, and others ,
/Economist, ...

Seismic Design Ground Motions
(FEMA)

Federal and state International Code Council
policies (IBC and IRC)

Decision Makers




0. 2s Response Acc. In Western Kentucky and SF Bay

an Fran; & S

Mr. David Mast (a staff member from KY congressman Ed Whitfield office): Why
can I not build a regular two-story house in Paducah?

DOE will not get permit from Ky-EPA to build a landfill at PGDP for clean-up.
Design ground motion for bridges will be much higher than those in CA

One of the main reasons that Kentucky lost the centrifuge facility ($2B) to Ohio.




Development of Seismic Design Ground Motion

Seismic Hazard Map Science - Basis
(USGS)

BSSC — engineers, Stakeholders:
Scientists/Engineers

seismologists, and others ,
/Economist, ...

Seismic Design Ground Motions
(FEMA)

Federal and state International Code Council
policies (IBC and IRC)

Decision Makers




Probabilistic Seismic Hazard Analysis — PSHA

Sensitivity Test

PSHA
Input Output

A single EQ “Black box” Infinite GM
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Tgy =500 years

Tgrp: 500y to infinity?

(Cornell, personal communication, 2004)




Probabilistic Seismic Hazard Analy51s — PSHA

Kentucky Seismic and Strong-Motion Network

* Strong Motion and Seismic (weak motion) Station
@ Strong Motion Station (only)

A Seismic Station-permanent

W Seismic Station-temporary




Probabilistic Seismic Hazard Analysis — PSHA

1. What 1s 1t? seismic hazard or seismic risk?

ld(In y)} f\, (m) f (r)dmdlr

7(y): the annual probability of ground motion y being exceeded
(Cornell, 1968)




Probabilistic Seismic Hazard Analysis — PSHA

1. What 1s 1t? seismic hazard or seismic risk?

Of partieular interest is the probability distribution of I Y the maximum intensity
over an interval of time ¢ {often one vear). Observe that

P = 4] = Plexactly zero special events in excess of 1 The annual VObClbilit

occur in the time interval 0 {o i

of exceedance: probability
of exceedance in ONE year
t=1 year

which from equation (20) is
PILL =4 = PIN = 0] = ¢ ", (21)

=

If we let Jpax equal I3 | the annual maximum intensity, ¢ = 1, and

Fpiin = ¢ = exp [—.ﬁUG exp (—’:E i):|
Ca

If the annual probabilities of exeeedance are small enough (say =0.05), the dis-
tribution of F..x can be approximated by

1~ Fug =1—¢e¢"" 21— (1~ p») Left side: /-F (dimensionless)
Right side: 1/Time (t=1 year)

(page 1590-91 of Cornell, 1968)




Probabilistic Seismic Hazard Analysis — PSHA

1. What 1s 1t? seismic hazard or seismic risk?

ld(In y)} f\, (m) f (r)dmdlr

7(y): the annual probability of ground motion y being exceeded
(Cornell, 1968)

form. For large design values associated with small risks the results
to an approximate risk of exceeding y of

Pl Ymax > ‘] — l - ‘Ym;u ( y :': ;‘I‘['H

(page 478 of Cornell, 1971)

By definition: seismic risk (probability of exceedance in ONE year), not seismic hazard




Probabilistic Seismic Hazard Analysis — PSHA

1. What 1s 1t? seismic hazard or seismic risk?

form. For large design values associated with small risks the results
to an approximate risk of exceeding y of

Pl Ymax > ‘] = I c }‘Ym;v( ( “): l'f‘f';y

The average return period, T, of an intensity equal to or greater than ¢ is defined as
the reciprocal of 1 — F;iir or

(TR

= 1/(1 — F) = 1/(inf) Return period has NO unit

1 — FJ.}ZE:U;I‘ =] —¢g =1 - (1~ P v )

= ¥

T.=1/ ( in) Return period has unit of time (WRONG)




Probabilistic Seismic Hazard Analysis — PSHA

1. What 1s 1t? seismic hazard or seismic risk?

T:=1/(pv)

/ Source B

/,I

Source A

Figure la shows a 400 x 400-km region with only two
seismic sources (faults). Source A produces only M, 6 earth-
gquakes with a recurrence interval (RI) of Ry = 50 yr or an
occurrence rate of 1/50 = 0.02 /yr. Source B produces only
M., 7.5 earthquakes with an RI of RI; = 450 yr or an occur-
rence rate of 1/450 = 0.0022/yr. The lengths of these

(1994) relationship. It i1s assumed that the occurrence of

an earthquake on source A or source B has no effect on
the future occurrence of earthquakes on these two sources
(time-independent assumption). For the sake of simplicity,

(Malhotra, 2008)

Return period has unit of time (WRONG)

For y=0, pi=1 and Ti=1/v

where the RI1 of earthquakes (on any of the two sources) in
the region 15 given by

I -
H—JH- (/)
Equation (7) 1s denived by simply adding the occurrence rates
(reciprocal of Rls) of earthquakes on source A and source B
to obtain the overall occurrence rate of earthguakes in the
region. Substituting R1; = 50 yr and Rlz = 450 yr 1n equa-
ton (/) gives R1 = 45 yr. Equation () 18 rewritien to express

PSHA creates an EARTHQUAKE of RI=45




Probabilistic Seismic Hazard Analysis — PSHA

2. Physical source model (point vs. finite)

(Cornell, 1968)

Rupture

i I /
T L
Faultj
Location /
Site @
(A) Seismic source j,

earthquake locations

in space lead to a
distribution of
location:

P[I| 5]
(McGuire, 2004)

P115]=1(llm)

Rupturelength 300 km

U0y =103, )" im0} £, () £ )l

lny

y(3) =D vPY 2 ) =3 v || {1—yj M;Gexp[—

Physical and Mathematical problems (Wang and Zhou, 2007; Wang, 2009)




Probabilistic Seismic Hazard Analysis — PSHA

2. Physical source model (point vs. finite)

The December 26, 2004
Indian Ocean earthquake
I (M9.3)

Rupture: ~1,200 km




Probabilistic Seismic Hazard Analysis — PSHA
3. Mathematical problem (dependency)

Attenuation Relationship

,,. In(Y) = f(M,R) +no,,,
\\ l l

Oy =8(M,R,site and others)




Probabilistic Seismic Hazard Analysis — PSHA
3. Mathematical problem (dependency)

Geometric Mean Maximum Comp.
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(Akkar and Bommer, 2007)




Probabilistic Seismic Hazard Analysis — PSHA
3. Mathematical problem (dependency)

ld(In y)} f\, (m) f (r)dmdlr

If and only if M, R, and 7,  are independent random variable
(Benjamin and Cornell, 1970; Mendenhall and others, 1986)

1) =/ ()17,

}

0;, y 18 not an independent random variable, but an
explicit or implicit dependence of M, R, and others.

l

Hazard calculation 1s mathematically incorrect




Probabilistic Seismic Hazard Analysis — PSHA

——— (Aoan

===== 5th and 95th percentiles
15th and 85th percentiles
Median

Yucca Mountain, NV
(Stepp and others, 2001)

Example:
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Probabilistic Seismic Hazard Analysis —
PSHA

Confusion on seismic hazard and risk:

— mis-interpretation of the annual probability of
exceedance or return period

Physical source model (point) — not appropriate

Mathematical problem (dependency)
— Ergodic assumption (Anderson and Brune, 1999)

Results: pure numerical creation with NO
SCIENTIFIC BASE




Alternative Seismic Hazard Assessment
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1. Seismic Hazard Assessment - Theoretical

Temporal
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0.1000 4

5.0 6.0 7.0
Magnitude (M)

Characteristic earthquake:
M7.5/RI=500y

For one characteristic

Earthquake:

SHA becomes DSHA

SHA to DSHA

Annual Recurrence Rate

| Setal03

1 PP0O4 f

| This Stud \ |

| mesdY N IMs 5

10 100

Distance (km)

Ground motion at 30km:
0.44g PGA (median)
0.22g PGA (median—SD)
0.88g PGA (median+SD)
/RP=500y
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SHA to DSHA to Neo-DSHA

Limitation:
<(0.5 Hz
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2. Seismic Hazard Assessment - Empirical

e | Scismic hazard curve: 4 vs. 7 at a site

Modified | Rossi-

Step 1

0.01-0.025
0.023-0.05

Step 3

(Historical records)

Intensity table (Panza)
(Milne and Davenport, 1969)

Year

A (PGA,9)

Rank (m)

P

1895

0.001

96

0.888889

1896

0.01

84

0.777778

1897

0.1

29

0.268519

(ground motion at a site)




2. Seismic Hazard Analysis - Empirical

Step 3
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Fig. 13. Extreme value distribution plot for Quebec City.

Seismic hazard curves



2. Seismic Hazard Analysis - Empirical

) Rpgecoud uos

Tokyo, Japan
(400-year data)

) Knpecoad uos

(Bozkurt and others, 2007)




Annual Frequency

2. Seismic Hazard Analysis - Empirical

Beijing City Tainjin City

Amual Frequency

Log (f)=-0.39 ~
I = 0.0169
Log(f) =-0.39 x I+ 0.6945
II = 0.0127

Intensity Intensity
sity )

Beijing area, China
(500-year data)



Observations from Wenchuan Earthquake

5059 6069 7.0

Magnitude: 8.0 (7.9 USGS)
Fault Rupture: ~300 km x 30 km
Surface Displacement: Sm (v),
4.8m (h)

Largest Recorded PGA: 0.65g
Death: ~70,000

Missing: ~20,000

Injured: ~380,000

Economic loss: >US$120B




Observations from Wenchuan Earthquake
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Observations from Wenchuan Earthquake
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(L1 and others, 2008)




Observations from Wenchuan Earthquake
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Observations from Wenchuan Earthquake
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Observations from Wenchuan Earthquake
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Observations from Wenchuan Earthquake
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Summary

» Seismic hazard and risk are two fundamentally different
concepts

— Seismic hazard: a natural phenomenon generated by an
carthquake, quantified by three parameters
* Physical measurement (magnitude, PGA, PGV, MMI, etc.)
* Temporal measurement
» Spatial measurement

— Seismic risk: a probable outcome from interaction between a
seismic hazard and vulnerability, quantified by four
parameters

 Probability

* Physical/monetary measurement
* Temporal measurement

» Spatial measurement




Summary

» Probabilistic seismic hazard analysis:
PSHA (model) 1s flaw

* Is not based on earthquake science
* Invalid physical model (point source)

e Invalid mathematics

« Mis-interpretation of annual probability of
exceedance or return period

 Should not be used for seismic hazard and
risk assessments




Summary

e Alternative seismic hazard assessment

* The goal of any seismic hazard assessment 1s to
quantify
e Physical measurement
* Temporal measurement
 Spatial measurement

* Should reflects earthquake science

* Approaches

e Theoretical (model)
« SHA
« DSHA
 Neo-DSHA

e Empirical (model)




Summary

» Again, Wenchuan earthquake shows that
mitigation works

» Earthquake science is the bases for
engineering design and mitigation policy
consideration.




A Quote from Alan Greenspan

-the former U.S. Federal Reserve Chairman
(1987-20006)

“I found a flaw 1n my model”

said a very distressed Greenspan
at the U.S. House Oversight Committee

on October 23, 2008, in Washington, DC

(www.youtube.com/watch?v=3ggPHNuEEH8&NR=1&feature=ftvwp)




A Questions for Everyone

U.S. NUCLEAR REGULATORY COMMISSION March 2007

REGULATORY GUIDE

OFFICE OF NUCLEAR REGULATORY RESEARCH
REGULATORY GUIDE 1.208

eneral process to determine a site-specific. performance-based GMRS includes the
following:

site- and region-specific geological, seismological, geophysical, and geotechnical investigations
a probabilistic seismic hazard analysis (PSHA)
a site response analysis to incorporate the effects of local geology and topography

4 the selection of appropriate performance goals and methodology

(
(
(
(

What are these analyses? Are we really safe? Or are we too conservative?
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The partial meltdown at Three Mile Island NPP, March 28, 1979
A minor radiation leak at the plant on November 21, 2009
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